Abstract

This memo specifies new optional HMAC-SHA-2 authentication protocols for the User-based Security Model (USM) for SNMPv3 defined in RFC 3414.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 7, 2014.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols. In particular it defines additional authentication protocols for the User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3) specified in RFC 3414 [RFC3414].

In RFC 3414, two different authentication protocols, HMAC-MD5-96 and HMAC-SHA-96, are defined based on the hash functions MD5 and SHA-1, respectively. This memo specifies new optional HMAC-SHA-2 authentication protocols for USM using an HMAC based on the SHA-2 family of hash functions [SHA] and truncated to 128 bits for SHA-224 and SHA-256, to 192 bits for SHA-256, to 256 bits for SHA-384 and SHA-512, and to 384 bits for SHA-512. These protocols are straightforward adaptations of the authentication protocols HMAC-MD5-96 and HMAC-SHA-96 to the SHA-2 based HMAC.

Table of Contents

1. Introduction ... 2
2. The Internet-Standard Management Framework 3
3. Conventions .. 3
4. The HMAC-SHA-2 Authentication Protocols 3
 4.1. Deviations from the HMAC-SHA-96 Authentication Protocol 4
 4.2. Processing 5
 4.2.1. Processing an Outgoing Message 5
 4.2.2. Processing an Incoming Message 6
5. Key Localization and Key Change 7
6. Structure of the MIB Module 7
7. Relationship to Other MIB Modules 7
 7.1. Relationship to SNMP-USER-BASED-SM-MIB 7
 7.2. Relationship to SNMP-FRAMEWORK-MIB 7
 7.3. MIB modules required for IMPORTS 7
8. Definitions .. 7
9. Security Considerations 10
 9.1. Use of the HMAC-SHA-2 authentication protocols in USM 10
 9.2. Cryptographic strength of the authentication protocols ... 10
 9.3. Derivation of keys from passwords 11
 9.4. Access to the SNMP-USM-HMAC-SHA2-MIB 11
10. IANA Considerations 12
11. References ... 12
 11.1. Normative References 12
 11.2. Informative References 13
2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIV2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

4. The HMAC-SHA-2 Authentication Protocols

This section describes the HMAC-SHA-2 authentication protocols. They use the SHA-2 hash functions, which are described in [SHA] and [RFC6234], in HMAC mode described in [RFC2104] and [RFC6234], truncating the output to 128 bits for SHA-224 and SHA-256, 192 bits for SHA-256, 256 bits for SHA-384 and SHA-512, and 384 bits for SHA-512. [RFC6234] also provides source code for all the SHA-2 algorithms and HMAC (without truncation). It also includes test harness and standard test vectors for all the defined hash functions and HMAC examples.

The following protocols are defined:

usmHMAC128SHA224AuthProtocol: uses SHA-224 and truncates the output to 128 bits (16 octets);

usmHMAC128SHA256AuthProtocol: uses SHA-256 and truncates the output to 128 bits (16 octets);

usmHMAC192SHA256AuthProtocol: uses SHA-256 and truncates the output to 192 bits (24 octets);

usmHMAC256SHA384AuthProtocol: uses SHA-384 and truncates the output to 256 bits (32 octets).
usmHMAC256SHA512AuthProtocol: uses SHA-512 and truncates the output to 256 bits (32 octets);

usmHMAC384SHA512AuthProtocol: uses SHA-512 and truncates the output to 384 bits (48 octets).

Implementations conforming to this specification MUST support usmHMAC192SHA256AuthProtocol and SHOULD support usmHMAC256SHA512AuthProtocol. All other protocols specified above are OPTIONAL.

4.1. Deviations from the HMAC-SHA-96 Authentication Protocol

All the HMAC-SHA-2 authentication protocols are straightforward adaptations of the HMAC-MD5-96 and HMAC-SHA-96 authentication protocols. Precisely, they differ from the HMAC-MD5-96 and HMAC-SHA-96 authentication protocols in the following aspects:

- The SHA-2 hash function is used to compute the message digest in the HMAC computation according to [RFC2104], as opposed to the MD5 hash function [RFC1321] and SHA-1 hash function [SHA] used in HMAC-MD5-96 and HMAC-SHA-96, respectively. Consequently, the length of the message digest prior to truncation is 224 bits for SHA-224 based protocol, 256 bits for SHA-256 based protocol, 384 bits for SHA-384 based protocol, and 512 bits for SHA-512 based protocol.

- The resulting message digest (output of HMAC) is truncated to
 * 16 octets for usm128HMACSHA224AuthProtocol and usmHMAC128SHA256AuthProtocol
 * 24 octets for usm192HMACSHA256AuthProtocol
 * 32 octets for usm256HMACSHA384AuthProtocol and usmHMAC256SHA512AuthProtocol
 * 48 octets for usm384HMACSHA512AuthProtocol

as opposed to the truncation to 12 octets in HMAC-MD5-96 and HMAC-SHA-96.

- The user’s secret key to be used when calculating a digest MUST be:
 * 28 octets long and derived with SHA-224 for the SHA-224 based protocol usmHMAC128SHA224AuthProtocol
* 32 octets long and derived with SHA-256 for the SHA-256 based protocols usmHMAC128SHA256AuthProtocol and usmHMAC192SHA256AuthProtocol

* 48 octets long and derived with SHA-384 for the SHA-384 based protocol usmHMAC256SHA384AuthProtocol

* 64 octets long and derived with SHA-512 for the SHA-512 based protocols usmHMAC256SHA512AuthProtocol and usmHMAC384SHA512AuthProtocol

as opposed to the keys being 16 and 20 octets long in HMAC-MD5-96 and HMAC-SHA-96, respectively.

4.2. Processing

This section describes the procedures for the HMAC-SHA-2 authentication protocols. The descriptions are based on the definition of services and data elements defined for HMAC-SHA-96 in

RFC 3414 [RFC3414] with the deviations listed in Section 4.1.

4.2.1. Processing an Outgoing Message

Values of constants M (the length of the secret key) and N (the length of the MAC output) used below, are:

usmHMAC128SHA224AuthProtocol: M=28, N=16;
usmHMAC128SHA256AuthProtocol: M=32, N=16;
usmHMAC192SHA256AuthProtocol: M=32, N=24;
usmHMAC256SHA384AuthProtocol: M=48, N=32;
usmHMAC256SHA512AuthProtocol: M=64, N=32;
usmHMAC384SHA512AuthProtocol: M=64, N=48.

correspondingly.

This section describes the procedure followed by an SNMP engine whenever it must authenticate an outgoing message using one of the authentication protocols defined above.

1. The msgAuthenticationParameters field is set to serialization, according to the rules in [RFC3417], of an OCTET STRING containing N zero octets.
2. From the secret authKey of M octets, calculate the HMAC-SHA-2 digest over it according to HMAC [RFC6234]. Take the first N octets of the final digest - this is the Message Authentication Code (MAC).

3. Replace the msgAuthenticationParameters field with the MAC obtained in the previous step.

4. The authenticatedWholeMsg is then returned to the caller together with statusInformation indicating success.

4.2.2. Processing an Incoming Message

Values of the constants M and N are the same as in Section 4.2.1, and are selected based on which authentication protocol is configured for the given USM usmUserTable entry.

This section describes the procedure followed by an SNMP engine whenever it must authenticate an incoming message using one of the HMAC-SHA-2 authentication protocols.

1. If the digest received in the msgAuthenticationParameters field is not N octets long, then an failure and an errorIndication (authenticationError) is returned to the calling module.

2. The MAC received in the msgAuthenticationParameters field is saved.

3. The digest in the msgAuthenticationParameters field is replaced by the N zero octets.

4. Using the secret authKey, the HMAC is calculated over the wholeMsg.

5. N first octets of the above HMAC are taken as the computed MAC value.

6. The msgAuthenticationParameters field is replaced with the MAC value that was saved in step 2.

7. The newly calculated MAC is compared with the MAC saved in step 2. If they do not match, then a failure and an errorIndication (authenticationFailure) are returned to the calling module.

8. The authenticatedWholeMsg and statusInformation indicating success are then returned to the caller.
5. Key Localization and Key Change

For any of the protocols defined in Section 4, key localization and key change SHALL be performed according to RFC 3414 [RFC3414] using the SHA-2 hash function applied in the respective protocol.

6. Structure of the MIB Module

The MIB module specified in this memo does not define any managed objects, subtrees, notifications or tables, but only object identities (for authentication protocols) under a subtree of an existing MIB.

7. Relationship to Other MIB Modules

7.1. Relationship to SNMP-USER-BASED-SM-MIB

RFC 3414 [RFC3414] specifies the MIB for the User-based Security Model (USM) for SNMPv3 (SNMP-USER-BASED-SM-MIB), which defines authentication protocols for USM based on the hash functions MD5 and SHA-1, respectively. The following MIB module defines new HMAC-SHA2 authentication protocols for USM based on the SHA-2 hash functions [SHA]. The use of the HMAC-SHA2 authentication protocols requires the usage of the objects defined in the SNMP-USER-BASED-SM-MIB.

7.2. Relationship to SNMP-FRAMEWORK-MIB

RFC 3411 [RFC3411] specifies the The SNMP Management Architecture MIB (SNMP-FRAMEWORK-MIB), which defines a subtree snmpAuthProtocols for SNMP authentication protocols. The following MIB module defines new authentication protocols in the snmpAuthProtocols subtree. Therefore, the use of the HMAC-SHA2 authentication protocols requires the usage of the objects defined in the SNMP-FRAMEWORK-MIB.

7.3. MIB modules required for IMPORTS

The following MIB module IMPORTS objects from SNMPv2-SMI [RFC2578] and SNMP-FRAMEWORK-MIB [RFC3411].

8. Definitions
snmpUsmHmacSha2MIB MODULE-IDENTITY
LAST-UPDATED "201403060000Z" -- 16 Jan 2014, midnight
CONTACT-INFO "Johannes Merkle
Secunet Security Networks
Mergenthaler Allee 77
65760 Eschborn
Germany
Phone: +49 201 5454 3091
EMAIL: johannes.merkle@secunet.com

Manfred Lochter
Bundesamt fuer Sicherheit in der
Informationstechnik (BSI)
Postfach 200363
53133 Bonn,
Germany
Phone: +49 228 9582 5643
EMAIL: manfred.lochter@bsi.bund.de"
DESCRIPTION "Definitions of Object Identities needed
for the use of the HMAC-SHA2 authentication protocols by SNMP’s User-based
Security Model.

Copyright (C) The Internet Society (2004).

This version of this MIB module is part of RFC TBD;
see the RFC itself for full legal notices.
Supplementary information may be available on

-- RFC Ed.: replace TBD with actual RFC number & remove this line
REVISION "201403060000002"
DESCRIPTION "Initial version, published as RFC TBD"
-- RFC Ed.: replace TBD with actual RFC number & remove this line

::= { snmpModules nn } -- nn to be assigned by IANA
-- RFC Ed.: replace nn with actual number assigned by IANA & remove this line

usmHmac128Sha224Protocol OBJECT-IDENTITY
STATUS current
 Uses HMAC-SHA-224 and truncates output to 128 bits."
REFERENCE "- Krawczyk, H., Bellare, M., and R. Canetti, HMAC:
 - National Institute of Standards and Technology,
 Secure Hash Standard (SHS), FIPS PUB 180-4, 2012."
::= { snmpAuthProtocols aa } -- aa to be assigned by IANA
-- RFC Ed.: replace aa with actual number assigned by IANA & remove this line
usmHmac128Sha256Protocol OBJECT-IDENTITY
 STATUS current
Uses HMAC-SHA-256 and truncates output to 128 bits."
 REFERENCE "- Krawczyk, H., Bellare, M., and R. Canetti, HMAC:
 ::= { snmpAuthProtocols bb } -- bb to be assigned by IANA
-- RFC Ed.: replace bb with actual number assigned by IANA & remove this line

usmHmac192Sha256Protocol OBJECT-IDENTITY
 STATUS current
Uses HMAC-SHA-256 and truncates output to 192 bits."
 REFERENCE "- Krawczyk, H., Bellare, M., and R. Canetti, HMAC:
 ::= { snmpAuthProtocols cc } -- cc to be assigned by IANA
-- RFC Ed.: replace cc with actual number assigned by IANA & remove this line

usmHmac256Sha384Protocol OBJECT-IDENTITY
 STATUS current
Uses HMAC-SHA-384 and truncates output to 256 bits."
 REFERENCE "- Krawczyk, H., Bellare, M., and R. Canetti, HMAC:
 ::= { snmpAuthProtocols dd } -- dd to be assigned by IANA
-- RFC Ed.: replace dd with actual number assigned by IANA & remove this line

usmHmac256Sha512Protocol OBJECT-IDENTITY
 STATUS current
Uses HMAC-SHA-512 and truncates output to 256 bits."
 REFERENCE "- Krawczyk, H., Bellare, M., and R. Canetti, HMAC:
 ::= { snmpAuthProtocols ee } -- ee to be assigned by IANA
-- RFC Ed.: replace ee with actual number assigned by IANA & remove this line

usmHmac384Sha512Protocol OBJECT-IDENTITY
 STATUS current
Uses HMAC-SHA-512 and truncates output to 384 bits."

REFERENCE
- Krawczyk, H., Bellare, M., and R. Canetti, HMAC:
- National Institute of Standards and Technology,
 Secure Hash Standard (SHS), FIPS PUB 180-4, 2012."

END

9. Security Considerations

9.1. Use of the HMAC-SHA-2 authentication protocols in USM

The security considerations of [RFC3414] also apply to the use of all
the HMAC-SHA-2 authentication protocols in USM.

9.2. Cryptographic strength of the authentication protocols

At the time of this writing, all of the HMAC-SHA-2 authentication
protocols provide a very high level of security. The security of
each HMAC-SHA-2 authentication protocol depends on the parameters
used in the corresponding HMAC computation, which are the length of
the key, the size of the hash function’s internal state, and the
length of the truncated MAC. For the HMAC-SHA-2 authentication
protocols these values are as follows (values are given in bits).

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Key length</th>
<th>Size of internal state</th>
<th>MAC length</th>
</tr>
</thead>
<tbody>
<tr>
<td>usmHMAC128SHA224AuthProtocol</td>
<td>224</td>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>usmHMAC128SHA256AuthProtocol</td>
<td>256</td>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>usmHMAC192SHA256AuthProtocol</td>
<td>256</td>
<td>256</td>
<td>192</td>
</tr>
<tr>
<td>usmHMAC256SHA384AuthProtocol</td>
<td>384</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>usmHMAC256SHA512AuthProtocol</td>
<td>512</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>usmHMAC384SHA512AuthProtocol</td>
<td>512</td>
<td>512</td>
<td>384</td>
</tr>
</tbody>
</table>

Table 1: HMAC parameters of the HMAC-SHA-2 authentication protocols

The security of the HMAC scales with both the key length and the size
of the internal state: longer keys render key guessing attacks more
difficult, and a larger internal state decreases the success probability of MAC forgeries based on internal collisions of the hash function.

The role of the truncated output length is more complicated: according to [BCK], there is a trade-off in that "by outputting less bits the attacker has less bits to predict in a MAC forgery but, on the other hand, the attacker also learns less about the output of the compression function from seeing the authentication tags computed by legitimate parties"; thus, truncation weakens the HMAC against forgery by guessing, but at the same time strengthens it against chosen message attacks aiming at MAC forgery based on internal collisions or at key guessing. [RFC2104] and [BCK] allow truncation to any length that is not less than half the size of the internal state. In order to provide some flexibility in the case of future results on optimal HMAC truncation, this specification provides multiple choices.

Further discussion of the security of the HMAC construction is given in [RFC2104].

9.3. Derivation of keys from passwords

If secret keys to be used for HMAC-SHA-2 authentication protocols are derived from passwords, the derivation SHOULD be performed using the password-to-key algorithm from Appendix A.1 of RFC 3414 with MD5 being replaced by the SHA-2 hash function H used in the HMAC-SHA-2 authentication protocol. Specifically, the password is converted into the required secret key by the following steps:

- forming a string of length 1,048,576 octets by repeating the value of the password as often as necessary, truncating accordingly, and using the resulting string as the input to the hash function H. The resulting digest, termed "digest1", is used in the next step.
- a second string is formed by concatenating digest1, the SNMP engine’s snmpEngineID value, and digest1. This string is used as input to the hash function H.

9.4. Access to the SNMP-USM-HMAC-SHA2-MIB

None of the objects defined in SNMP-USM-HMAC-SHA2-MIB is writable, and the information they represent is not deemed to be particularly sensitive. However, if they are deemed sensitive in a particular environment, access to them should be restricted through the use of appropriately configured Security and Access Control models.
10. IANA Considerations

IANA is requested to assign an OID for

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>OBJECT IDENTIFIER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmpUsmHmacSha2MIB</td>
<td>{ snmpModules nn }</td>
</tr>
</tbody>
</table>

Table 2: OID of MIB

with nn appearing in the MIB module definition in Section 8.

Furthermore, IANA is requested to assign a value in the SnmpAuthProtocols registry for each of the following protocols.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>usmHMAC128SHA224AuthProtocol</td>
<td>aa</td>
<td>RFC YYYY</td>
</tr>
<tr>
<td>usmHMAC128SHA256AuthProtocol</td>
<td>bb</td>
<td>RFC YYYY</td>
</tr>
<tr>
<td>usmHMAC192SHA256AuthProtocol</td>
<td>cc</td>
<td>RFC YYYY</td>
</tr>
<tr>
<td>usmHMAC256SHA384AuthProtocol</td>
<td>dd</td>
<td>RFC YYYY</td>
</tr>
<tr>
<td>usmHMAC256SHA512AuthProtocol</td>
<td>ee</td>
<td>RFC YYYY</td>
</tr>
<tr>
<td>usmHMAC384SHA512AuthProtocol</td>
<td>ff</td>
<td>RFC YYYY</td>
</tr>
</tbody>
</table>

Table 3: Code points assigned to HMAC-SHA-2 authentication protocols

-- RFC Ed.: replace YYYY with actual RFC number and remove this line

with aa, bb, cc, etc. appearing in the MIB module definition in Section 8.

11. References

11.1. Normative References

11.2. Informative References

Authors’ Addresses

Johannes Merkle (editor)
Secunet Security Networks
Mergenthaler Allee 77
65760 Eschborn
Germany
Phone: +49 201 5454 3091
EMail: johannes.merkle@secunet.com

Manfred Lochter
BSI
Postfach 200363
53133 Bonn
Germany
Phone: +49 228 9582 5643
EMail: manfred.lochter@bsi.bund.de