Using Cryptographically Generated Addresses (CGA) to secure HMIPv6 Protocol (HMIPv6sec)
draft-haddad-mipshop-hmipv6-security-05

Abstract

This memo describes a method for establishing a security association between the mobile node and the selected mobility anchor point in an hierarchical mobile IPv6 domain. The suggested solution is based on using the cryptographically generated address technology.
Table of Contents

1. Introduction .. 3
2. Conventions used in this document 4
3. Glossary ... 5
4. Proposed Solution .. 6
5. New Messages and Options Format 9
 5.1. The Pre-Binding Update (PBU) Message Format 9
 5.2. Third Party Shared Key (TPSK) Option 10
 5.3. The MAP Session Mobility Secret (MSMS) Option 10
 5.4. The Session Mobility Secret (SMS) Option 11
6. IANA Considerations ... 13
7. Security Considerations 14
8. Change Log ... 15
9. References .. 16
 9.1. Normative References 16
 9.2. Informative References 16
Authors’ Addresses ... 17
Intellectual Property and Copyright Statements 18
1. Introduction

The Hierarchical Mobile IPv6 Mobility Management [HMIPv6] did not specify nor favor any particular mechanism for establishing a Security Association (SA) between the Mobile Node (MN) and the Mobility Anchor Point (MAP) located within an HMIPv6 domain.

This memo describes a method, which allows the MN to establish an SA with the selected MAP. The suggested solution is based on using the Cryptographically Generated Address technology (described in [CGA]).
2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [TERM].
3. Glossary

Access Router

The Access Router is the Mobile Node’s default router. The AR aggregates the outband traffic of mobile nodes.

Mobility Anchor Point (MAP)

A Mobility Anchor Point is a router located in a network visited by the mobile node, which is used by the MN as a local Home Agent (HA).

Regional Care-of Address (RCoA)

A Regional Care-of Address is an address obtained by the MN from the visited network. An RCoA is an address on the MAP’s subnet and is auto-configured by the MN when receiving the MAP option.

On-link Care-of Address (LCoA)

The LCoA is the on-link CoA configured on a mobile node’s interface based on the prefix advertised by its default router.

Local Binding Update (LBU) Message

The MN sends a Local Binding Update message to the MAP in order to establish a binding between the RCoA and the LCoA.

Pre-Binding Update (PBU) Message

The MN’s default router sends a Pre-Binding Update message to the MAP upon receiving a Router Solicitation (RtSol) message signed with CGA technology as described in the secure neighbor discovery protocol [SEND].

Cryptographically Generated Address (CGA)

A technique described in [CGA] whereby an IPv6 address of a node is cryptographically generated by using a one-way hash function from the node’s public key (Kp) and some other parameters.

Binding Acknowledgment (BA) Message

The MAP sends a binding acknowledgment message to the MN in response to an LBU message.
4. Proposed Solution

We assume that the MN’s LCoA is always computed based on the CGA technology, in order to allow the MN to run SEND protocol. Such assumption has also been made in [FMIPkey], which aims to provide a security mechanism for [FMIPv6] protocol, and in the ongoing work on optimizing the SEND protocol (described in [OptiSEND]).

In addition, we assume that the MN can discover the presence of an HMIPv6 domain before sending a RtSol message. One example on how to discover the HMIPv6 domain may consist on using technologies described in [FRD]. However, it is important to mention that the proposed solution works with the same performance without such assumption.

A third assumption is the existence of secure links between all routers located within the MAP tree. Such assumption is justified by the fact that HMIPv6 protocol requires that routers within the MAP tree get involved in delivering the RtAdv message sent by the MAP(s) and in assisting the MN in selecting the most appropriate MAP. The lack of secure links between nodes involved in offering the MAP service can make it vulnerable to denial of service (DoS) attacks.

The suggested solution introduces a new signaling message, i.e., the Pre-Binding Update (PBU) message, which is sent by the AR to the MAP upon receiving a RtSol message from the MN carrying a valid signature (i.e., the message is signed with the MN’s CGA private key).

The following figure shows the signaling diagram for establishing a bidirectional SA between the MN and the MAP:

1. MN to AR: Router Solicitation [CGA Signature] (RtSol)
2a. AR to MN: Router Acknowledgement [Ks] (RtAdv)
2b. AR to MAP: Pre-Binding Update [Ks + LCoA] (PBU)
3. MN to MAP: Local Binding Update [DH value (X)] (LBU)
4. MAP to MN: Binding Acknowledgment [DH value (Y)] (BA)

The suggested solution is described in the following steps:

- the MN configures a 64-bit interface identifier (IID) from using CGA technology then uses it to send a RtSol message signed with CGA, according to the SEND protocol. Note that at this stage, the MN may not be aware that it has entered an HMIPv6 domain.

- Upon receiving a valid unicast RtSol message, the AR replies immediately by sending back a unicast RtAdv message to the MN and in parallel, a PBU message to the MAP. For this purpose, the AR MUST compute a secret (Ks), encrypts it with the MN’s CGA public
key and sends it in the unicast RtAdv message. The shared secret
is inserted in a new option (Third Party Shared Key (TSPK)), which
is carried by the unicast RtAdv message. The AR MUST also compute the LCoA and RCoA that the MN is supposed
to autoconfigure. For this purpose, the LCoA is computed by
appending the 64-bit IID used in the RtSol message to the 64-bit
prefix advertised by the AR and the RCoA is computed by appending
the 64-bit prefix advertised by the MAP with the 64-bit IID
computed in the following way:

RCoA (IID) = First (64, SHA1(Ks | LCoA))

Where First(x,y) is a function, which extracts the first x bits
from y and LCoA is the MN’s on link care-of address.

After computing the MN’s LCoA and RCoA, the AR inserts the two
IPv6 addresses and Ks in the PBU message and sends it to the MAP.
As noted earlier, it is assumed that the PBU messages are signed
by the ARs and the paths between the ARs and the MAP are secure.

After receiving the PBU message, the MAP creates a binding cache
entry (BCE) for the MN, in which it stores the MN’s LCoA, RCoA and
Ks carried by the PBU message. Once the BCE is created, the MAP
waits for a limited amount of time for the owner of the two
addresses to send the LBU message. If no valid LBU message is
received during the BCE preconfigured lifetime then the MAP SHOULD
delete it.

When the MN gets a valid RtAdv message, it discovers that it has
entered an HMIPv6 domain. The following is based on the
assumption that the MN decides to use the MAP as its local Home
Agent, which means that the MN has to configure an RCoA then
request the MAP to create a BCE. For this purpose, the MN SHOULD
use the same method as the AR (described earlier) to autoconfigure
its RCoA and LCoA. After that, the MN initiates a Diffie-Hellman
(DH) procedure with the MAP by sending its DH public value (X) in
a new option (Session Mobility Secret (SMS)), which is carried by
the first LBU message sent to the MAP in order to request the MAP
to bind its LCoA to its new RCoA. The MN MUST protect the
integrity of the LBU message by including a keyed hash of the
message using Ks. The keyed hash is syntactically and
semantically similar to the Binding Authorization Data option
specified in [MIPv6].

Upon receiving an LBU message, the MAP searches its BCEs table for
an LCoA, which matches the one sent in the LBU message. If the
same LCoA is found, then the MAP computes the RCoA IID in the same
way as described above, and compares it to the one claimed by the
MN in the LBU message then it checks the authenticity of the message. If the LBU message is valid, then the MAP completes the DH exchange by sending its own DH public value \((Y)\) in a new option (MAP Session Mobility Secret (MSMS)), which is carried by the BA message sent to the MN. The MAP MUST protect the integrity of the BA message by including a keyed hash of the message using \(K_s\). The keyed hash is syntactically and semantically similar to the Binding Authorization Data option specified in [MIPv6].

By sending \((Y)\) to the MN, both nodes will be able to compute the session mobility key \((K_{sm})\) (i.e., from values \((X)\) and \((Y)\)). Note that if the RCoA address sent in the LBU message is not the same as the one stored in the corresponding BCE then the MAP MUST simply discard the LBU message.

- After sending the first BA message, the MAP SHOULD keep \(K_s\) and \((Y)\) in the MN’s corresponding BCE until a new value of the binding update sequence number is stored. This is needed in case the MN goes out of reach for a short period of time and misses the first BA message (i.e., \((Y)\)), in which case it has to re-send the LBU message.

- When the MN gets a BA message carrying a DH value, i.e., an SMS option, it starts by checking its authenticity with \(K_s\). If the message is valid then the MN computes \(K_{sm}\) and establishes a bidirectional SA with the MAP.

- By completing the DH procedure, both nodes will be able to compute the session mobility key \((K_{sm})\) (i.e., from values \((X)\) and \((Y)\)) and use it to authenticate subsequent LBU/BA messages exchanged between them.

Note that the SA lifetime is set to 24 hours, after which the MN has to request the MAP to renew it.
5. New Messages and Options Format

In the following, we describe the PBU message structure and the format of the four new options.

5.1. The Pre-Binding Update (PBU) Message Format

When the AR receives a valid RtSol message signed with CGA, it sends a PBU message to the MAP, which carries the MN’s LCoA, RCoA and Ks.

The format of the PBU message is as follows:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type      |     Code      |          Checksum             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            Reserved                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+                                                               +
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Type
<To Be Assigned By IANA>

Code 0

Checksum
The ICMP checksum. For more details see [ICMPv6].
Reserved
This field is unused. It MUST be initialized to zero by the sender and MUST be ignored by the receiver.

LCoA
This field contains the MN’s LCoA.

RCoA
This field contains the MN’s RCoA.

Ks
The shared secret sent by the AR to the MN and to the MAP.

5.2. Third Party Shared Key (TPSK) Option

The Third Party Shared Key Option is carried by the unicast RtAdv message sent by the AR to the MN, in response to a RtSol message carrying a valid signature. The TPSK option MUST carry the shared secret Ks.

When used, the TPSK option has the following format:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Type | Option Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| .                  .                  |
| Option Data = Ks   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Option Type
<To Be Assigned By IANA>

Option Length
Length of the option.

Option Data
This field contains the shared secret Ks.

5.3. The MAP Session Mobility Secret (MSMS) Option

The MSS Option is used by the MAP to carry the DH public value (Y) sent in the BA message, in response to the first LBU message carrying an SMS option sent by the MN to the MAP.
Note that the first BA message sent by the MAP to the MN MUST be authenticated with Ks.

The MSMS option has the following format:

```
| Option Type | Option Length |
+-------------+-------------+
|             |             |
| .           |             |
|             | Option Data = (Y) |
|             | .           |
|             |             |
+-------------+-------------+
```

Option Type
<To Be Assigned By IANA>

Option Length
Length of the option.

Option Data
The Option Data field contains the DH public value (Y) sent by the MAP to the MN in the BA message.

5.4. The Session Mobility Secret (SMS) Option

The SMS option is carried by the first LBU message sent by the MN to the MAP after receiving an unicast RtAdv message carrying a TPSK option. The SMS option contains the DH public value (X) sent by the MN to the MAP to initiate a DH exchange, which will allow both nodes to compute a shared secret (Ksm).

Note that the first LBU message sent by the MN to the MAP MUST be authenticated with Ks.

The SMS option has the following format:

```
| Option Type | Option Length |
+-------------+-------------+
|             |             |
| .           |             |
|             | Option Data = (X) |
|             | .           |
|             |             |
+-------------+-------------+
```
Option Type
<To Be Assigned By IANA>

Option Length
Length of the option.

Option Data
The Option Data field contains the DH public value (X) sent by the MN to the MAP in the first LBU message.
6. IANA Considerations

This document introduces 3 new types of options and one new type of message. The values of these types are 8-bit unsigned integers. These values are allocated according to the Standards Actions or IESG approval policies defined in [IANA].
7. Security Considerations

This proposal suggests using the CGA technology to secure the exchange between the MN and the AR as described in the SEND protocol, to derive a first shared secret between the two entities and to use it later to authenticate mobility signaling messages exchanged between the MN and the MAP. This is recommended due to the fact that public key signature is a computationally expensive and lengthy procedure.

The suggested proposal does not create nor enhance any new and/or existing threats. In particular, launching a man-in-the-middle attack against the MN is not possible because the attacker is not aware of the shared secret Ks. In addition, launching a denial of service (DoS) attack against the MAP or the MN is mitigated due to the fact that both nodes can quickly scan incoming messages for a partial authenticity before processing the entire message.

The proposal provides integrity protection by including a keyed hash of the message. The proposal provides replay protection by using the sequence number in the binding updates. The proposal does not require the MAP to have prior knowledge of the MN’s identity.

The suggested proposal DOES NOT guard against compromise of the access router. If the access router is compromised it can act as a man-in-the-middle for the MN-MAP exchange. But a compromised router can do far worse things like null routing all the packets emanating from the mobile node, or modify router advertisements to conceal the presence of a HMIPv6 domain. We consider the AR compromise problem to be orthogonal to the issues addressed in this draft.
8. Change Log

This document introduces the following changes from previous versions:

- Remove the reliance on the crypto-based identifier (CBID) in order to further simplify the protocol.

- Remove any new option from the RtSol message and adopt the same format as used in SEND.

- Reduce the size of the PBU message by eliminating the need to send the MN’s CGA public key.

- Change the document title to reflect the new modifications.

- Correct few typos.
9. References

9.1. Normative References

9.2. Informative References

Authors’ Addresses

Wassim Haddad
Ericsson Research
Torshamnsgatan 23
SE-164 80 Stockholm
Sweden

Phone: +46 8 4044079
Email: Wassim.Haddad@ericsson.com

Suresh Krishnan
Ericsson Research
8400 Decarie Blvd.
Town of Mount Royal, QC
Canada

Phone: +1 514 345 7900
Email: Suresh.Krishnan@ericsson.com

Hesham Soliman
Qualcomm-Flarion

Phone: +1 908 997 9775
Email: hsoliman@qualcomm.com
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.