A YANG model to manage the optical parameters for in a WDM network
draft-galimbe-ccamp-iv-yang-09

Abstract

This memo defines a Yang model that translate the information model
to support Impairment-Aware (IA) Routing and Wavelength Assignment
(RWA) functionality. The information model is defined in draft-ietf-
camp-wson-iv-info and draft-martinelli-ccamp-wson-iv-encode. This
document defines proper encoding and extend to the models defined in
draft-lee-ccamp-wson-yang to support Impairment-Aware (IA) Routing
and Wavelength Assignment (RWA) functions.

The Yang model defined in this memo can be used for Optical
Parameters monitoring and/or configuration of the multivendor
Endpoints and ROADMs. The use of this model does not guarantee
interworking of transceivers over a DWDM. Optical path feasibility
and interoperability has to be determined by means outside the scope
of this document. The purpose of this model is to program interface
parameters to consistently configure the mode of operation of
transceivers.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 13, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. The Internet-Standard Management Framework 3
3. Conventions ... 4
4. Definition ... 4
5. Applicability ... 4
6. Properties ... 4
7. Overview .. 4
7.1. Optical Parameters Description 5
7.1.1. Optical path from point Ss to Rs 6
7.1.2. Rs and Ss Configuration 7
7.1.3. Table of Application Codes 7
7.2. Use Cases ... 7
7.3. Optical Parameters for impairment validation in a WDM network .. 7
8. Structure of the Yang Module 8
9. Yang Module ... 9
10. Security Considerations 20
11. IANA Considerations 20
12. Acknowledgements 20
13. Contributors ... 21
14. References ... 21
14.1. Normative References 21
14.2. Informative References 23
Appendix A. Change Log 24
1. Introduction

This memo defines a Yang model that translates the existing mib module defined in draft-ietf-ccamp-wson-iv-info and draft-martinelli-ccamp-wson-iv-encode to provide the network impairment information to an SDN controller. One of the key SDN controller features is to support multivendor network and support the service calculation and deployment in multilayer topologies, for the DWDM layer it is fundamental that the SDN controller is aware of the optical impairments to verify the feasibility of new circuits before their provisioning. Although SDN controller will not apply exhaustive and accurate algorithms and the optical channel feasibility verification may have a degree of unreliability this function can work on a multivendor common set of parameter and algorithms to ensure the operator the best change to set a circuit. This document follows the same impairment definition and applicability of draft-ietf-ccamp-wson-iv-info.

The optical impairments related to the DWDM Transceiver are described by draft draft-dharini-ccamp-if-param-yang. Applications are defined in G.698.2 [ITU.G698.2] using optical interface parameters at the single-channel connection points between optical transmitters and the optical multiplexer, as well as between optical receivers and the optical demultiplexer in the DWDM system. This Recommendation uses a methodology which explicitly specify the details of the optical network between reference point Ss and Rs, e.g., the passive and active elements or details of the design.

This draft refers and supports the draft-ietf-ccamp-dwdm-if-mng-ctrl-fwk

The building of a yang model describing the optical parameters allows the different vendors and operator to retrieve, provision and exchange information across multi-vendor domains in a standardized way. In addition to the parameters specified in ITU recommendations the Yang models support also the "vendor specific parameters".

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

This memo specifies a Yang model for optical interfaces.
3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. In the description of OIDs the convention: Set (S) Get (G) and Trap (T) conventions will describe the action allowed by the parameter.

4. Definition

For a detailed definition this draft refers to draft-ietf-ccamp-wson-iv-info.

5. Applicability

This document targets at Scenario C defined in [RFC6566] section 4.1.1. as approximate impairment estimation. The Approximate concept refer to the fact that this Information Model covers information mainly provided by [ITU.G680] Computational Model. Although the [RFC6566] provides no or little approximation the parameters described in this draft can be applied to the algorithms verifying the circuit feasibility in the new coherent non compensated DWDM networks In this case the impairments verification can reach a good reliability and accuracy. This draft does not address computational matters but provides all the information suitable to cover most of the full coherent network algorithms, not being exhaustive the information can give a acceptable or even good approximation in term of connection feasibility. This may not be true for legacy compensated network.

6. Properties

For the signal properties this draft refers the draft-ietf-ccamp-wson-iv-info Ch.2.3 with some extension of the parameters.

7. Overview
Figure 1 shows a set of reference points, for single-channel connection between transmitters (Tx) and receivers (Rx). Here the DWDM network elements include an OM and an OD (which are used as a pair with the opposing element), one or more optical amplifiers and may also include one or more OADMs.

\[
\begin{align*}
\text{Ss} & \quad \text{DWDM Network} \quad \text{Rs} \\
+--+ & \quad | \quad \downarrow \quad | \quad \uparrow \quad | \quad +--+
\end{align*}
\]

Tx L1\(\rightarrow\) OM \(\rightarrow\) RADM \(\rightarrow\) OD \(\rightarrow\) Rx L1

Tx L2\(\rightarrow\) DWDM \(\rightarrow\) DWDM \(\rightarrow\) Rx L2

Tx L3\(\rightarrow\) Link \(\rightarrow\) Link \(\rightarrow\) Rx L3

Rs v \(\rightarrow\) Ss

RxLx \(\rightarrow\) TxLx

\[
\begin{align*}
\text{Ss} &= \text{reference point at the DWDM network element tributary output} \\
\text{Rs} &= \text{reference point at the DWDM network element tributary input} \\
\text{Lx} &= \text{Lambda x} \\
\text{OM} &= \text{Optical Mux} \\
\text{OD} &= \text{Optical Demux} \\
\text{ROADM} &= \text{Reconfigurable Optical Add Drop Mux}
\end{align*}
\]

from Fig. 5.1/G.698.2

Figure 1: External transponder in WDM networks

7.1. Optical Parameters Description

The link between the external transponders through a WDM network media channels are managed at the edges, i.e. at the transmitters (Tx) and receivers (Rx) attached to the S and R reference points respectively. The set of parameters that could be managed are defined by the "application code" notation.

The definitions of the optical parameters are provided below to increase the readability of the document, where the definition is
ended by (R) the parameter can be retrieve with a read, when (W) it can be provisioned by a write, (R,W) can be either read or written.

7.1.1. Optical path from point Ss to Rs

The following parameters for the optical path from point S and R are defined in G.698.2 [ITU.G698.2].

Maximum and minimum (residual) chromatic dispersion:
These parameters define the maximum and minimum value of the optical path "end to end chromatic dispersion" (in ps/nm) that the system shall be able to tolerate. (R)

Minimum optical return loss at Ss:
These parameter defines minimum optical return loss (in dB) of the cable plant at the source reference point (Ss), including any connectors (R)

Maximum discrete reflectance between Ss and Rs:
Optical reflectance is defined to be the ratio of the reflected optical power present at a point, to the optical power incident to that point. Control of reflections is discussed extensively in ITU-T Rec. G.957 (R)

Maximum differential group delay:
Differential group delay (DGD) is the time difference between the fractions of a pulse that are transmitted in the two principal states of polarization of an optical signal. For distances greater than several kilometers, and assuming random (strong) polarization mode coupling, DGD in a fiber can be statistically modelled as having a Maxwellian distribution. (R)

Maximum polarization dependent loss:
The polarization dependent loss (PDL) is the difference (in dB) between the maximum and minimum values of the channel insertion loss (or gain) of the black link from point SS to RS due to a variation of the state of polarization (SOP) over all SOPs. (R)

Maximum inter-channel crosstalk:
Inter-channel crosstalk is defined as the ratio of total power in all of the disturbing channels to that in the wanted channel, where the wanted and disturbing channels are at different wavelengths. The parameter specifies the isolation of a link conforming to the "black link" approach such that under the worst-case operating conditions the inter-channel crosstalk at any reference point RS is less than the maximum inter-channel crosstalk value (R)
Maximum interferometric crosstalk:
This parameter places a requirement on the isolation of a link
coming to the "black link" approach such that under the worst
case operating conditions the interferometric crosstalk at any
reference point RS is less than the maximum interferometric
crosstalk value. (R)

Maximum optical path OSNR penalty:
The optical path OSNR penalty is defined as the difference between
the Lowest OSNR at Rs and Lowest OSNR at Ss that meets the BER
requirement (R)

Maximum ripple:
Although is defined in G.698.2 (R).

7.1.2. Rs and Ss Configuration

For the Rs and Ss configuration this draft refers the draft-dharini-
ccamp-dwdm-if-param-yang while for the Rs-Ss extended parameters for
coherent transmission interfaces refer to draft-dharini-ccamp-dwdm-
if-param-yang

7.1.3. Table of Application Codes

For Application Codes configuration this draft refers the draft-
dharini-ccamp-dwdm-if-param-yang

7.2. Use Cases

The use cases are described in draft-ietf-ccamp-dwdm-if-mng-ctrl-fwk

7.3. Optical Parameters for impairment validation in a WDM network

The ietf-opt-parameters-wdm is an augment to the ????. It allows the
user to get and set the application Optical Parameters of a DWDM
network.

module: ietf-opt-parameters-wdm
augment /if:interfaces/if:interface:
 +++-rw optical-transport
 | +++-rw attenuator-value? attenuator-t
 | +++-rw offset? decimal64
 | +++-rw channel-power-ref? decimal64
 | +++-rw tilt-calibration? tilt-t
 +++-rw opwr-threshold-warning
 | +++-rw opwr-min? dbm-t
 | +++-rw opwr-min-clear? dbm-t
8. Structure of the Yang Module

ietf-opt-parameters-wdm is a top level model for the support of this feature.
9. Yang Module

The ietf-opt-parameters-wdm is defined as an extension to ietf interfaces.

<CODE BEGINS> file "ietf-opt-parameters-wdm.yang"

module ietf-opt-parameters-wdm {
 prefix iietf-opt-parameters-wdm;

 import ietf-interfaces {
 prefix if;
 }

 import iana-if-type {
 prefix ianaift;
 }

 organization
 "IETF CCAMP
 Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/ccamp/>
 WG List: <mailto:ccamp@ietf.org>

 Editor: Gabriele Galimberti
 <mailto:ggalimbe@cisco.com>";

 description
 "This module contains a collection of YANG definitions for collecting and configuring Optical Parameters in Optical Networks and calculate the circuit feasibility."

 Copyright (c) 2016 IETF Trust and the persons identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents

typedef tilt-t {
 type decimal64 {
 fraction-digits 2;
 range "-5..5"
 }
 description "Tilt Type"
}

typedef signal-output-power-t {
 type decimal64 {
 fraction-digits 2;
 range "-10..30"
 }
 description "Amplifier Power provisioning"
}

typedef active-channel-t {
 type union {
 type uint8 {
 }
 }
}

typedef dbm-t {
 type decimal64 {
 fraction-digits 2;
 range "-50..-30 | -10..5 | 10000000";
 }
 description "Amplifier Power in dBm";
}

typedef attenuator-t {
 type decimal64 {
 fraction-digits 2;
 range "-15..-5";
 }
 description "Attenuation value (attenuator) applied after the Amplifier";
}

typedef ch-noise-figure-point {
 type decimal64 {
 fraction-digits 2;
 range "-15..-5";
 }
 description "Amplifier noise figure of point power";
}

typedef ch-isolation-cross {
 type decimal64 {
 fraction-digits 2;
 range "-15..-5";
 }
 description "cross channel isolation value";
}

grouping opwr-threshold-warning-grp {
 description "Minimum Optical Power threshold
 - this is used to rise Power alarm";
}
leaf opwr-min {
 type dbm-t;
 units "dBm";
 default -1;
 description "Minimum Power Value";
}

leaf opwr-min-clear {
 type dbm-t;
 units "dBm";
 default -1;
 description "threshold to clear Minimum Power value Alarm";
}

leaf opwr-max {
 type dbm-t;
 units "dBm";
 default 1;
 description " Maximum Optical Power threshold
 - this is used to raise Power alarm ";
}

grouping gain-degrade-alarm-grp {
 description "
 Low Optical Power gain threshold
 - this is used to raise Power alarm ";

 leaf gain-degrade-low {
 type dbm-t;
 units "dBm";
 default -1;
 description "Low Gain Degrade Value";
 }

 leaf gain-degrade-high {
 type dbm-t;
 units "dBm";
 default 1;
 description "
 High Optical Power gain threshold
 - this is used to raise Power alarm ";
 }
}

grouping power-degrade-high-alarm-grp {
 description "

High Optical Power gain alarm ";

leaf gain-degrade-high {

type dbm-t;
units "dBm";
default 1;
description "Low Gain Degrade Value";
}

}

grouping power-degrade-low-alarm-grp {

description "Low Optical Power gain alarm ";

leaf power-degrade-low {

type dbm-t;
units "dBm";
default -1;
cconfig false;
description "High Gain Degrade Value";
}

}

grouping noise-grp {

description "Noise feasibility";

leaf noise {

type decimal64 {

type decimal64 {
	number of active channels in OMS";
}

}

grouping noise-sigma-grp {

description "Noise sigma feasibility";

leaf noise-sigma {

type decimal64 {
	number of active channels in OMS";
}

the signal by the OMS";
}
}

grouping chromatic-dispersion-grp {
 description "Chromatic Dispersion";
 leaf chromatic-dispersion {
 type decimal64 {
 fraction-digits 2;
 }
 units "ps/nm";
 description "Chromatic Dispersion (CD) related to the OMS";
 }
}

grouping chromatic-dispersion-slope-grp {
 description "Chromatic Dispersion slope";
 leaf chromatic-dispersion-slope {
 type decimal64 {
 fraction-digits 2;
 }
 units "ps/nm^2";
 description "Chromatic Dispersion (CD) Slope related to
 the OMS";
 }
}

grouping pmd-grp {
 description "Polarization Mode Dispersion";
 leaf pmd {
 type decimal64 {
 fraction-digits 2;
 }
 units "ps";
 description "Polarization Mode Dispersion (PMD) related
 to OMS";
 }
}

grouping pdl-grp {
 description "Polarization Dependent Loss";
 leaf pdl {
 type decimal64 {
 fraction-digits 2;
 }
 units "dB";
 description "Polarization Dependent Loss (PDL) related to
 the OMS";
 }
}
grouping drop-power-grp {
 description "Drop power at DWDM if RX feasibility";
 leaf drop-power {
 type decimal64 {
 fraction-digits 2;
 }
 units "dBm";
 description "Drop Power value at the DWDM Transceiver RX side";
 }
}

grouping drop-power-sigma-grp {
 description "Drop power sigma at DWDM if RX feasibility";
 leaf drop-power-sigma {
 type decimal64 {
 fraction-digits 2;
 }
 units "db";
 description "Drop Power Sigma value at the DWDM Transceiver RX side";
 }
}

grouping ripple-grp {
 description "Channel Ripple";
 leaf ripple {
 type decimal64 {
 fraction-digits 2;
 }
 units "db";
 description "Channel Ripple";
 }
}

grouping ch-noise-figure-grp {
 list ch-noise-figure {
 key "ch-noise-fig";
 description "Channel signal-spontaneous noise figure";
 leaf ch-noise-fig {
 type ch-noise-figure-point;
 description "Channel signal-spontaneous noise figure point";
 }
 }
}
leaf input-to-output {
 type decimal64 {
 fraction-digits 2;
 }
 units "dB";
 description "from input port to output port";
}

leaf input-to-drop {
 type decimal64 {
 fraction-digits 2;
 }
 units "dB";
 description "from input port to drop port";
}

leaf add-to-output {
 type decimal64 {
 fraction-digits 2;
 }
 units "dB";
 description "from add port to output port";
}

description "Channel signal-spontaneous noise figure";
}

grouping dgd-grp {
 description "Differential Group Delay";
 leaf dgd {
 type decimal64 {
 fraction-digits 2;
 }
 units "db";
 description "differential group delay";
 }
}

grouping ch-isolation-grp {
list ch-isolation {
 key "ch-isolat";
 description "adjacent and not adjacent channel isolation";

 leaf ch-isolat {
 type ch-isolation-cross;
 description "channel isolation from adjacent";
 }
}
leaf ad-ch-isol {
 type decimal64 {
 fraction-digits 2;
 }
 units "dB";
 description "adjacent channel isolation";
}

leaf no-ad-ch-iso {
 type decimal64 {
 fraction-digits 2;
 }
 units "dB";
 description "non adjacent channel isolation";
}

description "adjacent and not adjacent channel isolation";

} grouping ch-extinction-grp {
 description "Channel Extinction";
 leaf cer {
 type decimal64 {
 fraction-digits 2;
 }
 units "db";
 description "channel extinction";
 }
}

} grouping att-coefficient-grp {
 description "Attenuation coefficient (for a fibre segment)";
 leaf att {
 type decimal64 {
 fraction-digits 2;
 }
 units "db";
 description "Attenuation coefficient (for a fibre segment)";
 }
}

} augment "/if:interfaces/if:interface" {
 when "if:type = 'ianaift:opticalTransport'" {
 description "Specific optical-transport Interface Data";
 }
 description "Specific optical-transport Interface Data";
 container optical-transport {
description "Specific optical-transport Data";

leaf attenuator-value {
 type attenuator-t;
 description "External attenuator value ";
}

leaf offset {
 type decimal64 {
 fraction-digits 2;
 range "-30..30";
 }
 description "Raman and power amplifiers offset";
}

leaf channel-power-ref {
 type decimal64 {
 fraction-digits 2;
 range "-10..15";
 }
 description "Optical power per channel";
}

leaf tilt-calibration {
 type tilt-t;
 description "Amplifier Tilt tuning";
}

container opwr-threshold-warning {
 description "Optical power threshold warning";
 uses opwr-threshold-warning-grp;
}

container gain-degrade-alarm {
 description "Gain degrade alarm";
 uses gain-degrade-alarm-grp;
}

container power-degrade-high-alarm {
 description "Power degrade high alarm";
 uses power-degrade-high-alarm-grp;
}

container power-degrade-low-alarm {
 description "Power degrade low alarm";
 uses power-degrade-low-alarm-grp;
}

container noise {
 description "Channel Noise feasibility";
 uses noise-grp;
}
container noise-sigma {
 description "Channel Noise sigma feasibility";
 uses noise-grp;
}
container chromatic-dispersion {
 description "Chromatic Dispersion";
 uses noise-sigma-grp;
}
container chromatic-dispersion-slope {
 description "Chromatic Dispersion slope";
 uses chromatic-dispersion-slope-grp;
}
container pmd {
 description "Polarization Mode Dispersion";
 uses pmd-grp;
}
container pdl {
 description "Polarization Dependent Loss";
 uses pdl-grp;
}
container drop-power {
 description "Drop power at DWDM if RX feasibility";
 uses drop-power-grp;
}
container drop-power-sigma {
 description "Drop power sigma at DWDM if RX feasibility";
 uses noise-grp;
}
container ripple {
 description "Channel Ripple";
 uses drop-power-sigma-grp;
}
container ch-noise-figure {
 config false;
 description "Channel signal-spontaneous noise figure";
 uses ch-noise-figure-grp;
}
container dgd {
 description "Differential Group Delay";
 uses dgd-grp;
}
container ch-isolation {
 config false;
 description "adjacent and not adjacent channel isolation";
 uses ch-isolation-grp;
}
container ch-extinction {
 description "Channel Extinsion";
uses ch-extinction-grp;

10. Security Considerations

The YANG module defined in this memo is designed to be accessed via the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the secure transport layer and the mandatory-to-implement secure transport is SSH [RFC6242]. The NETCONF access control model [RFC6536] provides the means to restrict access for particular NETCONF users to a pre-configured subset of all available NETCONF protocol operation and content.

11. IANA Considerations

This document registers a URI in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made:

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

This document registers a YANG module in the YANG Module Names registry [RFC6020].

This document registers a YANG module in the YANG Module Names registry [RFC6020].

prefix: ietf-ext-xponder-wdm-if reference: RFC XXXX

12. Acknowledgements

Marco Cardani.

13. Contributors

Dean Bogdanovic
Westford
U.S.A.
email

Walid Wakim
Cisco
9501 Technology Blvd
ROSEMONT, ILLINOIS 60018
UNITED STATES
email wwakim@cisco.com

Marco Cardani
Cisco
vis S.Maria Molgora, 48c
20871 - Vimercate
Monza Brianza
Italy
email mcardani@cisco.com

Giovanni Martinelli
Cisco
vis S.Maria Molgora, 48c
20871 - Vimercate
Monza Brianza
Italy
email giomarti@cisco.com

14. References

14.1. Normative References

[ITU.G694.1]
International Telecommunications Union, "Spectral grids for WDM applications: DWDM frequency grid",
ITU-T Recommendation G.694.1, February 2012.

[ITU.G698.2]
International Telecommunications Union, "Amplified multichannel dense wavelength division multiplexing applications with single channel optical interfaces",
[ITU.G709]

[ITU.G7710]

[ITU.G798]

[ITU.G8201]

[ITU.G826]

[ITU.G872]

[ITU.G874]

[ITU.G874.1]

[ITU.G959.1]

14.2. Informative References

[I-D.ietf-ccamp-dwdm-if-mng-ctrl-fwk]

Appendix A. Change Log

This optional section should be removed before the internet draft is submitted to the IESG for publication as an RFC.

Note to RFC Editor: please remove this appendix before publication as an RFC.

Appendix B. Open Issues

Note to RFC Editor: please remove this appendix before publication as an RFC.

Authors’ Addresses

Gabriele Galimberti (editor)
Cisco
Via Santa Maria Molgora, 48 c
20871 – Vimercate
Italy

Phone: +390392091462
Email: ggalimbe@cisco.com

Ruediger Kunze (editor)
Deutsche Telekom
Winterfeldtstr. 21-27
10781 Berlin
Germany

Phone: +491702275321
Email: RKunze@telekom.de