Port Randomization in the Network Time Protocol Version 4

draft-gont-ntp-port-randomization-04

Abstract

The Network Time Protocol can operate in several modes. Some of these modes are based on the receipt of unsolicited packets, and therefore require the use of a service/well-known port as the local port number. However, in the case of NTP modes where the use of a service/well-known port is not required, employing such well-known/service port unnecessarily increases the ability of attackers to perform blind/off-path attacks. This document formally updates RFC5905, recommending the use of port randomization for those modes where use of the NTP service port is not required.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 7, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
1. Introduction

The Network Time Protocol (NTP) is one of the oldest Internet protocols, and currently specified in [RFC5905]. Since its original implementation, standardization, and deployment, a number of vulnerabilities have been found both in the NTP specification and in some of its implementations [NTP-VULN]. Some of these vulnerabilities allow for off-path/blind attacks, where an attacker can send forged packets to one or both NTP peers for achieving Denial of Service (DoS), time-shifts, and other undesirable outcomes. Many of these attacks require the attacker to guess or know at least a target NTP association, typically identified by the tuple \{srcaddr, srcport, dstaddr, dstport, keyid\}. Some of these parameters may be easily known or guessed.

NTP can operate in several modes. Some of these modes rely on the ability of nodes to receive unsolicited packets, and therefore require the use of a service/well-known port number. However, for
modes where the use of a service/well-known port is not required, employing such well-known/service port improves the ability of an attacker to perform blind/off-path attacks (since knowledge of such port number is typically required for such attacks). A recent study [NIST-NTP] that analyzes the port numbers employed by NTP clients suggests that a considerable number of NTP clients employ the NTP service/well-known port as their local port, or select predictable ephemeral port numbers, thus improving the ability of attackers to perform blind/off-path attacks against NTP.

BCP 156 [RFC6056] already recommends the randomization of transport-protocol ephemeral ports. This document aligns NTP with the recommendation in BCP 156 [RFC6056], by formally updating [RFC5905] such that port randomization is employed for those NTP modes for which the use of the NTP service port is not required.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Considerations About Port Randomization in NTP

The following subsections analyze a number of considerations about transport-protocol port randomization when applied to NTP.

3.1. Mitigation Against Off-path Attacks

There has been a fair share of work in the area of off-path/blind attacks against transport protocols and upper-layer protocols, such as [RFC5927] and [RFC4953]. Whether the target of the attack is a transport protocol instance (e.g., TCP connection) or an upper-layer protocol instance (e.g., an application protocol instance), the attacker is required to know or guess the five-tuple {Protocol, IP Source Address, IP Destination Address, Source Port, Destination Port} that identifies the target transport protocol instance or the transport protocol instance employed by the target upper-layer protocol instance. Therefore, increasing the difficulty of guessing this five-tuple helps mitigate blind/off-path attacks.

As a result of this considerations, BCP 156 [RFC6056] recommends the randomization of transport-protocol ephemeral ports. And as such, this document aims to bring the NTP specification [RFC5905] in line with the aforementioned recommendation.

We note that the use of port randomization is a transport-layer mitigation against off-path/blind attacks, and does not preclude (nor
is it precluded by), other possible mitigations for off-path attacks that might be implemented by an application protocol (e.g. [I-D.ietf-ntp-data-minimization]). For instance, some of the aforementioned mitigations may be ineffective against some off-path attacks [NTP-FRAG] or may benefit from the additional entropy provided by port randomization [NTP-security].

3.2. Effects on Path Selection

Intermediate systems implementing the Equal-Cost Multi-Path (ECMP) algorithm may select the outgoing link by computing a hash over a number of values, that include the transport-protocol source port. Thus, as discussed in [NTP-CHLNG], the selected client port may have an influence on the measured delay and jitter values.

This might mean, for example, that two systems in the same network that synchronize their clocks with the same NTP server might end up with a significant offset between their clocks as a result of their NTP samples taking paths with very different characteristics.

If port randomization is applied for every NTP request, requests/responses would be distributed over the different available paths, including those with the smallest delay. The clock filter algorithm could readily select one of such samples with lowest delays, in the same way that the clock selection and clock cluster algorithms might also end up selecting other time sources with smaller resulting dispersion. On the other hand, if port-randomization is applied on a per-association basis, in scenarios where the aforementioned ECMP algorithm is employed, request/responses to the same association would likely follow the same path, since the IP addresses and transport port numbers employed for an association would not change.

Section 4 recommends NTP implementations to randomize the ephemeral port number of non-symmetrical associations on a per-association basis (as opposed to "per-transaction"), since this more conservative approach avoids the possible negative implications of port randomization on time synchronization.

3.3. Filtering of NTP traffic

In a number of scenarios (such as when mitigating DDoS attacks), a network operator may want to differentiate between NTP requests sent by clients, and NTP responses sent by NTP servers. If an implementation employs the NTP service port for the client port number, requests/responses cannot be readily differentiated by inspecting the source and destination port numbers. Implementation of port randomization for non-symmetrical modes allows for simple differentiation of NTP requests and responses, and for the
enforcement of security policies that may be valuable for the mitigation of DDoS attacks.

3.4. Effect on NAT devices

Some NAT devices will not translate the source port of a packet when a privileged port number is employed. In networks where such NAT devices are employed, use of the NTP service port for the client port will essentially limit the number of hosts that may successfully employ NTP client implementations.

In the case of NAT devices that will translate the source port even when a privileged port is employed, packets reaching the external realm of the NAT will not employ the NTP service port as the local port, since the local port will normally be translated by the NAT device possibly, but not necessarily, with a random port.

3.5. Relation to Other Mitigations for Off-Path Attacks

Ephemeral Port Randomization is a best current practice (BCP 156) that helps mitigate off-path attacks at the transport-layer. It is orthogonal to other possible mitigations for off-path attacks that may be implemented at other layers (such as the use of timestamps in NTP) which may or may not be effective against some off-path attacks (see e.g. [NTP-FRAG]). This document aligns NTP with the existing best current practice on ephemeral port selection, irrespective of other techniques that may (and should) be implemented for mitigating off-path attacks.

4. Update to RFC5905

The following text from Section 9.1 ("Peer Process Variables") of [RFC5905]:

\[
\text{dstport: UDP port number of the client, ordinarily the NTP port number PORT (123) assigned by the IANA. This becomes the source port number in packets sent from this association.}
\]

is replaced with:

\[
\text{dstport: UDP port number of the client. In the case of broadcast server mode (5) and symmetric modes (1 and 2), it must contain the NTP port number PORT (123) assigned by the IANA. In other cases, it SHOULD contain a randomized port number, as specified in [RFC6056]. The value in this variable becomes the source port number of packets sent from this association.}
\]
NOTES:
When port randomization is employed, the port number must be randomized on a per-association basis. That is, a random port number is selected when an association is first mobilized, and the selected port number is expected to remain constant during the life of an association.

On most current operating systems (that implement ephemeral port randomization [RFC6056]), an NTP client may normally rely on the operating system for performing port randomization. For example, NTP implementations employing the Sockets API may achieve port randomization by *not* specifying the local port for the corresponding socket, or bind()ing the local socket to the "special" port 0 (which for the Sockets API has the special meaning of "any port"). connect()ing the docket will make the port inaccessible by other systems (that is, only packets from the specified remote socket will be received by the application).

5. Possible Future Work

Port numbers could be randomized on a per-association basis, or on a per-request basis. When the port number is randomized on a per-association basis, a random port number is selected when an association is first mobilized, and the selected port remains constant during the life of the association. On the other hand, when the port number is randomized on a per-request basis, each client request will (statistically) employ a different ephemeral port for each request. As discussed in Section 3, varying the port number across requests may impact the time quality achieved with NTP. As a result, this document recommends the conservative approach of randomizing port numbers on a per-association basis (as opposed to a "per-transaction" basis). The possibility of randomizing port numbers on a per-transaction may be subject of future work, and is not recommended by this document.

6. Implementation Status

[RFC Editor: Please remove this section before publication of this document as an RFC.]

This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC7942]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort
has been spent to verify the information presented here that was
supplied by IETF contributors. This is not intended as, and must not
be construed to be, a catalog of available implementations or their
features. Readers are advised to note that other implementations may
exist.

OpenNTPD:
[OpenNTPD] has never explicitly set the local port of NTP clients,
and thus employs the ephemeral port selection algorithm
implemented by the operating system. Thus, on all operating
systems that implement port randomization (such as current
versions of OpenBSD, Linux, and FreeBSD), OpenNTPD will employ
port randomization for client ports.

chrony:
[chrony] has never explicitly set the local port of NTP clients,
and thus employs the ephemeral port selection algorithm
implemented by the operating system. Thus, on all operating
systems that implement port randomization (such as current
versions of OpenBSD, Linux, and FreeBSD), chrony will employ port
randomization for client ports.

nwtime.org’s sntp client:
sntp does not explicitly set the local port, and thus employs the
ephemeral port selection algorithm implemented by the operating
system. Thus, on all operating systems that implement port
randomization (such as current versions of OpenBSD, Linux, and
FreeBSD), it will employ port randomization for client ports.

7. IANA Considerations

There are no IANA registries within this document. The RFC-Editor
can remove this section before publication of this document as an
RFC.

8. Security Considerations

The security implications of predictable numeric identifiers
[I-D.gont-predictable-numeric-ids] (and of predictable transport-
protocol port numbers [RFC6056] in particular) have been known for a
long time now. However, the NTP specification has traditionally
followed a pattern of employing common settings and code even when
not strictly necessary, which at times has resulted in negative
security and privacy implications (see e.g. [I-D.ietf-ntp-data-minimization]). The use of the NTP service port
(123) for the srcport and dstport variables is not required for all
operating modes, and such unnecessary usage comes at the expense of
reducing the amount of work required for an attacker to successfully
perform off-path/blind attacks against NTP. Therefore, this document formally updates [RFC5905], recommending the use of transport-protocol port randomization when use of the NTP service port is not required.

This issue has been tracked by US-CERT with VU#597821, and has been assigned CVE-2019-11331.

9. Acknowledgments

Watson Ladd raised the problem of DDoS mitigation when the NTP service port is employed as the client port (discussed in Section 3.3 of this document).

Miroslav Lichvar suggested randomization of the client port on a per-request basis, to intentionally cause each request/response to employ different paths in scenarios where ECMP is employed.

The authors would like to thank (in alphabetical order) Ivan Arce, Todd Glassey, Watson Ladd, Miroslav Lichvar, Aanchal Malhotra, Danny Mayer, Gary E. Miller, Dieter Sibold, Steven Sommars, and Ulrich Windl, for providing valuable comments on earlier versions of this document.

The authors would like to thank Harlan Stenn for answering questions about nwtime.org’s NTP implementation.

Fernando would like to thank Nelida Garcia and Jorge Oscar Gont, for their love and support.

10. References

10.1. Normative References

10.2. Informative References

[I-D.gont-predictable-numeric-ids]

[I-D.ietf-ntp-data-minimization]

[NIST-NTP]

[NTP-CHLNG]

[NTP-FRAG]

[NTP-security]

[NTP-VULN]

[OpenNTPD]

Authors’ Addresses

Fernando Gont
SI6 Networks
Evaristo Carriego 2644
Haedo, Provincia de Buenos Aires 1706
Argentina

Phone: +54 11 4650 8472
Email: fgont@si6networks.com
URI: https://www.si6networks.com

Guillermo Gont
SI6 Networks
Evaristo Carriego 2644
Haedo, Provincia de Buenos Aires 1706
Argentina

Phone: +54 11 4650 8472
Email: ggont@si6networks.com
URI: https://www.si6networks.com