Security Considerations for Transient Numeric Identifiers Employed in Network Protocols
draft-gont-numeric-ids-sec-considerations-04

Abstract

For more than 30 years, a large number of implementations of the TCP/IP protocol suite have been subject to a variety of attacks, with effects ranging from Denial of Service (DoS) or data injection, to information leakage that could be exploited for pervasive monitoring. The root of these issues has been, in many cases, the poor selection of transient numeric identifiers in such protocols, usually as a result of insufficient or misleading specifications. This document formally updates RFC3552, such that RFCs are required to include a security and privacy analysis of the transient numeric identifiers they specify.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 9, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents
1. Introduction

Network protocols employ a variety of transient numeric identifiers for different protocol entities, ranging from DNS Transaction IDs (TxIDs) to transport protocol numbers (e.g. TCP ports) or IPv6 Interface Identifiers (IIDs). These identifiers usually have specific properties that must be satisfied such that they do not result in negative interoperability implications (e.g. uniqueness during a specified period of time), and an associated failure severity when such properties not met.

For more than 30 years, a large number of implementations of the TCP/IP protocol suite have been subject to a variety of attacks, with effects ranging from Denial of Service (DoS) or data injection, to information leakage that could be exploited for pervasive monitoring [RFC7258]. The root of these issues has been, in many cases, the poor selection of identifiers in such protocols, usually as a result of insufficient or misleading specifications. While it is generally trivial to identify an algorithm that can satisfy the interoperability requirements for a given identifier, there exists practical evidence [I-D.gont-numeric-ids-history] that doing so
without negatively affecting the security and/or privacy properties of the aforementioned protocols is prone to error.

For example, implementations have been subject to security and/or privacy issues resulting from:

- Predictable TCP sequence numbers
- Predictable transport protocol numbers
- Predictable IPv4 or IPv6 Fragment Identifiers
- Predictable IPv6 IIDs
- Predictable DNS TxIDs

Recent history indicates that when new protocols are standardized or new protocol implementations are produced, the security and privacy properties of the associated identifiers tend to be overlooked and inappropriate algorithms to generate such identifiers are either suggested in the specification or selected by implementers. As a result, advice in this area is warranted.

2. Terminology

Identifier:
A data object in a protocol specification that can be used to definitely distinguish a protocol object (a datagram, network interface, transport protocol endpoint, session, etc) from all other objects of the same type, in a given context. Identifiers are usually defined as a series of bits and represented using integer values. We note that these identifiers may have additional requirements or properties depending on their specific use in a protocol. We use the term "identifier" as a generic term to refer to any data object in a protocol specification that satisfies the identification property stated above. Throughout this document we refer as "transient numeric identifiers" (or simply as "identifiers") to the identifiers being dynamically selected by a protocol. Our use of "identifier" excludes static values such as "Protocol Numbers" and the like.

Failure Severity:
The consequences of a failure to comply with the interoperability requirements of a given identifier. Severity considers the worst potential consequence of a failure, determined by the system damage and/or time lost to repair the failure. In this document we define two types of failure severity: "soft" and "hard".
Hard Failure:
A hard failure is a non-recoverable condition in which a protocol does not operate in the prescribed manner or it operates with excessive degradation of service. For example, an established TCP connection that is aborted due to an error condition constitutes, from the point of view of the transport protocol, a hard failure, since it enters a state from which normal operation cannot be recovered.

Soft Failure:
A soft failure is a recoverable condition in which a protocol does not operate in the prescribed manner but normal operation can be resumed automatically in a short period of time. For example, a simple packet-loss event that is subsequently recovered with a retransmission can be considered a soft failure.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Issues with the Specification of Identifiers

While assessing protocol specifications and implementations regarding the use of transient numeric identifiers [I-D.gont-numeric-ids-history], we found that most of the issues discussed in this document arise as a result of one of the following conditions:

- Protocol specifications that under-specify the requirements for their identifiers
- Protocol specifications that over-specify their identifiers
- Protocol implementations that simply fail to comply with the specified requirements

A number of protocol implementations (too many of them) simply overlook the security and privacy implications of identifiers. Examples of them are the specification of TCP port numbers in [RFC0793], the specification of TCP sequence numbers in [RFC0793], or the specification of the DNS TxID in [RFC1035].

On the other hand, there are a number of protocol specifications that over-specify some of their associated protocol identifiers. For example, [RFC4291] essentially results in link-layer addresses being embedded in the IPv6 Interface Identifiers (IIDs) when the interoperability requirement of uniqueness could be achieved in other ways that do not result in negative security and privacy implications.
Similarly, [RFC2460] suggested the use of a global counter for the generation of Fragment Identification values, when the interoperability properties of uniqueness per (Src IP, Dst IP) could be achieved with other algorithms that do not result in negative security and privacy implications.

Finally, there are protocol implementations that simply fail to comply with existing protocol specifications. For example, some popular operating systems (notably Microsoft Windows) still fail to implement transport-protocol port randomization, as specified in [RFC6056].

By requiring protocol specifications to clearly specify the interoperability requirements for the transient numeric identifiers they specify, the constraints in the possible algorithms to generate them, as well as possible over-specification of such identifiers, become evident. Furthermore, requiring specifications to include a security and privacy analysis of the transient numeric identifiers they specify prevents the corresponding considerations from being overlooked at the time a protocol is specified.

4. Common Flaws in the Generation of Transient Identifiers

This section briefly notes common flaws associated with the generation of transient numeric identifiers. Such common flaws include, but are not limited to:

- Employing trivial algorithms (e.g. global counters) that result in predictable identifiers
- Employing the same identifier across contexts in which constancy is not required
- Re-using identifiers across different protocols or layers of the protocol stack
- Initializing counters or timers to constant values, when such initialization is not required
- Employing the same increment space across different contexts
- Use of flawed PRNGs.

Employing trivial algorithms for generating the identifiers means that any node that is able to sample such identifiers can easily predict future identifiers employed by the victim node. For example, the algorithm for Fragment Identification selection in [RFC2460] and
the algorithm for TCP ISN selection in [RFC0793] suffer from that problem.

When one identifier is employed across contexts where such constancy is not needed, activity correlation is made made possible. For example, [RFC4291] essentially results in link-layer addresses being embedded in the IPv6 Interface Identifiers (IIDs) when the interoperability requirement of uniqueness could be achieved in other ways. Employing an identifier that is constant across networks allows for node tracking across networks.

Re-using identifiers across different layers or protocols ties the security and privacy of the protocol re-using the identifier to the security and privacy properties of the original identifier (over which the protocol re-using the identifier may have no control regarding its generation). Besides, when re-using an identifier across protocols from different layers, the goal of of isolating the properties of a layer from that of another layer is broken. Re-using link-layer addresses in IPv6 addresses as specified in [RFC4291] is one example of that.

At times, a protocol needs to convey order information (whether sequence, timing, etc.). In many cases, there is no reason for the corresponding counter or timer to be initialized to any specific value e.g. at system bootstrap. For example, an implementations that employs a counter for the Fragment Identifier [RFC8200] that gets initialized to zero upon system bootstrapping will leak the number of fragmented packets that this node has transmitted. Similarly, a node that updates a timer to zero when bootstrapping will reveal the "uptime" of the node.

A node that implements a per-context linear function may share the increment space among different contexts (please see the "Simple Hash-Based Algorithm" in [I-D.gont-predictable-numeric-ids]). Sharing the same increment space allows an attacker that can sample identifiers in other context to e.g. learn how many identifiers have been generated between two sampled values. [Sanfilippo1998a] and [Sanfilippo1998b] employ shared increment spaces to leak the number of fragmented packets that has been transmitted by a target node.

Finally, some implementations have been found to employ flawed PRNGs. See e.g.[Klein2007].

5. Security and Privacy Requirements for Identifiers

Protocol specifications that specify transient numeric identifiers MUST:
1. Clearly specify the interoperability requirements for the aforementioned identifiers.

2. Provide a security and privacy analysis of the aforementioned identifiers.

3. Recommend an algorithm for generating the aforementioned identifiers that mitigates security and privacy issues, such as those discussed in [I-D.gont-numeric-ids-generation].

6. IANA Considerations

There are no IANA registries within this document. The RFC-Editor can remove this section before publication of this document as an RFC.

7. Security Considerations

This entire document is about the security and privacy implications of transient numeric identifiers, and formally updates [RFC3552] such that the "Security Considerations" sections of RFCs are required to perform a security and privacy analysis of the transient numeric identifiers they specify.

8. Acknowledgements

This document is based on the document
[I-D.gont-predictable-numeric-ids] co-authored by Fernando Gont and Ivan Arce. Thus, the authors would like to thank (in alphabetical order) Steven Bellovin, Joseph Lorenzo Hall, Gre Norcie, for providing valuable comments on that document.

The authors would like to thank Diego Armando Maradona for his magic and inspiration.

9. References

9.1. Normative References


9.2. Informative References

[I-D.gont-predictable-numeric-ids]

[Klein2007]

[RFC1035]

[RFC4291]

[RFC7258]


9.3. Informative References


Authors’ Addresses

Fernando Gont
SI6 Networks
Evaristo Carriego 2644
Haedo, Provincia de Buenos Aires 1706
Argentina

Phone: +54 11 4650 8472
Email: fgont@si6networks.com
URI: https://www.si6networks.com

Ivan Arce
Quarkslab

Email: iarce@quarkslab.com
URI: https://www.quarkslab.com