Abstract

This document discusses the security implications of the generation of IPv6 atomic fragments and a number of interoperability issues associated with IPv6 atomic fragments, and concludes that the aforementioned functionality is undesirable, thus documenting the motivation for removing this functionality in the revision of the core IPv6 protocol specification.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 6, 2016.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect
1. Introduction

[RFC2460] specifies the IPv6 fragmentation mechanism, which allows IPv6 packets to be fragmented into smaller pieces such that they can fit in the Path-MTU to the intended destination(s).

Section 5 of [RFC2460] states that, when a host receives an ICMPv6 "Packet Too Big" message [RFC4443] advertising an MTU smaller than 1280 bytes (the minimum IPv6 MTU), the host is not required to reduce the assumed Path-MTU, but must simply include a Fragment Header in all subsequent packets sent to that destination. The resulting packets will thus *not* be actually fragmented into several pieces, but rather be "atomic fragments" [RFC6946] (i.e., just include a Fragment Header with both the "Fragment Offset" and the "M" flag set to 0). [RFC6946] requires that these atomic fragments be essentially processed by the destination host as non-fragmented traffic (since there are not really any fragments to be reassembled). The goal of these atomic fragments is simply to convey an appropriate Identification value to be employed by IPv6/IPv4 translators for the resulting IPv4 fragments.

While atomic fragments might seem rather benign, there are scenarios in which the generation of IPv6 atomic fragments can be leveraged for performing a number of attacks against the corresponding IPv6 flows. Since there are concrete security implications arising from the generation of IPv6 atomic fragments, and there is no real gain in generating IPv6 atomic fragments (as opposed to e.g. having IPv6/IPv4
Section 2 briefly discusses the security implications of the generation of IPv6 atomic fragments, and describes a specific Denial of Service (DoS) attack vector that leverages the widespread filtering of IPv6 fragments in the public Internet. Section 3 provides additional considerations regarding the usefulness of generating IPv6 atomic fragments.

The security implications of IP fragmentation have been discussed at length in [RFC6274] and [RFC7739]. An attacker can leverage the generation of IPv6 atomic fragments to trigger the use of fragmentation in an arbitrary IPv6 flow and subsequently perform any fragmentation-based attack against legacy IPv6 nodes that do not implement [RFC6946].

Unfortunately, even nodes that already implement [RFC6946] can be subject to DoS attacks as a result of the generation of IPv6 atomic fragments. Let us assume that Host A is communicating with Server B, and that, as a result of the widespread dropping of IPv6 packets that contain extension headers (including fragmentation) [I-D.ietf-v6ops-ipv6-ehs-in-real-world], some intermediate node filters fragments between Host A and Server B. If an attacker sends a forged ICMPv6 "Packet Too Big" (PTB) error message to server B, reporting an MTU smaller than 1280, this will trigger the generation of IPv6 atomic fragments from that moment on (as required by [RFC2460]). When server B starts sending IPv6 atomic fragments (in response to the received ICMPv6 PTB), these packets will be dropped, since we previously noted that IPv6 packets with extension headers were being dropped between Host A and Server B. Thus, this situation will result in a Denial of Service (DoS) scenario.

Another possible scenario is that in which two BGP peers are employing IPv6 transport, and they implement Access Control Lists (ACLs) to drop IPv6 fragments (to avoid control-plane attacks). If the aforementioned BGP peers drop IPv6 fragments but still honor received ICMPv6 Packet Too Big error messages, an attacker could easily attack the peering session by simply sending an ICMPv6 PTB message with a reported MTU smaller than 1280 bytes. Once the attack packet has been sent, it will be the aforementioned routers themselves the ones dropping their own traffic.

The aforementioned attack vector is exacerbated by the following factors:
The attacker does not need to forge the IPv6 Source Address of his attack packets. Hence, deployment of simple BCP38 filters will not help as a counter-measure.

Only the IPv6 addresses of the IPv6 packet embedded in the ICMPv6 payload needs to be forged. While one could envision filtering devices enforcing BCP38-style filters on the ICMPv6 payload, the use of extension headers (by the attacker) could make this difficult, if at all possible.

Many implementations fail to perform validation checks on the received ICMPv6 error messages, as recommended in Section 5.2 of [RFC4443] and documented in [RFC5927]. It should be noted that in some cases, such as when an ICMPv6 error message has (supposedly) been elicited by a connection-less transport protocol (or some other connection-less protocol being encapsulated in IPv6), it may be virtually impossible to perform validation checks on the received ICMPv6 error message. And, because of IPv6 extension headers, the ICMPv6 payload might not even contain any useful information on which to perform validation checks.

Upon receipt of one of the aforementioned ICMPv6 "Packet Too Big" error messages, the Destination Cache [RFC4861] is usually updated to reflect that any subsequent packets to such destination should include a Fragment Header. This means that a single ICMPv6 "Packet Too Big" error message might affect multiple communication instances (e.g., TCP connections) with such destination.

As noted in Section 3, SIIT [RFC6145] (including derivative protocols such as Stateful NAT64 [RFC6146]) is the only technology which currently makes use of atomic fragments. Unfortunately, an IPv6 node cannot easily limit its exposure to the aforementioned attack vector by only generating IPv6 atomic fragments towards IPv4 destinations behind a stateless translator. This is due to the fact that Section 3.3 of [RFC6052] encourages operators to use a Network-Specific Prefix (NSP) that maps the IPv4 address space into IPv6. When an NSP is being used, IPv6 addresses representing IPv4 nodes (reached through a stateless translator) are indistinguishable from native IPv6 addresses.

3. Additional Considerations

Besides the security assessment provided in Section 2, it is interesting to evaluate the pros and cons of having an IPv6-to-IPv4 translating router rely on the generation of IPv6 atomic fragments.

Relying on the generation of IPv6 atomic fragments implies a reliance on:
1. ICMPv6 packets arriving from the translator to the IPv6 node

2. The ability of the nodes receiving ICMPv6 PTB messages reporting an MTU smaller than 1280 bytes to actually produce atomic fragments

3. Support for IPv6 fragmentation on the IPv6 side of the translator

4. The ability of the translator implementation to access the information conveyed by the IPv6 Fragment Header

Unfortunately,

1. There exists a fair share of evidence of ICMPv6 Packet Too Big messages being dropped on the public Internet (for instance, that is one of the reasons for which PLPMTUD [RFC4821] was produced). Therefore, relying on such messages being successfully delivered will affect the robustness of the protocol that relies on them.

2. A number of IPv6 implementations have been known to fail to generate IPv6 atomic fragments in response to ICMPv6 PTB messages reporting an MTU smaller than 1280 bytes (see Appendix A for a small survey). Additionally, the results included in Section 6 of [RFC6145] note that 57% of the tested web servers failed to produce IPv6 atomic fragments in response to ICMPv6 PTB messages reporting an MTU smaller than 1280 bytes. Thus, any protocol relying on IPv6 atomic fragment generation for proper functioning will have interoperability problems with the aforementioned IPv6 stacks.

3. IPv6 atomic fragment generation represents a case in which fragmented traffic is produced where otherwise it would not be needed. Since there is widespread filtering of IPv6 fragments in the public Internet [I-D.ietf-v6ops-ipv6-ehs-in-real-world], this would mean that the (unnecessary) use of IPv6 fragmentation might result, unnecessarily, in a Denial of Service situation even in legitimate cases.

4. The packet-handling API at the node where the translator is running may obscure fragmentation-related information. In such scenarios, the information conveyed by the Fragment Header may be unavailable to the translator. [JOOL] discusses a sample framework (Linux Netfilter) that hinders access to the information conveyed in IPv6 atomic fragments.

We note that SIIT essentially employs the Fragment Header of IPv6 atomic fragments to signal the translator how to set the DF bit of IPv4 datagrams (the DF bit is cleared when the IPv6 packet contains a
Fragment Header, and is otherwise set to 1 when the IPv6 packet does not contain an IPv6 Fragment Header). Additionally, the translator will employ the low-order 16-bits of the IPv6 Fragment Identification for setting the IPv4 Fragment Identification. At least in theory, this is expected to reduce the IPv4 Identification collision rate in the following specific scenario:

1. An IPv6 node communicates with an IPv4 node (through SIIT)
2. The IPv4 node is located behind an IPv4 link with an MTU smaller than 1260 bytes
3. ECMP routing [RFC2992] with more than one translator is employed for e.g., redundancy purposes

In such a scenario, if each translator were to select the IPv4 Identification on its own (rather than selecting the IPv4 Identification from the low-order 16-bits of the Fragment Identification of IPv6 atomic fragments), this could possibly lead to IPv4 Identification collisions. However, since a number of implementations set the IPv6 Fragment Identification according to the output of a Pseudo-Random Number Generator (PRNG) (see Appendix B of [RFC7739]) and the translator only employs the low-order 16-bits of such value, it is very unlikely that relying on the Fragment Identification of the IPv6 atomic fragment will result in a reduced IPv4 Identification collision rate (when compared to the case where the translator selects each IPv4 Identification on its own).

Finally, we note that [RFC6145] is currently the only "consumer" of IPv6 atomic fragments, and it correctly and diligently notes (in Section 6) the possible interoperability problems of relying on IPv6 atomic fragments, proposing as a workaround that leads to more robust behavior and simplified code.

4. IANA Considerations

There are no IANA registries within this document.

5. Security Considerations

This document briefly discusses the security implications of the generation of IPv6 atomic fragments, and describes a specific Denial of Service (DoS) attack vector that leverages the widespread filtering of IPv6 fragments in the public Internet. It concludes that the generation of IPv6 atomic fragments is an undesirable feature, and documents the motivation for removing this functionality from [I-D.ietf-6man-rfc2460bis].
6. Acknowledgements

The authors would like to thank (in alphabetical order) Congxiao Bao, Bob Briscoe, Brian Carpenter, Tatuya Jinmei, Bob Hinden, Alberto Leiva, Xing Li, Jeroen Massar, Erik Nordmark, Qiong Sun, Ole Troan, and Tina Tsou, for providing valuable comments on earlier versions of this document.

Fernando Gont would like to thank Jan Zorz / Go6 Lab <http://go6lab.si/>, and Jared Mauch / NTT America, for providing access to systems and networks that were employed to produce some of tests that resulted in the publication of this document. Additionally, he would like to thank SixXS <https://www.sixxs.net> for providing IPv6 connectivity.

7. References

7.1. Normative References

7.2. Informative References

Internet-Draft IPv6 Atomic Fragments Considered Harmful April 2016

[RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927,
DOI 10.17487/RFC5927, July 2010,

[RFC6052] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
DOI 10.17487/RFC6052, October 2010,

[RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
NAT64: Network Address and Protocol Translation from IPv6
Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,

Version 4", RFC 6274, DOI 10.17487/RFC6274, July 2011,

RFC 6946, DOI 10.17487/RFC6946, May 2013,

Identification Values", RFC 7739, DOI 10.17487/RFC7739,

[I-D.ietf-v6ops-ipv6-ehs-in-real-world]
Gont, F., Linkova, J., Chown, T., and S. LIU,
"Observations on the Dropping of Packets with IPv6
Extension Headers in the Real World", draft-ietf-v6ops-
ipv6-ehs-in-real-world-02 (work in progress), December
2015.

[I-D.ietf-6man-rfc2460bis]
Deering, S. and B. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", draft-ietf-6man-rfc2460bis-04 (work
in progress), March 2016.

[Morbitzer]
Thesis number: 670. Department of Computing Science,
Radboud University Nijmegen. August 2013,
 <http://www.ru.nl/publish/pages/769526/
m_morbitzer_masterthesis.pdf>.

[JOOL] Leiva Popper, A., "nf_defrag_ipv4 and nf_defrag_ipv6",
nf_defrag_ipv4-and-nf_defrag_ipv6#implementation-gotchas>.

Appendix A. Small Survey of OSes that Fail to Produce IPv6 Atomic Fragments

This section includes a non-exhaustive list of operating systems that *fail* to produce IPv6 atomic fragments. It is based on the results published in [RFC6946] and [Morbitzer]. It is simply meant as a datapoint regarding the extent to which IPv6 implementations can be relied upon to generate IPv6 atomic fragments.

The following Operating Systems fail to generate IPv6 atomic fragments in response to ICMPv6 PTB messages that report an MTU smaller than 1280 bytes:

- FreeBSD 8.0
- Linux kernel 2.6.32
- Linux kernel 3.2
- Linux kernel current
- Mac OS X 10.6.7
- NetBSD 5.1

Authors’ Addresses

Fernando Gont
SI6 Networks / UTN-FRH
Evaristo Carriego 2644
Haedo, Provincia de Buenos Aires 1706
Argentina

Phone: +54 11 4650 8472
Email: fgont@si6networks.com
URI: http://www.si6networks.com

Will(Shucheng) Liu
Huawei Technologies
Bantian, Longgang District
Shenzhen 518129
P.R. China

Email: liushucheng@huawei.com