Unified Registration Data Access Protocol Query Format

draft-hollenbeck-weirds-unified-rdap-query-00

Abstract

This document describes uniform patterns to construct HTTP URLs that may be used to retrieve registration information from registries (including both Regional Internet Registries (RIRs) and Domain Name Registries (DNRs)) using "RESTful" web access patterns.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 1, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.
publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .................................................. 3
2. Path Segment Specification ................................. 4
   2.1. IP Network Path Segment Specification ............... 4
   2.2. Autonomous System Path Segment Specification ....... 5
   2.3. Domain Path Segment Specification .................... 5
   2.4. Name Server Path Segment Specification .............. 5
   2.5. Entity Path Segment Specification .................... 6
3. Internationalization Considerations ....................... 6
4. IANA Considerations ........................................... 6
5. Security Considerations ....................................... 6
6. Acknowledgements ............................................ 7
7. References ...................................................... 7
   7.1. Normative References .................................... 7
   7.2. Informative References .................................. 8
Appendix A. Path Segment Specification for Search Queries ..... 8
Authors’ Addresses ................................................. 9
1. Introduction

This document describes a specification for querying registration data using a RESTful web service and uniform query patterns. The service is implemented using the Hypertext Transfer Protocol (HTTP) [RFC2616] and conforms to the architectural constraints of Representational State Transfer [REST].

The protocol described in this specification is intended to address deficiencies with the WHOIS protocol [RFC3912] that have been identified over time, including:

- Lack of standardized command structures,
- Lack of standardized output and error structures,
- Lack of support for internationalization and localization, and
- Lack of support for user identification, authentication, and access control.

The patterns described in this document purposefully do not encompass all of the methods employed in the WHOIS and RESTful web services of all of the RIRs and DNRs. The intent of the patterns described here are to enable lookups of networks by IP address, autonomous system numbers by number, reverse DNS meta-data by domain, domains by name, name servers by name, registrars by name, and entities (such as contacts) by identifier. It is envisioned that each registry will continue to maintain NICNAME/WHOIS and/or RESTful web services specific to their needs and those of their constituencies, and the information retrieved through the patterns described here may reference such services.

WHOIS services, in general, are read-only services. Therefore URL [RFC3986] patterns presented here are only applicable to the HTTP [RFC2616] GET and HEAD methods.

This document does not describe the results or entities returned from issuing the described URLs with an HTTP GET. It is envisioned that other documents will describe these entities in various serialization formats, such as JavaScript Object Notation (JSON, [ECMA]).

Additionally, resource management, provisioning and update functions are out of scope for this document. Registries have various and divergent methods covering these functions, and it is unlikely a uniform approach for these functions will ever be possible.

While HTTP contains mechanisms for servers to authenticate clients and for clients to authenticate servers (from which authorization schemes may be built), both authentication of clients and servers and authorization for access to data are out-of-scope of this document.
In general, these matters require "policy" and are not the domain of technical standards bodies.

2. Path Segment Specification

The uniform patterns start with a base URL [RFC3986] specified by each registry or any other service provider offering this service. The base URL will be appended with resource type specific path segments. The base URL may contain its own path segments (e.g. http://example.com/... or http://example.com/restful-WHOIS/...).

The resource type path segments are:
- ‘ip’: IP networks and associated data referenced using either an IPv4 or IPv6 address.
- ‘autnum’: Autonomous system registrations and associated data referenced using an AS Plain autonomous system number.
- ‘domain’: Reverse DNS (RIR) or domain name (DNR) information and associated data referenced using a fully-qualified domain name.
- ‘nameserver’: Used to identify a name server information query.
- ‘entity’: Used to identify an entity information query.

2.1. IP Network Path Segment Specification

Syntax: ip/<IP address> or ip/<CIDR prefix>/<CIDR length>

Queries for information about IP networks are of the form /ip/XXX/... or /ip/XXX/YY/... where the path segment following ’ip’ is either an IPv4 [RFC1166] or IPv6 [RFC5952] address (i.e. XXX) or an IPv4 or IPv6 CIDR [RFC4632] notation address block (i.e. XXX/YY). Semantically, the simpler form using the address can be thought of as a CIDR block with a length of 32 for IPv4 and a length of 128 for IPv6. A given specific address or CIDR may fall within multiple IP networks in a hierarchy of networks, therefore this query targets the "most-specific" or lowest IP network which completely encompasses it in a hierarchy of IP networks.

This is an example URL for the most specific network containing 192.0.2.0:

/ip/192.0.2.0

This is an example of a URL the most specific network containing 192.0.2.0/24:

/ip/192.0.2.0/24
2.2. Autonomous System Path Segment Specification

Syntax: autnum/<autonomous system number>

Queries for information regarding autonomous system number registrations are of the form /autnum/XXX/... where XXX is an autonomous system number [RFC5396]. In some registries, registration of autonomous system numbers is done on an individual number basis, while other registries may register blocks of autonomous system numbers. The semantics of this query is such that if a number falls within a range of registered blocks, the target of the query is the block registration, and that individual number registrations are considered a block of numbers with a size of 1.

For example, to find information on autonomous system number 65551, the following path would be used:

/autnum/65551

2.3. Domain Path Segment Specification

Syntax: domain/<domain name>

Queries for domain information are of the form /domain/XXXX/..., where XXXX is a fully-qualified domain name [RFC4343] in either the in-addr.arpa or ip6.arpa zones (for RIRs) or a fully-qualified domain name in a zone administered by the server operator (for DNRs). Internationalized domain names represented in A-label format [RFC5890] are also valid domain names.

The following path would be used to find information describing the zone serving the network 192.0.2/24:

/domain/2.0.192.in-addr.arpa

The following path would be used to find information for the example.com domain name:

/domain/example.com

2.4. Name Server Path Segment Specification

Syntax: nameserver/<name server name>

The <name server name> parameter represents a fully qualified name as specified in RFC 952 [RFC0952] and RFC 1123 [RFC1123]. Internationalized names represented in A-label format [RFC5890] are also valid name server names.
The following path would be used to find information for the ns1.example.com name server:

/nameserver/ns1.example.com/

2.5. Entity Path Segment Specification

Syntax: entity/<handle>

The <handle> parameter represents an entity (such as a contact, registrant, or registrar) identifier. For example, for some DNRs contact identifiers are specified in RFC 5730 [RFC5730] and RFC 5733 [RFC5733].

The following path would be used to find information for the entity associated with handle CID-4005:

/entity/CID-4005/

3. Internationalization Considerations

There is value in supporting the ability to submit either a U-label (Unicode form of an IDN label) or an A-label (ASCII form of an IDN label) as a query argument to an RDAP service. Clients with graphical user interfaces may prefer a U-label since this is more visually recognizable and familiar than A-label strings, but clients of programmatic interfaces may wish to submit and display A-labels or may not be able to input U-labels with their keyboard configuration. In the interest of protocol simplicity, A-labels (the "wire format" of IDNs) are the only labels supported by this specification.

Internationalized domain and name server names can contain character variants and variant labels as described in RFC 4290 [RFC4290]. Clients that support queries for internationalized domain and name server names MUST accept service provider responses that describe variants as specified in (the draft DNRD-AP response document).

4. IANA Considerations

This document does not specify any IANA actions.

5. Security Considerations

Need text here.
6. Acknowledgements

The authors would like to acknowledge the following individuals for their contributions to this document: Francisco Arias, Steve Sheng.

7. References

7.1. Normative References


Informative References

[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, August 2006.


7.2. Informative References


URIs

[1] <https://www.arin.net/resources/whoisrws/whois_api.html>


Appendix A. Path Segment Specification for Search Queries

All of the path segments described in this document identify patterns for exact-match lookups of data elements. We have explicitly omitted specifications for search queries in the interest of first focusing on more basic protocol operations. Once we understand how exact-match queries will work we will attempt to define specifications for
search queries.

It is important to note that there are already multiple implementations of RESTful RDAP-like prototypes that provide search capabilities. For example:

The American Registry for Internet Numbers (ARIN) has published an API [1] (see Section 4.4.2) that describes using plural forms of path segment identifiers (e.g. "domains") and Matrix URIs [2] to indicate that a client is requesting a list of values when searching for RIR registration data. A prototype service [3] that implements this API is up and running.

Verisign has deployed a prototype service [4] that implements searches for DNR registration data using HTML query strings (e.g. "_PRE") to identify search parameters. For example, "http://dnrd.verisignlabs.com/dnrd-ap/domain/verisign?_PRE" performs a search for domain names with a "verisign" prefix.

The specifications that are eventually added to this document will likely combine features from these and other examples of running code.

Authors’ Addresses

Andrew Lee Newton
American Registry for Internet Numbers
3635 Concorde Parkway
Chantilly, VA  20151
US

Email: andy@arin.net
URI:  http://www.arin.net

Scott Hollenbeck
Verisign Labs
12061 Bluemont Way
Reston, VA  20190
US

Email: shollenbeck@verisign.com
URI:  http://www.verisignlabs.com/
Kaveh Ranjbar
RIPE Network Coordination Centre
Singel 258
Amsterdam 1016AB
NL

Email: kranjbar@ripe.net
URI: http://www.ripe.net

Arturo L. Servin
Latin American and Caribbean Internet Address Registry
Rambla Republica de Mexico 6125
Montevideo 11300
UY

Email: aservin@lacnic.net
URI: http://www.lacnic.net

Byron J. Ellacott
Asia Pacific Network Information Center
6 Cordelia Street
South Brisbane QLD 4101
Australia

Email: bje@apnic.net
URI: http://www.apnic.net