Abstract

This document outlines multiple advanced use cases and integrations that ACME facilitates without any modifications or enhancements required to the base ACME specification. The use cases include ACME integration with EST, BRSKI and TEAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 26, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
Internet-Draft ACME-INTEGRATIONS October 2019

the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. ACME Integration with EST . 3
4. ACME Integration with BRSKI 6
5. ACME Integration with BRSKI Default Cloud Registrar 8
6. ACME Integration with TEAP . 10
7. ACME Integration with TEAP-BRSKI 13
8. IANA Considerations . 16
9. Security Considerations . 16
10. Informative References . 16

Appendix A. Comments . 17
Authors’ Addresses . 17

1. Introduction

ACME [RFC8555] defines a protocol that a certificate authority (CA) and an applicant can use to automate the process of domain name ownership validation and X.509 (PKIX) certificate issuance. The protocol is rich and flexible and enables multiple use cases that are not immediately obvious from reading the specification. This document explicitly outlines multiple advanced ACME use cases including:

- ACME integration with EST [RFC7030]
- ACME integration with BRSKI
 [I-D.ietf-anima-bootstrapping-keyinfra]
- ACME integration with BRSKI Default Cloud Registrar
 [I-D.friel-anima-brski-cloud]
- ACME integration with TEAP [RFC7170]
- ACME integration with TEAP-BRSKI [I-D.lear-eap-teap-brski]

The integrations with EST, BRSKI (which is based upon EST), and TEAP enable automated certificate enrolment for devices. ACME for subdomains [I-D.friel-acme-subdomains] outlines how ACME can be used by a client to obtain a certificate for a subdomain identifier from a certificate authority where client has fulfilled a challenge against a parent domain but does not need to fulfil a challenge against the explicit subdomain. This is a useful optimisation when ACME is used to issue certificates for large numbers of devices as it reduces the
domain ownership proof traffic (DNS or HTTP) and ACME traffic overhead, but is not a necessary requirement.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

The following terms are used in this document:

- **BRSKI**: Bootstrapping Remote Secure Key Infrastructures [I-D.ietf-anima-bootstrapping-keyinfra]
- **CA**: Certificate Authority
- **CMC**: Certificate Management over CMS
- **CSR**: Certificate Signing Request
- **EST**: Enrollment over Secure Transport [RFC7030]
- **FQDN**: Fully Qualified Domain Name
- **RA**: PKI Registration Authority
- **TEAP**: Tunneled Extensible Authentication Protocol [RFC7170]

3. ACME Integration with EST

EST [RFC7030] defines a mechanism for clients to enroll with a PKI Registration Authority by sending CMC messages over HTTP. EST section 1 states:

"Architecturally, the EST service is located between a Certification Authority (CA) and a client. It performs several functions traditionally allocated to the Registration Authority (RA) role in a PKI."

EST section 1.1 states that:

"For certificate issuing services, the EST CA is reached through the EST server; the CA could be logically "behind" the EST server or embedded within it."
When the CA is logically "behind" the EST RA, EST does not specify how the RA communicates with the CA. EST section 1 states:

"The nature of communication between an EST server and a CA is not described in this document."

This section outlines how ACME could be used for communication between the EST RA and the CA. The example call flow leverages [I-D.friel-acme-subdomains] and shows the RA proving ownership of a parent domain, with individual client certificates being subdomains under that parent domain. This is an optimisation that reduces DNS and ACME traffic overhead. The RA could of course prove ownership of every explicit client certificate identifier.

The call flow illustrates the client calling the EST /csrattrs API before calling the EST /simpleenroll API. This enables the EST server to indicate to the client what attributes it expects the client to include in the CSR request send in the /simpleenroll API. For example, EST servers could use this mechanism to tell the client what fields to include in the CSR Subject and Subject Alternative Name fields.

```
+--------+             +--------+             +------+     +-----+
| Pledge |             | EST RA |             | ACME |     | DNS |
+--------+             +--------+             +------+     +-----+
|             |                      |           |           |
STEP 1: Pre-Authorization of parent domain
|             |                      |           |           |
|             | POST /newAuthz       |           |           |
|             | "domain.com"         |           |           |
|             | --------------------->|           |           |
|             | 201 authorizations   |           |           |
|             | <---------------------|           |           |
|             | Publish DNS TXT      |           |           |
|             | "domain.com"         |           |           |
|             | --------------------->|           |           |
|             | POST /challenge      |           |           |
|             | --------------------->|           |           |
|             | Verify               |           |           |
|             | <---------------------|           |           |
|             | 200 status=valid     |           |           |
|             | <---------------------|           |           |
|             | Delete DNS TXT       |           |           |
|             | "domain.com"         |           |           |
```
STEP 2: Pledge enrolls against RA

GET /csrattrs
-------------------->
200 OK
SEQUENCE {AttrOrOID}
SAN OID:
"pledgeid.domain.com"

POST /simpleenroll
PKCS#10 CSR
"pledgeid.domain.com"
-------------------->
202 Retry-After

STEP 3: RA places ACME order

POST /newOrder
"pledgeid.domain.com"
-------------------->
201 status=ready

POST /finalize
PKCS#10 CSR
"pledgeid.domain.com"
-------------------->
200 OK status=valid

POST /certificate
-------------------->
200 OK
PEM
"pledgeid.domain.com"

STEP 4: Pledge retries enroll
4. ACME Integration with BRSKI

BRSKI [I-D.ietf-anima-bootstrapping-keyinfra] is based upon EST [RFC7030] and defines how to autonamically bootstrap PKI trust anchors into devices via means of signed vouchers. EST certificate enrollment may then optionally take place after trust has been established. BRSKI voucher exchange and trust establishment are based on EST extensions and the certificate enrollment part of BRSKI is fully based on EST. Similar to EST, BRSKI does not define how the EST RA communicates with the CA. Therefore, the mechanisms outlined in the previous section for using ACME as the communications protocol between the EST RA and the CA are equally applicable to BRSKI.

The following call flow shows how ACME may be integrated into a full BRSKI voucher plus EST enrollment workflow. For brevity, it assumes that the EST RA has previously proven ownership of a parent domain and that pledge certificate identifiers are a subdomain of that parent domain. The domain ownership exchanges between the RA, ACME and DNS are not shown. Similarly, not all BRSKI interactions are shown and only the key protocol flows involving voucher exchange and EST enrollment are shown.

Similar to the EST section above, the client calls EST /csrattrs API before calling the EST /cimpleenroll API. This enables the server to indicate what fields the pledge should include in the CSR that the client sends in the /simpleenroll API.

```
+--------+             +--------+             +------+
| Pledge |             | EST RA |             | ACME |     | MASA |
+--------+             +--------+             +------+     +------+

NOTE: Pre-Authorization of "domain.com" is complete

STEP 1: Pledge requests Voucher
```

```
POST /requestvoucher
---------------------->
```

STEP 2: Pledge enrolls against RA

GET /csrattrs

200 OK

SEQUENCE (AttrOrOID)
SAN OID:
"pledgeid.domain.com"

POST /simpleenroll
PKCS#10 CSR
"pledgeid.domain.com"

202 Retry-After

STEP 3: RA places ACME order

POST /newOrder
"pledgeid.domain.com"

201 status=ready

POST /finalize
PKCS#10 CSR
"pledgeid.domain.com"

200 OK status=valid

POST /certificate

200 OK
PEM
STEP 4: Pledge retries enroll

POST /simpleenroll
PCSK#10 CSR
"pledgeid.domain.com"

200 OK
PKCS#7
"pledgeid.domain.com"

5. ACME Integration with BRSKI Default Cloud Registrar

BRSKI Cloud Registrar [I-D.friel-anima-brski-cloud] specifies the behaviour of a BRSKI Cloud Registrar, and how a pledge can interact with a BRSKI Cloud Registrar when bootstrapping. Similar to the local domain registrar BRSKI flow, ACME can be easily integrated with a cloud registrar bootstrap flow.

BRSKI cloud registrar is flexible and allows for multiple different local domain discovery and redirect scenarios. In the example illustrated here, the extension to [RFC8366] Vouchers which is defined in [[TODO ID-TBD]] and allows the specification of a bootstrap DNS domain is leveraged. This extension allows the cloud registrar to specify the local domain RA that the pledge should connect to for the purposes of EST enrollment.

+--------+ +--------+ +------+ +----------+
| Pledge | | EST RA | | ACME | | Cloud RA |
+--------+ +--------+ +------+ | / MASA |

NOTE: Pre-Authorization of "domain.com" is complete

STEP 1: Pledge requests Voucher from Cloud Registrar

POST /requestvoucher

200 OK Voucher (EST RA domain)

STEP 2: Pledge enrolls against local domain RA
GET /csrattrs
--------------------->
200 OK
SEQUENCE {AttrOrOID}
SAN OID:
"pledgeid.domain.com"

POST /simpleenroll
PCSK#10 CSR
"pledgeid.domain.com"
--------------------->
202 Retry-After

STEP 3: RA places ACME order

POST /newOrder
"pledgeid.domain.com"
--------------------->
201 status=ready

POST /finalize
PKCS#10 CSR
"pledgeid.domain.com"
--------------------->
200 OK status=valid

STEP 4: Pledge retries enroll

POST /simpleenroll
PCSK#10 CSR
"pledgeid.domain.com"
--------------------->
6. ACME Integration with TEAP

TEAP [RFC7170] defines a tunnel-based EAP method that enables secure communication between a peer and a server by using TLS to establish a mutually authenticated tunnel. TEAP enables certificate provisioning within the tunnel. TEAP does not define how the TEAP server communicates with the CA.

This section outlines how ACME could be used for communication between the TEAP server and the CA. The example call flow leverages [I-D.friel-acme-subdomains] and shows the TEAP server proving ownership of a parent domain, with individual client certificates being subdomains under that parent domain.

The example illustrates the TEAP server sending a Request-Action TLV including a CSR-Attributes TLV instructing the peer to send a CSR-Attributes TLV to the server. This enables the server to indicate what fields the peer should include in the CSR that the peer sends in the PKCS#10 TLV. For example, the TEAP server could instruct the peer what Subject or SAN entries to include in its CSR.

```
+------+  +-------------+  +------+  +-----+
| Peer |  | TEAP-Server |  | ACME |  | DNS |
+------+  +-------------+  +------+  +-----+

STEP 1: Pre-Authorization of parent domain

POST /newAuthz "domain.com"
-------------------------->
201 authorizations
<------------------------
Publish DNS TXT "domain.com"
-------------------------->
POST /challenge
-------------------------->
Verify
------------->
```
STEP 2: Establish EAP Outer Tunnel

EAP-Request/
 Type=Identity

Delete DNS TXT
"domain.com"

EAP-Response/
 Type=Identity

EAP-Request/
 Type=TEAP,
 TEAP Start,
 Authority-ID TLV

EAP-Response/
 Type=TEAP,
 TLS(ClientHello)

EAP-Request/
 Type=TEAP,
 TLS(ServerHello,
 Certificate,
 ServerKeyExchange,
 CertificateRequest,
 ServerHelloDone)

EAP-Response/
 Type=TEAP,
 TLS(Certificate,
 ClientKeyExchange,
 CertificateVerify,
 ChangeCipherSpec,
 Finished)

EAP-Request/
Internet-Draft ACME-INTEGRATIONS October 2019

| Type=TEAP, |
| TLS(ChangeCipherSpec, |
| Finished), |
| {Crypto-Binding TLV, |
| Result TLV=Success} |

EAP-Response/ |
Type=TEAP, |
{Crypto-Binding TLV, |
Result TLV=Success} |

EAP-Request/ |
Type=TEAP, |
{Request-Action TLV: |
Status=Failure, |
Action=Process-TLV, |
TLV=CSR-Attributes, |
TLV=PKCS#10} |

STEP 3: Enroll for certificate |

EAP-Response/ |
Type=TEAP, |
{CSR-Attributes TLV}

EAP-Request/ |
Type=TEAP, |
{CSR-Attributes TLV}

EAP-Response/ |
Type=TEAP, |
{PKCS#10 TLV: |
"pledgeid.domain.com"}

POST /newOrder |
"pledgeid.domain.com"

201 status=ready

POST /finalize |
PKCS#10 CSR

7. ACME Integration with TEAP-BRSKI

TEAP-BRSKI [I-D.lear-eap-teap-brski] defines how to execute BRSKI at layer 2 inside a TEAP tunnel. Similar to the TEAP proposal in the previous section, BRSKI-TEAP leverages the existing TEAP PKXS#10 and PKCS#7 mechanisms for certificate enrollment, and does not define how the TEAP server communicates with the CA.

This section outlines how ACME could be used for communication between the TEAP server and the CA, and how this fits in with the TEAP-BRSKI proposal.

Similar to baseline TEAP, the TEAP server can use the CSR-Atributes TLV to tell the peer what attributes to include in its CSR request.
NOTE: Pre-Authorization of "domain.com" is complete and EAP outer tunnel is established as outlined in the previous section

STEP 1: Perform BRSKI Flow

EAP-Request/
 Type=TEAP,
 {Request-Action TLV:
 Status=Failure,
 Action=Process-TLV,
 TLV=Request-Voucher,
 TLV=Trusted-Server-Root,
 TLV=CSR-Attributes,
 TLV=PKCS#10}

EAP-Response/
 Type=TEAP,
 {Request-Voucher TLV}

STEP 2: Retrieve CA Configuration

EAP-Response/
 Type=TEAP,
 {Trusted-Server-Root TLV}

EAP-Request/
 Type=TEAP,
 {Trusted-Server-Root TLV}

EAP-Response/
 Type=TEAP,
 {CSR-Attributes TLV}

EAP-Request/
 Type=TEAP,
STEP 3: Enroll for certificate

EAP-Response/
 Type=TEAP,
 {PKCS#10 TLV:
 "pledgeid.domain.com"}
-------------------------->

 POST /newOrder
 "pledgeid.domain.com"
 ------------------>

 201 status=ready

 POST /finalize
 PKCS#10 CSR
 "pledgeid.domain.com"
 ------------------>

 200 OK status=valid

 POST /certificate

 200 OK
 PEM
 "pledgeid.domain.com"

EAP-Request/
 Type=TEAP,
 {PKCS#7 TLV,
 Result TLV=Success}

EAP-Response/
 Type=TEAP,
 {Result TLV=Success}
 ------------------>

EAP-Success

8. IANA Considerations
[todo]

9. Security Considerations
[todo]

10. Informative References

[I-D.friel-acme-subdomains]
Friel, O., Barnes, R., and T. Hollebeek, "ACME for Subdomains", draft-friel-acme-subdomains-00 (work in progress), October 2019.

[I-D.friel-anima-brski-cloud]

[I-D.ietf-anima-bootstrapping-keyinfra]

[I-D.lear-eap-teap-brski]

Appendix A. Comments

Authors’ Addresses

Owen Friel
Cisco
Email: ofriel@cisco.com

Richard Barnes
Cisco
Email: rlb@ipv.sx

Rifaat Shekh-Yusef
Avaya
Email: rifaat.ietf@gmail.com