Extensions to Automatic Certificate Management Environment for end user
S/MIME certificates
draft-ietf-acme-email-smime-06

Abstract

This document specifies identifiers and challenges required to enable
the Automated Certificate Management Environment (ACME) to issue
certificates for use by email users that want to use S/MIME.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 4, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
1. Introduction

ACME [RFC8555] is a mechanism for automating certificate management on the Internet. It enables administrative entities to prove effective control over resources like domain names, and automates the process of generating and issuing certificates.

This document describes an extension to ACME for use by S/MIME. Section 3 defines extensions for issuing end user S/MIME [RFC8550] certificates.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Use of ACME for issuing end user S/MIME certificates

ACME [RFC8555] defines "dns" Identifier Type that is used to verify that a particular entity has control over a domain or specific service associated with the domain. In order to be able to issue end-user S/MIME certificates, ACME needs a new Identifier Type that proves ownership of an email address.

This document defines a new Identifier Type "email" which corresponds to an (all ASCII) email address [RFC5321] or Internationalized Email addresses [RFC6531]. (When Internationalized Email addresses are used, both U-labels and A-labels [RFC5890] are allowed in the domain part.) This can be used with S/MIME or other similar service that requires possession of a certificate tied to an email address.
Any identifier of type "email" in a newOrder request MUST NOT have a wildcard ("*") character in its value.

A new challenge type "email-reply-00" is used with "email" Identifier Type, which provides proof that an ACME client has control over an email address:

1. ACME server generates a "challenge" email message with the subject "ACME: <token-part1>", where <token-part1> is the base64url encoded [RFC4648] first part of the token, which contains at least 64 bit of entropy. The challenge email message structure is described in more details in Section 3.1. The second part of the token (token-part2, which also contains at least 64 bit of entropy) is returned over HTTPS [RFC2818] to the ACME client.

2. ACME client concatenates "token-part1" and "token-part2" to create "token", calculates key-authz (as per Section 8.1 of [RFC8555]), then includes the base64url encoded SHA-256 digest [FIPS180-4] of the key authorization in the body of a response email message containing a single text/plain MIME body part [RFC2045]. The response email message structure is described in more details in Section 3.2.

For an identifier of type "email", CSR MUST contain the request email address in an extensionRequest attribute [RFC2985] requesting a subjectAltName extension.

3.1. ACME challenge email

A "challenge" email message MUST have the following structure:

1. The message Subject header field has the following syntax: "ACME: <token-part1>", where the prefix "ACME:" is followed by folding white space (FWS, see [RFC5322]) and then by <token-part1> is the base64url encoded first part of the ACME token that MUST be at least 64 octet long after decoding. Due to recommended 78 octet line length limit in [RFC5322], the subject line can be folded, so whitespaces (if any) within the <token-part1> MUST be ignored. [RFC2231] encoding of subject MUST be supported, but when used, only "UTF-8" and "US-ASCII" charsets MUST be used (i.e. other charsets MUST NOT be used).

2. The message MUST include the "Auto-Submitted: auto-generated" header field [RFC3834]. The "Auto-Submitted" header field SHOULD include "type=acme" parameter. It MAY include other optional parameters as allowed by syntax of Auto-Submitted header field.
3. The message MAY contain Reply-To header field.

4. In order to prove authenticity of a challenge message, it MUST be either DKIM [RFC6376] signed or S/MIME [RFC8551] signed. If DKIM signing is used, the resulting DKIM-Signature header field MUST contain the "h=" tag that includes at least "From", "Sender", "Reply-To", "To", "CC", "Subject", "Date", "In-Reply-To", "References", "Message-ID", "Content-Type" and "Content-Transfer-Encoding" header fields. The message MUST also pass DMARC validation [RFC7489], which implies DKIM and SPF validation [RFC7208].

5. If S/MIME signing is not used to prove authenticity of the challenge message, then the message MUST have a single text/plain MIME body part [RFC2045], that contains human readable explanation of the purpose of the message. If S/MIME signing is used, then the text/plain message is used to construct a multipart/signed or "application/pkcs7-mime; smime-type=signed-data;". Either way, it MUST use S/MIME header protection.

Example ACME "challenge" email (note that DKIM related header fields are not included for simplicity).

```
Auto-Submitted: auto-generated; type=acme
Date: Sat, 1 Sep 2018 10:08:55 +0100
Message-ID: <A2299BB.FF7788@example.org>
From: acme-generator@example.org
To: alexey@example.com
Subject: ACME: <base64url-encoded-token-with-64-octets-of-entropy>
Content-Type: text/plain
MIME-Version: 1.0

This is an automatically generated ACME challenge for email address "alexey@example.com". If you haven’t requested an S/MIME certificate generation for this email address, be very afraid. If you did request it, your email client might be able to process this request automatically, or you might have to paste the first token part into an external program.
```

3.2. ACME response email

A "response" email message MUST have the following structure:

1. The message Subject header field has the following syntax:

 "<Reply-prefix> ACME: <token-part1>", where <Reply-prefix> is
typically the reply prefix "Re: " and the string "ACME:" is followed by folding white space (FWS, see [RFC5322]) and then by \texttt{<token-part1>}. \texttt{<token-part1>} is the base64url encoded first part of the ACME token (as received in the ACME challenge) that MUST be at least 64 octet long after decoding. Due to recommended 78 octet line length limit in [RFC5322], the subject line can be folded, so whitespaces (if any) within the \texttt{<token-part1>} MUST be ignored. [RFC2231] encoding of subject MUST be supported, but when used, only "UTF-8" and "US-ASCII" charsets MUST be used (i.e. other charsets MUST NOT be used).

2. The From: header field contains the email address of the user that is requesting S/MIME certificate issuance.

3. The To: header field of the response contains the value from the Reply-To: header field from the challenge message (if set) or from the From: header field of the challenge message otherwise.

4. The Cc: header field is ignored if present in the "response" email message.

5. The In-Reply-To: header field SHOULD be set to the Message-ID header field of the challenge message according to rules in Section 3.6.4 of [RFC5322].

6. Media type of the "response" email message is either text/plain or multipart/alternative containing text/plain as one of the alternatives. The text/plain body part MUST start with the line "----BEGIN ACME RESPONSE-----", followed by one or more line containing base64url encoded SHA-256 digest [FIPS180-4] of the key authorization, calculated based on token-part1 (received over email) and token-part2 (received over HTTPS). (Note that due to historic line length limitations in email, line endings (CRLFs) can be freely inserted in the middle of the encoded digest, so they MUST be ignored when processing it.). The final line of the encoded digest is followed by the line containing "----END ACME RESPONSE-----". There should not be any text after the terminating line, but if any text is found, it is ignored.

7. There is no need to use any Content-Transfer-Encoding other than 7bit for the text/plain body part, however use of Quoted-Printable or base64 is not prohibited in a "response" email message.

8. In order to prove authenticity of a response message, it MUST be DKIM [RFC6376] signed. The resulting DKIM-Signature header field MUST contain the "h=" tag that includes at least "From", "Sender", "Reply-To", "To", "CC", "Subject", "Date", "In-Reply-
To", "References", "Message-ID", "Content-Type" and "Content-
Transfer-Encoding" header fields.

Example ACME "response" email (note that DKIM related header fields
are not included for simplicity).

Date: Sat, 1 Sep 2018 11:12:00 +0100
Message-ID: <111-22222-3333333@example.com>
From: alexey@example.com
To: acme-generator@example.org
Subject: Re: ACME: <base64url-encoded-token-with-enough-entropy>
Content-Type: text/plain
MIME-Version: 1.0

-----BEGIN ACME RESPONSE-----
LoqXcYV8q5ONbJQxbmR7SCTNo3tiAXDfowy
jxAJEuX0.9jg46WB3rR_AHD-EBXdN7cBkH1W0u0tA3M9
fm21mqTI
-----END ACME RESPONSE-----

Figure 2

4. Open Issues

[[This section should be empty before publication]]

1. Do we need to handle text/html or multipart/alternative in email
challenge? Simplicity suggests "no". Also, for automated
processing it might be better to define a special MIME type that
is included as one of body parts inside multipart/mixed
container.

5. Internationalization Considerations

[RFC8616] updated/clarified use of DKIM/SPF/DMARC with
Internationalized Email addresses [RFC6531]. Please consult RFC 8616
in regards to any changes that need to be implemented.

Use of non ASCII characters in left hand sides of Internationalized
Email addresses requires putting Internationalized Email Addresses in
X.509 Certificates [RFC8398].

6. IANA Considerations

IANA is requested to register a new Identifier Type "email" which
corresponds to an (all ASCII) email address [RFC5321] or
Internationalized Email addresses [RFC6531].
And finally, IANA is requested to register the following ACME challenge types that are used with Identifier Type "email": "email-reply". The reference for it is this document.

7. Security Considerations

Please see Security Considerations of [RFC8555] for general security considerations related to use of ACME.

Security of "email-reply-00" challenge type depends on security of email system. A third party that can read and reply to user’s email messages (by possessing user’s password or a secret derived from it that can give read and reply access ("password equivalent" information), or by being given permissions to act on user’s behalf using email delegation feature) can request S/MIME certificates and is indistinguishable from the email account owner.

Email system in its turn depends on DNS. A third party that can manipulate DNS MX records for a domain might be able to redirect email and can get (at least temporary) read and reply access to it. Similar considerations apply to SPF and DMARC TXT records in DNS. Use of DNSSEC by email system administrators is recommended to avoid easy spoofing of DNS records affecting email system.

8. Normative References

Appendix A. Acknowledgements

Thank you to Andreas Schulze, Gerd v. Egidy and James A Baker for suggestions, comments and corrections on this document.

Author’s Address

Alexey Melnikov
Isode Ltd
14 Castle Mews
Hampton, Middlesex TW12 2NP
UK

EMail: alexey.melnikov@isode.com