Signaling extensions for Media Channel sub-carriers configuration in Spectrum Switched Optical Networks (SSON) in Lambda Switch Capable (LSC) Optical Line Systems.

draft-ggalimbe-ccamp-flexigrid-carrier-label-02

Abstract

This memo defines the signaling extensions for managing Spectrum Switched Optical Network (SSON) parameters shared between the Client and the Network and inside the Network in accordance to the model described in RFC 7698. The extensions are in accordance and extending the parameters defined in ITU-T Recommendation G.694.1. [ITU.G694.1] and its extensions and G.872. [ITU.G872].

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 3, 2018.
1. Introduction

Generalised Multiprotocol Label Switched (GMPLS) is widely used in Wavelength Switched Optical Network (WSON) to support the optical circuits set-up through the signalling between Core Nodes and Edge Nodes. This extension addresses the use cases described by [RFC7698] Ch.3.3 and supports the information, needed in Spectrum Switched Optical Network (SSON), to signal a Media Channel and the associated carriers set request. The new set of parameters is related to the Media Channel and the carrier(s) routed with it and keep the backward compatibility with the WSON signalling. In particular this memo wants do address the use cases where the SSON LSP (the Media Channel in [RFC7698]) carries multiple carrier (OTSi) containing same Payload. The set of the carriers can be seen as single Logical circuit. This memo can be considered as the extension of [RFC7792]. The contents
and the parameters reflect the experimental activity on IP over SSON recently done by some vendors and research consortia.

Figure 1 shows how the multiple carrier are mapped into a Media Channel. A set of parameters must be shared on the UNI to allow the GMPLS to do the proper routing and Spectrum Assignment and decide the carrier position.

E.N. = Edge Node - UNI Client
C.N. = Core Node - UNI Network
ROADM = Lambda/Spectrum switch
Media Channel = the optical circuit
OTSi = Carriers belonging to the same Network Media Channel (or Super Channel)
UNI = Signaling interface

from Fig. 5.1/G.698.2

Figure 1: Multi carrier LSP

2. Client interface parameters

The Edge Node interface can have one or multiple carriers (OTSi). All the carrier have the same characteristics and are provisionable in terms of:

Number of subcarriers: This parameter indicates the number of subcarriers available for the super-channel in case the Transceiver can support multiple carrier circuits.

Central frequency (see G.694.1 Table 1):
This parameter indicates the Central frequency value that Ss and Rs will be set to work (in THz). See the details in Section 6/ G.694.1 or based on "n" value explanation and the following "k" values definition in case of multicarrier transceivers.

Central frequency granularity:
This parameter indicates the Central frequency granularity supported by the transceiver, this value is combined with k and n value to calculate the central frequency of the carrier or sub-carriers.

Minimum channel spacing:
This is the minimum nominal difference in frequency (in GHz) between two adjacent channels (or carriers) depending on the Transceiver characteristics.

Bit rate / Baud rate of optical tributary signals:
Optical Tributary Signal bit (for NRZ signals) rate or Symbol (for Multiple bit per symbol) rate.

FEC Coding:
This parameter indicate what Forward Error Correction (FEC) code is used at Ss and Rs (R/W) (not mentioned in G.698.2).

Wavelength Range (see G.694.1): [ITU.G694.1]
This parameter indicate minimum and maximum wavelength spectrum in a definite wavelength Band (L, C and S).

Modulation format:
This parameter indicates the list of supported Modulation Formats and the provisioned Modulation Format.

Inter carrier skew:
This parameter indicates, in case of multi-carrier transceivers the maximum skew between the sub-carriers supported by the transceiver.

Laser Output power:
This parameter provisions the Transceiver Output power, it can be either a setting and measured value.

receiver input power:
This parameter provisions the Min and MAX input power supported by the Transceiver, i.e. Receiver Sensitivity.

The above parameters are related to the Edge Node Transceiver and are used by the Core Network GMPLS in order to calculate the optical feasibility and the spectrum allocation. The parameters can be
shared between the Client and the Network via LMP or provisioned in the Network by an EMS or an operator OSS.

3. Use Cases

The use cases are described in draft-ietf-ccamp-dwdm-if-mng-ctrl-fwk and [RFC7698]

4. Signalling Extensions

Some of the above parameters can be applied to RFC7792 (SENDER_TSPEC/FLOWSPEC). The above parameters could be applied to [RFC4208] scenarios but they are valid also in case of non UNI scenarios. The [RFC6205] parameters remain valid.

4.1. New LSP set-up parameters

When the E.N. wants to request to the C.N. a new circuit set-up request or the GMPLS want to signal in the SSON network the Optical Interface characteristics the following parameters will be provided to the C.N.:

Number of available subcarriers (c):
 This parameter is an integer.

Total bandwidth request:
 e.g. 200Gb, 400Gb, 1Tb

Policy (strict/loose):
 Strict/loose referred to B/W and subcarrier number.

Subcarrier bandwidth tunability:
 (optional) e.g. 34Ghz, 48GHz.
Figure 2: The format of the this sub-object is as follows:

The TLV define the resource constraints for the requested Media Channel.

```
+-------------------+-------------------+-------------------+-------------------+
| S | B | Reserved         | Carrier Number    |
+-------------------+-------------------+-------------------+-------------------+
|                  |                   |                   |
+-------------------+-------------------+-------------------+-------------------+
|                  |                   |                   |
+-------------------+-------------------+-------------------+-------------------+
```

Figure 2: SSON LSP set-up request
Carrier Number: number of carrier to be allocated for the requested channel (16-bit unsigned integer)
 If Carrier Number == 0 no constraint set on the number of carriers to be used

S strict number of subcarrier
 - S = 0 the number of requested carriers is the maximum number that can be allocated (a lower value can be allocated if the requested bandwidth is satisfied)
 - S = 1 the number of requested carriers is strict (must be > 0)

Total Bandwidth: the requested total bandwidth to be supported by the Media Channel (32-bit IEEE float, bytes/s)
 If Total Bandwidth == 0: no bandwidth constraint is defined (B must be 0)

B Bandwidth constraints
 - B = 0: the value is the maximum requested bandwidth (a lower value can be allocated if resources are not available)
 - B = 1: the requested bandwidth is the minimum value to be allocated (a higher value can be allocated if requested by the physical constraints of the ports)

Reserved: unused bit (for future use, should be 0)

Note: bandwidth unit is defined in accordance to RFC 3471 chap. 3.1.2 Bandwith Encoding specification. Bandwidth higher than 40Gb/s values must be defined (e.g. 100Gb/s, 150Gb/s 400Gb/s, etc.)

TLV Usage:
Head UNI-C PATH: requested traffic constraints, the Head UNI-N node must satisfy when reserving the optical resources and defining the carriers configuration
The TLV can be omitted: no traffic constraints is defined (resources allocated by UNI-N based on a local policy)

4.2. Extension to LSP set-up reservation

Once the GMPLS has calculated the Media Channel path, the Spectrum Allocation, the Sub-carrier number and frequency, the modulation format, the FEC and the Transmit power, sends back to the E.N. the path set-up confirmation providing the values of the calculated parameters:

Media Channel:
 (Grid, C.S., Identifier m and n).
List of subcarriers:
 This parameter indicates the subcarriers to be used for the super-channel in case the Transceiver can support multiple carrier Circuits.

Central frequency (see G.694.1 Table 1):
 Grid, Identifiers, central frequency and granularity.

Central frequency granularity:
 This parameter indicates the Central frequency granularity supported by the transceiver, this value is combined with K and n value to calculate the central frequency on the carrier or subcarriers.

Bit rate / Baud rate of optical tributary signals:
 Optical tributary signal bit (for NRZ signals) rate or Symbol (for Multiple bit per symbol) rate.

FEC Coding:
 This parameter indicate what Forward Error Correction (FEC) code must be used by the Transceivers (not mentioned in G.698).

Modulation format:
 This parameter indicates the Modulation Formats to be set in the Transceivers.

Laser Output power:
 This parameter provisions the Transceiver Output power, it can be either a setting and measured value.

Circuit Path, RRO, etc:
 All these info are defined in [RFC4208].

Path Error:
 e.g. no path exist, all the path error defined in [RFC4208].
Figure 3: The format of this sub-object (Type = TBA, Length = TBA) is as follows:

The TLV defines the carriers signal configuration. All carriers in a Media Channel MUST have the same configuration.

```
+---------------------------+---------------------------+---------------------------+
| Modulation Format         | FEC                      |
+---------------------------+---------------------------+
| baud rate (Symbol Rate)   |
+---------------------------+
```

Figure 3: OCh_General

Traffic Type
- Modulation Format: is the modulation type:
 - BPSK, DC DP BSPSK, QPSK, DP QPSK, 8QAM, 16QAM, 64QAM, Hybrid, etc.
 - <TBD> (ITU-T reference)
 - value > 32768 (first bit is 1): custom defined values
 Value 0 is reserved to be used if no value is defined
- FEC: the signal Forward Error Corrections type (16-bit unsigned integer), the defined values are:
 - <TBD> (ITU-T reference)
 - 32768 (first bit is 1): custom defined values
 Value 0 is reserved to be used if no value is defined
- Baud Rate: the signal symbol rate (IEEE 32-bit float, in bauds/s)
 Value 0 is reserved to be used if no value is defined

Notes:
- The request from the Head UNI-C node can specify only a subset of the parameters (e.g. the Modulation and the baud rate but not the FEC) but setting to 0 the undefined parameters.
- Custom codes (values > 0x8000) interpretation is a local installation matter.

TLV Usage:
- Head UNI-C PATH: used to force specific transponder configurations
- Head UNI-N RESV: set selected configuration on head node
- Tail UNI-N PATH: set selected configuration on tail node
Figure 4: The format of this sub-object (Type = TBA, Length = TBA) is as follows:

For Each carrier inside the Media Channel the TLV is used:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Carrier Identifier       |               j               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               k                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            sub-TLVs                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 4: Sub-Carrier parameters
Carrier set-up:

- Carrier identifier field: sub-carrier identifier inside the mediachannel. Identifies the carrier position inside the Media Channel (16-bit unsigned integer)
- J field: granularity of the channel spacing, can be a multiple of 0.01GHz. Default value is 0.1GHz.
- K field: positive or negative integer (including 0) to multiply by J and identify the Carrier Position inside the Media Channel, offset from media Channel Central frequency
- sub-TLVs: additional information related to carriers if needed.

In summary Carrier Frequency = MC-C.F. (in THz) + K * J GHz
Figure 5: The format of this sub-object (Type = TBA, Length = TBD) is as follows:

The defined sub-TLVs are:

Port Identifier

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type (TBA) | Length (TBD) |
+-+

| Port Identifier |
+-+

Figure 5: Port Identifier

Port Identifier: the local upstream optical logical identifier
(32-bits integer, ifindex)

Notes:

- The Carrier Identifier is the logical circuit sub-lane position, a TLV for each value from 1 to the number of allocated carriers must be present.

- The association of a carrier to a local link optical port is a local link association (depending on the local ports physical configuration), the sub-TLV value MUST be set by head/tail nodes (with transit nodes not signaling its value).

The local port identifier is the identifier of the local link port on the upstream node (with respect to the LSP nominal direction):
- UNI-C port in head UNI link
- UNI-N port in tail UNI link

TLV Usage:
- Head UNI-C PATH: used to force specific carrier frequency/ports [optional use, e.g. with external PCE scenario]
- Head UNI-N RESV: set selected configuration on head node
- Tail UNI-N PATH: set selected configuration on tail node
Figure 6: The format of this sub-object (Type = TBA, Length = TBD) is as follows:

Carrier Power:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Type (TBA)         |           Length (TBD)        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          carrier power                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 6: Carrier Power

Carrier Port: the requested carrier transmit power (32-bits IEEE Float, dBm), optionally used to notify the configured power (in UNI client side) or force the power to the UNI client.

TLV Usage:
- Head UNI-C PATH: used to force specific carrier frequency/ports (optional use, e.g. with external PCE scenario)
- Head UNI-N RESV: set selected configuration on head node
- Tail UNI-N PATH: set selected configuration on tail node

4.3. RSVP Protocol Extensions considerations

The additional information described in the draft, is related to the Media Channel supported traffic. It could be encoded in the SENDER_TSPEC/FLOW_SPEC objects by extending the SSON_SENDER_TSPEC/SSON_FLOW_SPEC defined in RFC 7792 (or defining a new C-Type) with an optional TLV list or it could be encoded in a newly defined entry (new OBJECT or new LSP_ATTRIBUTES OBJECT TLV)

This solution is consistent with other technology specific extensions (e.g. SDH), but requires the explicit handling of the extensions by all nodes.

Beside this, some of the additional information defined is local to the head/tail UNI link (e.g. the carrier/port association), while the traffic spec info should be valid end-to-end.
5. Security Considerations

GMPLS message security uses IPsec, as described in xxxx. This document only defines new UNI objects that are carried in existing UNI messages, similar to the UNI objects in xxx. This document does not introduce new security considerations.

6. IANA Considerations

T.B.D.

7. Contributors

Antonello Bonfanti
Cisco
Via Santa Maria Molgora, 48 c
20871 - Vimercate (MB)
Italy
abonfant@cisco.com

8. References

8.1. Normative References

[ITU.G694.1]

[ITU.G698.2]

[ITU.G709]
International Telecommunications Union, "Interface for the Optical Transport Network (OTN)", ITU-T Recommendation G.709, February 2012.

[ITU.G872]

8.2. Informative References

Authors’ Addresses

Gabriele Galimberti (editor)
Cisco
Via S. Maria Molgora, 48 c
20871 - Vimercate
Italy

Phone: +390392091462
Email: ggalimbe@cisco.com