Constrained Voucher Artifacts for Bootstrapping Protocols
draft-ietf-anima-constrained-voucher-04

Abstract

This document defines a strategy to securely assign a pledge to an owner, using an artifact signed, directly or indirectly, by the pledge’s manufacturer. This artifact is known as a "voucher".

This document builds upon the work in [RFC8366], encoding the resulting artifact in CBOR. Use with two signature technologies are described.

Additionally, this document explains how constrained vouchers may be transported as an extension to the [I-D.ietf-ace-coap-est] protocol.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 5, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
Table of Contents

1. Introduction .. 3
2. Terminology .. 4
3. Requirements Language 4
4. Survey of Voucher Types 4
5. Discovery and URI 5
6. Artifacts ... 7
 6.1. Voucher Request artifact 7
 6.1.1. Tree Diagram 7
 6.1.2. SID values 8
 6.1.3. YANG Module 9
 6.1.4. Example voucher request artifact 13
 6.2. Voucher artifact 14
 6.2.1. Tree Diagram 14
 6.2.2. SID values 15
 6.2.3. YANG Module 15
 6.2.4. Example voucher artifacts 18
 6.3. Signing voucher and voucher-request artifacts 19
 6.3.1. CMS signing 19
 6.3.2. COSE signing 20
7. Design Considerations 21
8. Security Considerations 21
 8.1. Clock Sensitivity 21
 8.2. Protect Voucher PKI in HSM 21
 8.3. Test Domain Certificate Validity when Signing 21
9. IANA Considerations 21
 9.1. Resource Type Registry 21
 9.2. The IETF XML Registry 21
 9.3. The YANG Module Names Registry 22
 9.4. The RFC SID range assignment sub-registry 22
 9.5. The SMI Security for S/MIME CMS Content Type Registry ... 22
 9.6. Media-Type Registry 23
 9.6.1. application/voucher-cms+cbor 23
 9.6.2. application/voucher-cose+cbor 23
 9.7. CoAP Content-Format Registry 24
10. Acknowledgements 24
11. Changelog .. 25
1. Introduction

Enrollment of new nodes into constrained networks with constrained nodes present unique challenges.

There are bandwidth and code space issues to contend. A solution such as [I-D.ietf-anima-bootstrapping-keyinfra] may be too large in terms of code space or bandwidth required.

This document defines a constrained version of [RFC8366]. Rather than serializing the YANG definition in JSON, it is serialized into CBOR ([RFC7049]).

This document follows a similar, but not identical structure as [RFC8366]. Some sections are left out entirely. Additional sections have been added concerning:

1. Addition of voucher-request specification as defined in [I-D.ietf-anima-bootstrapping-keyinfra],

The CBOR definitions for this constrained voucher format are defined using the mechanism describe in [I-D.ietf-core-yang-cbor] using the SID mechanism explained in [I-D.ietf-core-sid]. As the tooling to convert YANG documents into an list of SID keys is still in its infancy, the table of SID values presented here should be considered normative rather than the output of the pyang tool.

Two methods of signing the resulting CBOR object are described in this document:

1. One is CMS [RFC5652].
2. The other is COSE_Sign1 [RFC8152] objects.

2. Terminology

The following terms are defined in [RFC8366], and are used identically as in that document: artifact, imprint, domain, Join Registrar/Coordinator (JRC), Manufacturer Authorized Signing Authority (MASA), pledge, Trust of First Use (TOFU), and Voucher.

3. Requirements Language

In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119 [RFC2119] and indicate requirement levels for compliant STuPiD implementations.

4. Survey of Voucher Types

[RFC8366] provides for vouchers that assert proximity, that authenticate the registrar and that include different amounts of anti-replay protection.

This document does not make any extensions to the types of vouchers.

Time based vouchers are included in this definition, but given that constrained devices are extremely unlikely to know the correct time, their use is very unlikely. Most users of these constrained vouchers will be online and will use live nonces to provide anti-replay protection.

[RFC8366] defined only the voucher artifact, and not the Voucher Request artifact, which was defined in [I-D.ietf-anima-bootstrapping-keyinfra].
This document defines both a constrained voucher and a constrained voucher-request. They are presented in the order voucher-request, followed by voucher response as this is the time order that they occur.

This document defines both CMS-signed voucher requests and responses, and COSE signed voucher requests and responses. The use of CMS signatures implies the use of PKIX format certificates. The pinned-domain-cert present in such a voucher, is the certificate of the Registrar.

The constrained voucher and constrained voucher request MUST be signed.

The use of the two signing formats permit the use of both PKIX format certificates, and also raw public keys (RPK). When RPKs are used, the voucher produced by the MASA pins the raw public key of the Registrar: the pinned-domain-subject-public-key-info in such a voucher, is the raw public key of the Registrar. This is described in the YANG definition for the constrained voucher.

5. Discovery and URI

This section describes the BRSKI extensions to EST-coaps [I-D.ietf-ace-coap-est] to transport the voucher between registrar, proxy and pledge over CoAP. The extensions are targeted to low-resource networks with small packets. Saving header space is important and the EST-coaps URI is shorter than the EST URI.

The presence and location of (path to) the management data are discovered by sending a GET request to "/.well-known/core" including a resource type (RT) parameter with the value "ace.est" [RFC6690]. Upon success, the return payload will contain the root resource of the EST resources. It is up to the implementation to choose its root resource; throughout this document the example root resource /est is used.

The EST-coaps server URIs differ from the EST URI by replacing the scheme https by coaps and by specifying shorter resource path names:

 coaps://www.example.com/est/short-name

Figure 5 in section 3.2.2 of [RFC7030] enumerates the operations and corresponding paths which are supported by EST. Table 1 provides the mapping from the BRSKI extension URI path to the EST-coaps URI path.
Table 1: BRSKI path to EST-coaps path

<table>
<thead>
<tr>
<th>BRSKI</th>
<th>EST-coaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>/requestvoucher</td>
<td>/rv</td>
</tr>
<tr>
<td>/voucher-status</td>
<td>/vs</td>
</tr>
<tr>
<td>/enrollstatus</td>
<td>/es</td>
</tr>
<tr>
<td>/requestauditlog</td>
<td>/ra</td>
</tr>
</tbody>
</table>

/requestvoucher and /enrollstatus are needed between pledge and Registrar.

When discovering the root path for the EST resources, the server MAY return the full resource paths and the used content types. This is useful when multiple content types are specified for EST-coaps server. For example, the following more complete response is possible.

REQ: GET /.well-known/core?rt=ace.est*

RES: 2.05 Content

```plaintext
</est>; rt="ace.est"
</est/rv>; rt="ace.est/rv"; ct=TBD2 TBD3
</est/vs>; rt="ace.est/vs"; ct=50 60
</est/es>; rt="ace.est/es"; ct=50 60
</est/ra>; rt="ace.est/ra"; ct=TBD2 TBD3
```

The return of the content-types allows the client to choose the most appropriate one from multiple content types.

Port numbers, not returned in the example, are assumed to be the default numbers 5683 and 5684 for coap and coaps respectively (sections 12.6 and 12.7 of [RFC7252]). Discoverable port numbers MAY be returned in the <href> of the payload.

ct=TBD2 stands for Content-Format "application/voucher-cms+cbor, and ct=TBD3 stands for Content-Format "application/voucher-cose+cbor".

Content-Formats TBD2 and TBD3 are defined in this document.

The Content-Format ("application/json") 50 MAY be supported. Content-Formats ("application/cbor") 60, TBD2, and TBD3 MUST be supported.
6. Artifacts

This section describes the abstract (tree) definition as explained in [I-D.ietf-netmod-yang-tree-diagrams] first. This provides a high-level view of the contents of each artifact.

Then the assigned SID values are presented. These have been assigned using the rules in [I-D.ietf-core-sid], with an allocation that was made via the http://comi.space service.

6.1. Voucher Request artifact

6.1.1. Tree Diagram

The following diagram is largely a duplicate of the contents of [RFC8366], with the addition of proximity-registrar-subject-public-key-info, proximity-registrar-cert, and prior-signed-voucher-request.

prior-signed-voucher-request is only used between the Registrar and the MASA. proximity-registrar-subject-public-key-info replaces proximity-registrar-cert for the extremely constrained cases.
module: ietf-constrained-voucher-request

grouping voucher-request-constrained-grouping
 +-- voucher
 +-- created-on?
 | yang:date-and-time
 +-- expires-on?
 | yang:date-and-time
 +-- assertion
 | enumeration
 +-- serial-number
 | string
 +-- idevid-issuer?
 | binary
 +-- pinned-domain-cert?
 | binary
 +-- domain-cert-revocation-checks?
 | boolean
 +-- nonce?
 | binary
 +-- last-renewal-date?
 | yang:date-and-time
 +-- proximity-registrar-subject-public-key-info?
 | binary
 +-- proximity-registrar-sha256-of-subject-public-key-info?
 | binary
 +-- proximity-registrar-cert?
 | binary
 +-- prior-signed-voucher-request?
 | binary

6.1.2. SID values
Base SID value for voucher request: 1001150.

SID Assigned to

--------- --
1001167 module ietf-constrained-voucher-request
1001168 module ietf-restconf
1001169 module ietf-voucher
1001170 module ietf-yang-types
1001171 data /ietf-constrained-voucher-request:voucher
1001154 data .../ietf-constrained-voucher-request:voucher
1001155 data .../assertion
1001156 data .../created-on
1001157 data .../domain-cert-revocation-checks
1001158 data .../expires-on
1001159 data .../idevid-issuer
1001160 data .../last-renewal-date
1001161 data .../nonce
1001162 data .../pinned-domain-cert
1001165 data .../prior-signed-voucher-request
1001166 data .../proximity-registrar-cert
1001163 data .../proximity-registrar-subject-public-key-info
1001164 data .../serial-number
1001172 data .../assertion
1001173 data .../created-on
1001174 data .../domain-cert-revocation-checks
1001175 data .../expires-on
1001176 data .../idevid-issuer
1001177 data .../last-renewal-date
1001178 data /ietf-constrained-voucher-request:voucher/nonce
1001179 data .../pinned-domain-cert
1001180 data .../prior-signed-voucher-request
1001181 data .../proximity-registrar-cert
1001182 data .../proximity-registrar-subject-public-key-info
1001183 data .../serial-number
1001150 data ietf-constrained-voucher-request
1001151 data ietf-restconf
1001152 data ietf-voucher
1001153 data ietf-yang-types

6.1.3. YANG Module

In the constrained-voucher-request YANG module, the voucher is "augmented" within the "used" grouping statement such that one continuous set of SID values is generated for the constrained-
voucher-request module name, all voucher attributes, and the
constrained-voucher-request attribute. Two attributes of the voucher
are "refined" to be optional.

<CODE BEGINS> file "ietf-constrained-voucher-request@2018-09-01.yang"
module ietf-constrained-voucher-request {
 yang-version 1.1;

 namespace
 prefix "constrained";

 import ietf-restconf {
 prefix rc;
 description
 "This import statement is only present to access
 the yang-data extension defined in
 RFC 8040.";
 reference "RFC 8040: RESTCONF Protocol";
 }

 import ietf-voucher {
 prefix "v";
 }

 organization
 "IETF ANIMA Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/anima/>
 WG List: <mailto:anima@ietf.org>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>
 Author: Peter van der Stok
 <mailto: consultancy@vanderstok.org>
 Author: Panos Kampanakis
 <mailto: pkampana@cisco.com>";
 description
 "This module defines the format for a voucher request,
 which is produced by a pledge to request a voucher.
 The voucher-request is sent to the potential owner’s
 Registrar, which in turn sends the voucher request to
 the manufacturer or delegate (MASA).

 A voucher is then returned to the pledge, binding the
 pledge to the owner. This is a constrained version of the
 voucher-request present in
draft-ietf-anima-bootstrap-keyinfra.txt."
This version provides a very restricted subset appropriate for very constrained devices. In particular, it assumes that nonce-ful operation is always required, that expiration dates are rather weak, as no clocks can be assumed, and that the Registrar is identified by a pinned Raw Public Key.


```
revision "2018-09-01" {
    description "Initial version";
    reference "RFC XXXX: Voucher Profile for Constrained Devices";
}

rc:yang-data voucher-request-constrained-artifact {
    // YANG data template for a voucher.
    uses voucher-request-constrained-grouping;
}

// Grouping defined for future usage
grouping voucher-request-constrained-grouping {
    description "Grouping to allow reuse/extensions in future work.";

    uses v:voucher-artifact-grouping {

        refine voucher/created-on {
            mandatory  false;
        }

        refine voucher/pinned-domain-cert {
            mandatory  false;
        }

        augment "voucher" {
            description "Base the constrained voucher-request upon the regular one";

            leaf proximity-registrar-subject-public-key-info {
                type binary;
                description "The proximity-registrar-subject-public-key-info replaces
```

the proximit-registrar-cert in constrained uses of
the voucher-request.
The proximity-registrar-subject-public-key-info is the
Raw Public Key of the Registrar. This field is encoded
as specified in RFC7250, section 3.
The ECDSA algorithm MUST be supported.
The EdDSA algorithm as specified in
draft-ietf-tls-rfc4492bis-17 SHOULD be supported.
Support for the DSA algorithm is not recommended.
Support for the RSA algorithm is MAY, but due to
size is discouraged.";
}

leaf proximity-registrar-sha256-of-subject-public-key-info {
 type binary;
 description
 "The proximity-registrar-sha256-of-subject-public-key-info
 is an alternative to
 proximity-registrar-subject-public-key-info.
 and pinned-domain-cert. In many cases the
 public key of the domain has already been transmitted
during the key agreement protocol, and it is wasteful
to transmit the public key another two times.
The use of a hash of public key info, at 32-bytes for
sha256 is a significant savings compared to an RSA
public key, but is only a minor savings compared to
a 256-bit ECDSA public-key.
Algorithm agility is provided by extensions to this
specifications which define new leaf for other hash
types.";
}

leaf proximity-registrar-cert {
 type binary;
 description
 "An X.509 v3 certificate structure as specified by
 RFC 5280,
 Section 4 encoded using the ASN.1 distinguished encoding
 rules (DER), as specified in ITU-T X.690.

 The first certificate in the Registrar TLS server
 certificate_list sequence (see [RFC5246]) presented by
 the Registrar to the Pledge. This MUST be populated in a
 Pledge’s voucher request if the proximity assertion is
 populated.";
}

leaf prior-signed-voucher-request {

type binary;
description
"If it is necessary to change a voucher, or re-sign and forward a voucher that was previously provided along a protocol path, then the previously signed voucher SHOULD be included in this field.

For example, a pledge might sign a proximity voucher, which an intermediate registrar then re-signs to make its own proximity assertion. This is a simple mechanism for a chain of trusted parties to change a voucher, while maintaining the prior signature information.

The pledge MUST ignore all prior voucher information when accepting a voucher for imprinting. Other parties MAY examine the prior signed voucher information for the purposes of policy decisions. For example this information could be useful to a MASA to determine that both pledge and registrar agree on proximity assertions. The MASA SHOULD remove all prior-signed-voucher-request information when signing a voucher for imprinting so as to minimize the final voucher size."

6.1.4. Example voucher request artifact

Below a CBOR serialization of the constrained-voucher-request is shown in diagnostic CBOR notation. The enum value of the assertion field is calculated to be zero by following the algorithm described in section 9.6.4.2 of [RFC7950].
The voucher’s primary purpose is to securely assign a pledge to an owner. The voucher informs the pledge which entity it should consider to be its owner.

This document defines a voucher that is a CBOR encoded instance of the YANG module defined in Section 5.3 that has been signed with CMS or with COSE.

6.2.1. Tree Diagram

The following diagram is largely a duplicate of the contents of [RFC8366], with only the addition of pinned-domain-subject-public-key-info.
module: ietf-constrained-voucher

grouping voucher-constrained-grouping
 +-- voucher
 | +-- created-on?
 | | .yang:date-and-time
 | +-- expires-on?
 | | .yang:date-and-time
 +-- assertion enumeration
 +-- serial-number string
 +-- idevid-issuer? binary
 +-- pinned-domain-cert? binary
 +-- domain-cert-revocation-checks? boolean
 +-- nonce? binary
 +-- last-renewal-date?
 | | .yang:date-and-time
 +-- pinned-domain-subject-public-key-info? binary
 +-- pinned-sha256-of-subject-public-key-info? binary

6.2.2. SID values

Base SID value for voucher request: 1001101.

 SID Assigned to
 --
1001115 module ietf-constrained-voucher
1001116 module ietf-restconf
1001117 module ietf-voucher
1001118 module ietf-yang-types
1001119 data /ietf-constrained-voucher:voucher
1001120 data .../ietf-constrained-voucher:voucher
1001121 data .../assertion
1001122 data .../created-on
1001123 data .../domain-cert-revocation-checks
1001124 data .../expires-on
1001125 data .../idevid-issuer
1001126 data .../last-renewal-date
1001127 data .../nonce
1001128 data .../pinned-domain-cert
1001129 data .../pinned-domain-subject-public-key-info
1001130 data .../serial-number

6.2.3. YANG Module

In the constraine-voucher YANG module, the voucher is "augmented" within the "used" grouping statement such that one continuous set of SID values is generated for the constrained-voucher module name, all
voucher attributes, and the constrained-voucher attribute. Two attributes of the voucher are "refined" to be optional.

<CODE BEGINS> file "ietf-constrained-voucher@2018-09-01.yang"
module ietf-constrained-voucher {
 yang-version 1.1;

 namespace
 "urn:ietf:params:xml:ns:yang:ietf-constrained-voucher";
 prefix "constrained";

 import ietf-restconf {
 prefix rc;
 description
 "This import statement is only present to access
 the yang-data extension defined in
 RFC 8040.";
 reference "RFC 8040: RESTCONF Protocol";
 }

 import ietf-voucher {
 prefix "v";
 }

 organization
 "IETF ANIMA Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/anima/>
 WG List: <mailto:anima@ietf.org>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>
 Author: Peter van der Stok
 <mailto:consultancy@vanderstok.org>
 Author: Panos Kampanakis
 <mailto:pkampana@cisco.com>";

 description
 "This module defines the format for a voucher, which is produced
 by a pledge’s manufacturer or delegate (MASA) to securely assign
 one or more pledges to an ‘owner’, so that the pledges may
 establish a secure connection to the owner’s network
 infrastructure.

 This version provides a very restricted subset appropriate
 for very constrained devices.
 In particular, it assumes that nonce-ful operation is
 always required, that expiration dates are rather weak, as no
 clocks can be assumed, and that the Registrar is identified
 by a pinned Raw Public Key."
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in the module text are to be interpreted as described in RFC 2119.

revision "2018-09-01" {
 description
 "Initial version";
 reference
 "RFC XXXX: Voucher Profile for Constrained Devices";
}

rc:yang-data voucher-constrained-artifact {
 // YANG data template for a voucher.
 uses voucher-constrained-grouping;
}

// Grouping defined for future usage
grouping voucher-constrained-grouping {
 description
 "Grouping to allow reuse/extensions in future work.";

 uses v:voucher-artifact-grouping {

 refine voucher/created-on {
 mandatory false;
 }

 refine voucher/pinned-domain-cert {
 mandatory false;
 }

 augment "voucher" {
 description "Base the constrained voucher upon the regular one";

 leaf pinned-domain-subject-public-key-info {
 type binary;
 description
 "The pinned-domain-subject-public-key-info replaces the pinned-domain-cert in constrained uses of the voucher. The pinned-domain-subject-public-key-info is the Raw Public Key of the Registrar. This field is encoded as specified in RFC7250, section 3. The ECDSA algorithm MUST be supported. The EdDSA algorithm as specified in draft-ietf-tls-rfc4492bis-17 SHOULD be supported. Support for the DSA algorithm is not recommended."
 }
 }
}
Support for the RSA algorithm is a MAY.

leaf pinned-sha256-of-subject-public-key-info {
 type binary;
 description
 "The pinned-hash-subject-public-key-info is a second alternative to pinned-domain-cert. In many cases the public key of the domain has already been transmitted during the key agreement process, and it is wasteful to transmit the public key another two times. The use of a hash of public key info, at 32-bytes for sha256 is a significant savings compared to an RSA public key, but is only a minor savings compared to a 256-bit ECDSA public-key. Algorithm agility is provided by extensions to this specifications which define new leaf for other hash types";

 }

}

}<CODE ENDS>

6.2.4. Example voucher artifacts

Below a the CBOR serialization of the the constrained-voucher is shown in diagnostic CBOR notation. The enum value of the assertion field is calculated to be zero by following the algorithm described in section 9.6.4.2 of [RFC7950].
The signing of the example is shown in Appendix B.1.

6.3. Signing voucher and voucher-request artifacts

6.3.1. CMS signing

The IETF evolution of PKCS#7 is CMS [RFC5652]. The CMS signed voucher is much like the equivalent voucher defined in [RFC8366].

A different eContent-type of TBD1 is used to indicate that the contents are in a different format than in [RFC8366].

The ContentInfo structure contains a payload consisting of the CBOR encoded voucher. The [I-D.ietf-core-yang-cbor] use of delta encoding creates a canonical ordering for the keys on the wire. This canonical ordering is not important as there is no expectation that the content will be reproduced during the validation process.

Normally the recipient is the pledge and the signer is the MASA.

[I-D.ietf-anima-bootstrapping-keyinfra] supports both signed and unsigned voucher requests from the pledge to the JRC. In this specification, voucher-request artifact MUST be signed from the pledge to the registrar. From the JRC to the MASA, the voucher-request artifact MUST be signed by the domain owner key which is requesting ownership.

The considerations of [RFC5652] section 5.1, concerning validating CMS objects which are really PKCS7 objects (cmsVersion=1) applies.
The CMS structure SHOULD also contain all the certificates leading up to and including the signer's trust anchor certificate known to the recipient. The inclusion of the trust anchor is unusual in many applications, but without it third parties cannot accurately audit the transaction.

The CMS structure MAY also contain revocation objects for any intermediate certificate authorities (CAs) between the voucher-issuer and the trust anchor known to the recipient. However, the use of CRLs and other validity mechanisms is discouraged, as the pledge is unlikely to be able to perform online checks, and is unlikely to have a trusted clock source. As described below, the use of short-lived vouchers and/or pledge provided nonce provides a freshness guarantee.

[EDnote: compulsory signing algorithms are]

In Appendix B.1 an example for the CMS signing of the voucher-request is shown.

6.3.2. COSE signing

The COSE-Sign1 structure is discussed in section 4.2 of [RFC8152]. The CBOR object that carries the body, the signature, and the information about the body and signature is called the COSE_Sign1 structure. It is used when only one signature is used on the body. Support for EDdsa 256 with Ed25519 is compulsory.

The supported COSE-sign1 object structure is shown in Figure 1.

```plaintext
COSE_Sign1(
  [h'a1026', #{ "alg": EDdsa 256 } |
   "crv": Ed25519,
   "kty": OKP,
   "key_ops": "verify"
  ],
  h'123', #voucher-request binary content
  h'456', #voucher-request binary public signature
)
```

Figure 1: The cose-sign1 structure.

The [COSE-registry] specifies the integers that replace the strings and the mnemonics in Figure 1. In Appendix C a binary cose-sign1 object is shown based on the voucher-request example of Section 6.1.4.
7. Design Considerations

The design considerations for the CBOR encoding of vouchers is much the same as for [RFC8366].

One key difference is that the names of the leaves in the YANG does not have a material effect on the size of the resulting CBOR, as the SID translation process assigns integers to the names.

8. Security Considerations

8.1. Clock Sensitivity

TBD.

8.2. Protect Voucher PKI in HSM

TBD.

8.3. Test Domain Certificate Validity when Signing

TBD.

9. IANA Considerations

9.1. Resource Type Registry

Additions to the sub-registry "CoAP Resource Type", within the "CoRE parameters" registry are specified below. These can be registered either in the Expert Review range (0-255) or IETF Review range (256-9999).

ace.rt.rv needs registration with IANA
ace.rt.vs needs registration with IANA
ace.rt.es needs registration with IANA
ace.rt.ra needs registration with IANA

9.2. The IETF XML Registry

This document registers two URIs in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested:
9.3. The YANG Module Names Registry

This document registers two YANG modules in the YANG Module Names registry [RFC6020]. Following the format defined in [RFC6020], the following registration is requested:

- **Name:** ietf-constrained-voucher
 - **Namespace:** urn:ietf:params:xml:ns:yang:ietf-constrained-voucher
 - **Prefix:** vch
 - **Reference:** RFC XXXX

- **Name:** ietf-constrained-voucher-request
 - **Namespace:** urn:ietf:params:xml:ns:yang:ietf-constrained-voucher-request
 - **Prefix:** vch
 - **Reference:** RFC XXXX

9.4. The RFC SID range assignment sub-registry

<table>
<thead>
<tr>
<th>Entry-point</th>
<th>Size</th>
<th>Module Name</th>
<th>RFC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001100</td>
<td>50</td>
<td>ietf-constrained-voucher</td>
<td>[ThisRFC]</td>
</tr>
<tr>
<td>1001150</td>
<td>50</td>
<td>ietf-constrained-voucher-request</td>
<td>[ThisRFC]</td>
</tr>
</tbody>
</table>

Warning: These SID values will change when they transfer to the range 1000 - 59,999 allocated for SIDs in YANG modules defined in RFCs.

9.5. The SMI Security for S/MIME CMS Content Type Registry

This document registers an OID in the "SMI Security for S/MIME CMS Content Type" registry (1.2.840.113549.1.9.16.1), with the value:

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD1</td>
<td>id-ct-animaCBORVoucher</td>
<td>[ThisRFC]</td>
</tr>
</tbody>
</table>

EDNOTE: should a separate value be used for Voucher Requests?
9.6. Media-Type Registry

This section registers the `application/vnd.voucher-cms+cbor` media type and the `application/vnd.voucher-cose+cbor` in the "Media Types" registry. These media types are used to indicate that the content is a CBOR voucher either signed with a cms structure or a COSE_Sign1 structure [RFC8152].

9.6.1. `application/vnd.voucher-cms+cbor`

Type name: `application`
Subtype name: `voucher-cms+cbor`
Required parameters: none
Optional parameters: none
Encoding considerations: CMS-signed CBOR vouchers are CBOR encoded.
Security considerations: See Security Considerations, Section
Interoperability considerations: The format is designed to be broadly interoperable.
Published specification: THIS RFC.
Applications that use this media type: ANIMA, 6tisch, and other zero-touch imprinting systems
Additional information:
 Magic number(s): None
 File extension(s): .vch
 Macintosh file type code(s): none
Person & email address to contact for further information: IETF ANIMA WG
Intended usage: LIMITED
Restrictions on usage: NONE
Author: ANIMA WG
Change controller: IETF
Provisional registration? (standards tree only): NO

9.6.2. `application/vnd.voucher-cose+cbor`
Type name: application
Subtype name: voucher-cose+cbor
Required parameters: none
Optional parameters: cose-type
Encoding considerations: COSE_Sign1 CBOR vouchers are COSE objects signed with one signer.
Security considerations: See Security Considerations, Section Interoperability considerations: The format is designed to be broadly interoperable.
Published specification: THIS RFC.
Applications that use this media type: ANIMA, 6tisch, and other zero-touch imprinting systems
Additional information:
 Magic number(s): None
 File extension(s): .vch
 Macintosh file type code(s): none
Person & email address to contact for further information: IETF ANIMA WG
Intended usage: LIMITED
Restrictions on usage: NONE
Author: ANIMA WG
Change controller: IETF
Provisional registration? (standards tree only): NO

9.7. CoAP Content-Format Registry

Additions to the sub-registry "CoAP Content-Formats", within the "CoRE Parameters" registry are needed for two media types. These can be registered either in the Expert Review range (0-255) or IETF Review range (256-9999).

<table>
<thead>
<tr>
<th>Media type</th>
<th>mime type</th>
<th>Encoding</th>
<th>ID</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>application/voucher-cms+cbor</td>
<td></td>
<td>CBOR</td>
<td>TBD2</td>
<td>[This RFC]</td>
</tr>
<tr>
<td>application/voucher-cose+cbor</td>
<td>"COSE-Sign1"</td>
<td>CBOR</td>
<td>TBD3</td>
<td>[This RFC]</td>
</tr>
</tbody>
</table>

10. Acknowledgements

We are very grateful to Jim Schaad for explaining COSE and CMS choices.

Michel Veillette did extensive work on pyang to extend it to support the SID allocation process, and this document was among the first users.

We are grateful for the suggestions done by Esko Dijk.
11. Changelog

-04 voucher and request-voucher MUST be signed examples for signed request are added in appendix IANA SID registration is updated SID values in examples are aligned signed cms examples aligned with new SIDs

-03

Examples are inverted.

-02

Example of requestvoucher with unsigned application/cbor is added attributes of voucher "refined" to optional CBOR serialization of vouchers improved Discovery port numbers are specified

-01

application/json is optional, application/cbor is compulsory Cms and cose mediatypes are introduced

12. References

12.1. Normative References

[I-D.ietf-ace-cbor-web-token]

[I-D.ietf-ace-coap-est]

[I-D.ietf-anima-bootstrapping-keyinfra]

[I-D.ietf-core-object-security]
[I-D.ietf-core-sid]

[I-D.ietf-core-yang-cbor]

[ieee802-1AR]

12.2. Informative References

[COSE-registry]
IANA, ", "CBOR Object Signing and Encryption (COSE) registry", 2017,
<https://www.iana.org/assignments/cose/cose.xhtml>.

[ducking]

[I-D.ietf-netmod-yang-tree-diagrams]
Bjorklund, M. and L. Berger, "YANG Tree Diagrams", draft-ietf-netmod-yang-tree-diagrams-06 (work in progress),
February 2018.

[pledge]
Dictionary.com, ", "Dictionary.com Unabridged", 2015,

[RFC6690]
Shelby, Z., "Constrained RESTful Environments (CoRE) Link Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

[RFC7030]
DOI 10.17487/RFC7030, October 2013,

Appendix A. EST messages to EST-coaps

This section extends the examples from Appendix A of
[I-D.ietf-ace-coap-est]. The CoAP headers are only worked out for
the enrollstatus example.
A.1. enrollstatus

A coaps enrollstatus message can be:

```
GET coaps://[192.0.2.1:8085]/est/es
```

The corresponding coap header fields are shown below.

```
Ver = 1
T = 0 (CON)
Code = 0x01 (0.01 is GET)
Options
  Option (Uri-Path)
    Option Delta = 0xb   (option nr = 11)
    Option Length = 0x3
    Option Value = "est"
  Option (Uri-Path)
    Option Delta = 0x0   (option nr = 11)
    Option Length = 0x2
    Option Value = "es"
Payload = [Empty]
```

The Uri-Host and Uri-Port Options are omitted because they coincide with the transport protocol destination address and port respectively.

A 2.05 Content response with an unsigned voucher status (ct=60) will then be:

```
2.05 Content (Content-Format: application/cbor)
```

With CoAP fields and payload:
Ver=1
T=2 (ACK)
Code = 0x45 (2.05 Content)
Options
 Option1 (Content-Format)
 Option Delta = 0xC (option nr 12)
 Option Length = 0x2
 Option Value = 60 (application/cbor)

Payload (CBOR diagnostic) =
{
 "version":"1",
 "Status": 1, / 1 = Success, 0 = Fail /
 "Reason":"Informative human readable message",
 "reason-context": "Additional information"
}

Payload (binary) =
A46776657273696F6E61316665374617475730166526561736F6E7822
496E666F7266174697652068756D616E207265616461626C65206D
65736167656e726561736F6E74657874
7641646974696F6E616C20696E666F72656174696F6E

##voucher_status

A coaps voucher_status message can be:

GET coaps://[2001:db8::2:1]:61616]/est/vs ~~~~

A 2.05 Content response with a non signed CBOR voucher (ct=60) will then be:

2.05 Content (Content-Format: application/cbor)
Payload =
A46776657273696F6E61316665374617475730166526561736F6E7822
496E666F7266174697652068756D616E207265616461626C65206D
65736167656e726561736F6E74657874
7641646974696F6E616C20696E666F72656174696F6E

A.2. requestvoucher

Signed request-voucher-request payloads are sent from pledge to Registrar, as explained in Section 5.2 of [I-D.ietf-anima-bootstrapping-keyinfra].
A.2.1. signed requestvoucher

A CMS signed requestvoucher message from JRC to MASA is shown below. It would be CoAP POSTED to /est/rv.

```
POST coaps://[2001:db8::2:1]:61616]/est/rv
(Content-Format: application/voucher-cms+cbor)
```

The payload would be in binary, but is presented in base64 in this document.

```
MIIDugYJKoZIhvcNAQcCoIIDqzCCA6cCAQExDTALBgklhkgBZQMEAgEwYJ
KoZIhvcNAQcBoIICQTCCaj0wggHioAMCAQICCH52Yde1TkYyMAoGCCqGSM49
BAMCMF0xCzAABgNVBAATATMTaFQ0eQ0SwCQYDVQQDRAJDBQMEDw0NgCg7
bXBsZSBjbmMrjJXRYrb24xExZARBgNVBAHMMcggwCzAABgNVBAATATMTaF
Mi4xQVlQ0Q0EwIIBcMTMwGAYIKoZIhvcNAQcBoIICQTCCAj0wggHioMA
CMAgEwCwYJKoZIhvcNAQcBoIICQTCCAj0wggHioAMCAQICCH52Yde1Tk
/aIwAdBGvNVQH4EfgQUmAHx/a/f9DnUtCsdgd3
rWzDaAgAwYDVR0jBBgwFoAIAlMA1F1f3Rv8ggQx0Nnwi8LSbbEwADgYvDRO
APA1Q/BAQAAGwEwMCICALEdQQjMCGgHwYIkYBBQUHCASgEzARBgkrBgEEaQ7
CgEEBAAECwqygYJKoZIzj0EwIDQAwRgIhAMDYGbzSUhlpFzxi6qXu1nG9
ptshQjNzRfGzOSYtGm2GqIAP3SYn0WyGlzyXYMqTqVNTqVCKI3n3DxU9GgHIoK
3m00kxyYgIIEIIBoIBATjahPfG0x0CaAlBGyNVBAATATMTaFQ0eQ0SwCQYDVQQDRAJ
QTEUMBGI1UEGwYIkLYkhbhBx2ZSBjbmMrjJXRYrb24xExZARBgNVBAHMMcggwCzAABg
b24xExZARBgvNVQH4EfgQUmAHx/a/f9DnUtCsdgd3
/AABpMBGCQsGIsb3DQJEzAELBgqkghkiG9W0BBwEwHAYJkoZIhvcNAQkFMQX
DE5MDQwoDEwNDBGzNl0wLwYJkoZIhvcNAQkEMSIEIEdCQ0ls2Zy/7w3LqvZS
XZEdz3LbznOB+6FJN91EAMaGCCqGSM49BAMCBEcwwRQ1gASjDesIpr0tW/
n6dRHqvqszL1HbtFnErUbWfS0K4CIQDUEQc5tMcRgfOadEQVqzmgIg
MEQ10vqVx02glljLw==
```

A 2.04 Changed response returning CBOR voucher signed with a cms structure(ct=TBD2) will then be:

```
2.04 Changed (Content-Format: application/voucher-cms+cbor)
```
A.3. requestauditing

A CoAPS requestauditing message contains the signed CBOR voucher:

```
MIIDuYWJKoZIhvcNAQcCoIIDrDCCA6gCAQExDTALBglghkgBQMEAgEwCwYJ
KoZIhvcNAQcBoIICQTCj0wghHioAMCAQICCC5Yde1TkYyMAoGCCqGSM49
BAMCMF0xCzA8Bnv8YATAlVTMqsCQYDVQQIDAJDTQEUoMBIGA1UECgwULRXhh
bXBSZSBfbmlrbWFsajAUBgNVBAoMDDNlcnRmcm9tYXRpb24xNzARBgNVBAMMCjgw
M44xQVIGQ0EwIiBNMTMxMEYyOTExMDwhOTk5OTExMzEwMzU5MTA2MjwX
CzA8Bnv8YATAlVTMqsCQYDVQQIDAJDTQEUoMBIGA1UECgwULRXhhbXBsZSBJbmMx
bXBSZSBfbmlrbWFsajAUBgNVBAoMDDNlcnRmcm9tYXRpb24xNzARBgNVBAMMCjgw
M44xQVIGQ0EwIiBNMTMxMEYyOTExMDwhOTk5OTExMzEwMzU5MTA2MjwX
```

Richardson, et al. Expires January 5, 2020 [Page 31]
POST coaps://[2001:db8::2:1]:61616]/est/ra

(Content-Format: application/voucher-cms+cbor)

Payload =

A 2.05 Content response returning a log of the voucher (ct=60) will then be:
2.05 Content (Content-Format: application/cbor)
Payload =
{
 "version": "1",
 "events": [
 {
 "date": "<date/time of the entry>",
 "domainID": "<domainID extracted from voucher-request>",
 "nonce": "<any nonce if supplied (or the exact string ‘NULL’)>",
 "assertion": "<the value from the voucher assertion leaf>",
 "truncated": "<the number of domainID entries truncated>",
 },
 {
 "date": "<date/time of the entry>",
 "domainID": "<anotherDomainID extracted from voucher-request>",
 "nonce": "<any nonce if supplied (or the exact string ‘NULL’)>",
 "assertion": "<the value from the voucher assertion leaf>",
 }
],
 "truncation": {
 "nonced duplicates": "<total number of entries truncated>",
 "nonceless duplicates": "<total number of entries truncated>",
 "arbitrary": "<number of domainID entries removed entirely>",
 }
}

[EDNOTE: Change JSON to CBOR; Serialize CBOR payload to binary]

Appendix B. Signed voucher-request examples

B.1. CMS signed voucher-request example

The voucher-request example, visualized in CBOR diagnostic notation in
Section 6.1.4 is shown as a hexadecimal dump of the binary file.

A11A000F46C2A90274323031362D31302D30375431393A33313A34325A0
474323031362D31302D32315431393A33313A34325A01020d6d4A414441
31323334353637383905401020D0F0A4401020D0F03F5067432303172
D31302D30375431393A33313A34325A0c4401020D0F

The voucher-request example has been signed by using the WT1234
certificate and key pair shown in Appendix C of
[I-D.ietf-ace-coap-est]. The CMS signing of the binary voucher-
request leads to a binary signed voucher-request, shown with a
hexadecimal representation shown in the payload of the request part
of Appendix A.2.1 and Appendix A.3.
The breakdown of the CMS signed binary voucher-request file is visualized below:

CMS_ContentInfo:
 contentType: pkcs7-signedData (1.2.840.113549.1.7.2)
 d.signedData:
 version: 1
digestAlgorithms:
 algorithm: sha256 (2.16.840.1.101.3.4.2.1)
encapContentInfo:
 eContentType: pkcs7-data (1.2.840.113549.1.7.1)
 eContent: <ABSENT>
certificates:
 d.certificate:
 cert_info:
 version: 2
 serialNumber: 9112578475118446130
 signature:
 algorithm: ecdsa-with-SHA256 (1.2.840.10045.4.3.2)
 parameter: <ABSENT>
 issuer: C=US, ST=CA, O=Example Inc, OU=certification,
 CN=802.1AR CA
 validity:
 notBefore: Jan 31 11:29:16 2019 GMT
 notAfter: Dec 31 23:59:59 9999 GMT
 subject: C=US, ST=CA, L=LA, O=example Inc,
 OU=IoT/serialNumber=Wt1234
 key:
 algorithm: id-ecPublicKey (1.2.840.10045.2.1)
 parameter: OBJECT:prime256v1 (1.2.840.10045.3.1.7)
 public_key: (0 unused bits)
 issuerUID: <ABSENT>
 subjectUID: <ABSENT>
extensions:
 object: X509v3 Basic Constraints (2.5.29.19)
 critical: BOOL ABSENT
 value:
 0000 - 30
 0002 - <SPACES/NULS>
 object: X509v3 Subject Key Identifier (2.5.29.14)
critical: BOOL ABSENT
value:
0000 - 04 14 96 60 0d 87 16 bf-7f d0 e7 52 d0
000d - ac 76 07 77 ad 66 5d 02-a0

object: X509v3 Authority Key Identifier (2.5.29.35)
critical: BOOL ABSENT
value:
0000 - 30 16 80 14 68 d1 65 51-f9 51 bf c8 2a
000d - 43 1d 0d 9f 08 bc 2d 20-5b 11 60

object: X509v3 Key Usage (2.5.29.15)
critical: TRUE
value:
0000 - 03 02 05 a0

object: X509v3 Subject Alternative Name (2.5.29.17)
critical: BOOL ABSENT
value:
0000 - 30 21 a0 1f 06 08 2b 06-01 05 05 07 08
000d - 04 a0 13 30 11 06 09 2b-06 01 04 01 b4
001a - 3b 0a 01 04 04 01 02 03-04

sig_alg:
 algorithm: ecdsa-with-SHA256 (1.2.840.10045.4.3.2)
 parameter: <ABSENT>
signature: (0 unused bits)
0000 - 30 46 02 21 00 c0 d8 19-96 d2 50 7d 69 3f 3c
000f - 48 ea a5 ee 94 91 bd a6-db 21 40 99 d9 81 17
001e - c6 3b 36 13 74 cd 86 02-21 00 a7 74 98 9f 4c
002d - 32 1a 5c f2 5d 83 2a 4d-33 6a 08 ad 67 df 20
003c - f1 50 64 21 18 8a 0a de-6d 34 92 36
crls:
<EMPTY>
signerInfos:
 version: 1
d.issuerAndSerialNumber:
 issuer: C=US, ST=CA, O=Example Inc, OU=certification,
 CN=802.1AR CA
 serialNumber: 9112578475118446130
digestAlgorithm:
 algorithm: sha256 (2.16.840.1.101.3.4.2.1)
 parameter: <ABSENT>
signedAttrs:
 object: contentType (1.2.840.113549.1.9.3)
 value.set:
 OBJECT:pkcs7-data (1.2.840.113549.1.7.1)
 object: signingTime (1.2.840.113549.1.9.5)
value.set:
 UTCTIME: Jul 3 08:53:30 2019 GMT

object: messageDigest (1.2.840.113549.1.9.4)
value.set:
 OCTET STRING:
 0000 - d4 b0 5c dd c8 b4 91 28-4a 18 ca 25 9d
 000d - be d0 60 23 cf ad a0 aa-c2 95 ac e9 3f
 001a - 0b 4f 44 9e 25
 0020 - <SPACES/NULS>

signatureAlgorithm:
 algorithm: ecdsa-with-SHA256 (1.2.840.10045.4.3.2)
 parameter: <ABSENT>

signature:
 0000 - 30 46 02 21 00 e5 e1 7f-23 c3 aa 14 9f 35 64
 000f - 1e c4 4a 0f 68 fe b0 16-3b e6 7c 06 51 af bf
 001e - 5a a0 99 59 e0 28 1f 02-21 00 b4 07 2f 7c c4
 002d - f9 26 0c 6d 47 a7 93 56-de b8 da f7 23 f0 af
 003c - 2b 59 16 cc 36 63 e7 91-89 39 df df

unsignedAttrs:
 <EMPTY>

Appendix C. COSE examples

C.1. Device, Registrar and MASA keys

This first section documents the public and private keys used in the subsequent test vectors below. These keys come from test code and are not used in any production system, and should only be used only to validate implementations.

C.1.1. Device IDevID certificate
Certificate:

Data:

Version: 3 (0x2)
Serial Number: 787697345 (0x2ef34ec1)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C = Canada, ST = Ontario, OU = Sandelman, CN = highway-test.example.com CA

Validity
Not Before: Feb 14 17:05:09 2019 GMT
Not After : Dec 31 00:00:00 2999 GMT
Subject: serialNumber = 00-D0-E5-F2-00-03
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
b:f4:
4d:7e:b0:00:ed:c0:de:bd:4d:25:55:4e:35:f
9:d5:
3:3f:
7:46:
86:a4:0c:8b:b7
ASN1 OID: prime256v1
NIST CURVE: P-256
X509v3 extensions:
X509v3 Subject Key Identifier:
X509v3 Basic Constraints:
CA:FALSE
X509v3 Subject Alternative Name:
othername:<unsupported>
1.3.6.1.4.1.46930.2:
..highway-test.example.com:9443
Signature Algorithm: ecdsa-with-SHA256
30:65:02:31:00:2b:9a:7a:1a:74:20:8f:e9:e0:5d:fc:af:
d6:
71:
02:
7d:
5b:
C.1.2. Device private key

-----BEGIN EC PRIVATE KEY-----
MHcCAQEElAsa0l4bkj/rJxPUN1bKSBNYo1VVzx+T28wo60cYpuaoAoGCCqGSM49
AwEHoUQDQgAEgsQc0W3zwNxjikBTcyyRNfrAA7cDevU01VU41+dVqVxS01K/ObVPI
YML0Uz8sG0LxwIfwXs98y1Uh0aGpAyItw==
-----END EC PRIVATE KEY-----

C.1.3. Registrar Certificate

-----BEGIN CERTIFICATE-----
MIIB0TCCAVagAwIBAgIBAjAKBggqhkjOPQQDAzBxMRIwEAYKZCzImZPyLgQBRYC
Y2ZxGTAXBgoJkiaJk/IsZAE2FglzYW5kZxwYw4xQDA+BgNVBAMMYM8U3lzdgVt
VmFaWFibGUMHgwMDAwMDAwNGY5MTFhMD4gVlVhJ1bmcgRm91bnRhaW4gQ0Ew
HhcNMTCxMTA3MjMONTI4WhcNMTkxMTA3MjMONTI4WjBDMRIeEAYKZCzImZPyLgQB
GRYCY2ExGTAXBgoJkiaJk/IsZAE2FglzYW5kZxwYw4xEjAQBgNVBAMCMXvyY2Fs
a9GzdDBZMBMGyqGSM49AgECCqGSM49AwEHoAIBJZ1UI0Up/13e2f9vCBB+1I
noEMEc7gQ0ZC7tAI0CD1fjFJR/hiyyDmHYiNFBqCH9yfarkzkzX4p0zTizqj
DTALmAGAlUdeQMAAOpZ1IoZlZoJEaWDMDA0QAw2gIzALQMUnrf8tv501ROD5Q
XHE0JKNW3QVd9xOedSK2MY+2oScBmGSMbNjhx40EOhEuLgAh4jWfNw+BzbZmKi
liUETeRWhgVXaMHy/F7n39wKcBBS6dNPqCpOEL6bq3CZqQA==
-----END CERTIFICATE-----

C.1.4. Registrar private key

-----BEGIN EC PRIVATE KEY-----
MHcCAQEElFszodk+P5M5u24+raOsboojKzan+dW5rvDAR7yuU0C1YoAcGCCqGSM49
AwEHoUQDQgAE1mVQcjS6n+Xd51/28IFv6UieqQsBztGj5dkK2MAQlZIPV8181H+E
jLIOybd110VtEiF1/jQt+TOBf1N10LQ==
-----END EC PRIVATE KEY-----

C.1.5. MASA Certificate

-----BEGIN CERTIFICATE-----
MIIB3zCCAWsgAwIBAgIaIGE5f1VDakBggghkJQOPQDAJaBDmQ8wDQDYDVQGEwZDYW5h
ZGEyEDA0BgNVBAMdQ0EYMGwGCSqGSIb3DQEBBQUAMH4GCSqGSIb3DQEHQjBMoA6q
AwbhRlGhJhsdSn5X0XN0LmV4Y1wbGUyZ9tiENBBMB4XDTE5MDIxMjtyMj10MVox
DTIxMDIxMTIyMjI0MVoxZXPEMAOGA1UEBhMHQ2FuYWRhMRAwDgYDVQQIDAdPbnRh
clmVEAYDVQQDL01TYW5kZxwYw4xJkAkgwNVBAMHWhp22h3YXktcDVzcdC51
eGFTcGx1LmVsbSNbQVNBHkEwYHkoZizj0CAQYIKoZIzj0DAQcDQgAEqgQ0V80s5
4K74yfkbXumdHoCpSgqOpMKm1In0b1HA25MVJ+gq4i4MfSF0iEtwksz
WXWR4rLgJS2mpaMQ4aWDYTR0TDAQ/BA1wADAKBggghkJQOPQDAqNpADBmAjEA
vVX1rw77/F6VkOeBxsU1Qgq45Qs+RHKyUXI1bevcLcEqOrI5ec1/sxcyw7bmnUa
6AjEA9n9EfbcU+tfNatQRw0Lu5vuamFb6HSEuXEHM8D/ymz+uiCCnrvly/1v5eGj
D0jy
-----END CERTIFICATE-----
C.1.6. MASA private key

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIFhdd0eDzip67kXx72K+KHZGJQYJHNy8pklJL6CvxvMGoAoGCCqGSM49
AwEHoUDDQgAEggVDVo0S54kT4yfkbBxumdHOcHrpsqBoPmKmiMln3oB1HAW25hJv+
gq11tMFF5J01EwH8kszvWXK4rLgJS2mnpQ==
-----END EC PRIVATE KEY-----

C.2. COSE signed request voucher with registrar certificate pinned

This voucher request has been signed by the pledge, using the private
key given above, and has been sent to the JRC over CoAPS. This
example uses the proximity-registrar-cert mechanism to request a
voucher that pins the certificate of the registrar.

This is the CBOR diagnostic format, folded to 60 characters:

18([h’A0’, {}, h’A11A000F46C2A5016970726F78696D69747902C11A5
D1E49970A130302D4432D446322D30302D30307765F715674477
738565342626C65394D34557036354C770C5901D4308201D030820157A00
30201020204228EC2D7300A06082A6848CE3D040302306E31123010060A0
992268993F22C640119160263613119301706A0A992268993F22C6401191
6097361E64656C6561E313D30306033504030C34666F756E7461696E2
d746577342E6578616D70C652E636F6D0A20556E737472756E6720466F7
56E7461696E20526F6F7420441320170D313930343136313835343135
A170D313930353137303435343135A305331123010060A0992268993F22
C640119160263613119301706A0A992268993F22C64011916097361E646
56C6D61E3122302006035504030C19666F756E7461696E2D746577342E6
578616D70C652E636F6D03059301306072A8648CE3D020106082A6848CE3
D3030743200049665507234BA9FE5DE655F6F0816FE94898E910C12073
B468F97642B63008D20F57C97C947F848CB20E616C9888D15B4421FD7F
26AB7E4CE05F8A74CD38BA300A06082A6848CE3D0403023067003064203
0340F4E600F9F702553F453BE572ACFOED582756BAC759F4323F2F83
A54411E9FA02E6F75F1DAA87E9A61F5409E02303E615E75C8F70432A59
0CB4D879BEA1EB49E5ED8E4EA188B17A020D02F0313D148416002F756
B528ABD01B0AD7B349D’, h’96B2B530AC576503462CBF5A6CC16B2F8216F
ACF5A2FDF1BCF3DF5DFD2733F77812B6D43B1CF99063E56FB0C2BDD36
77FD7DBEA22B8CEB07D518F55AD3’T])

This is the raw binary, encoded in base64:
This voucher request has been signed by the JRC using the private key from Appendix C.1.4. Contained within this voucher request is the pledge voucher request above.

This is the CBOR diagnostic format, folded to 60 characters:
This is the raw binary, encoded in base64:

0oRBoKBZAq6hGgAPrsKlAWlwcm94aW1pdHkCwRpZ3Tv99IzEwMC1EMCM1FNS1G
Mi0wMCwmb3Jf3FWdEd3OFZlQjMzZz11NnvWvNjVmdwtZAmbShEGoFkCHKeA
AA9qWkUBaXBbyb3phbWlq1QeLBGIoe2CcKUTAwLQwuLUU1UYyLTAwLTAzB3Zf
cV2903c4V1NYmXL0U0MVX2NUnX3DFb1DCdA3wgg9kAMCAQIBCKzOscsw
CgYIKoZIzj0EawIwbxjEMBACgCmSmJosT81xkAARKWAmNhMrkWFwYKZC1m1ZPy
LQBGRVcJc2FuzZVsbWFUMt0wQYVQDQDRm3VudGpbip02ZOXN0mV4YWlwc
bGUuYy9tC1bVn0nVvZyLGB3vUGFpbiB5Bs290IENMB4XDE5DQ0xMjJd
EQTqmxV0xETD5M0xnZaAO5QxM0vuxEMBACgCmSmJosT81xkAARKWAmNhMrkW
FwYKZC1m1ZPyLGbGRVcJc2FuzZVsbWFUMt0wQYVQDQDRm3VudGpbip02ZOXN0mV4YWlwc
bGUuYy9tC1bVn0nVvZyLGB3vUGFpbiB5Bs290IENMB4XDE5DQ0xMjJd
EQTqmxV0xETD5M0xnZaAO5QxM0vuxEMBACgCmSmJosT81xkAARKWAmNhMrkW
FwYKZC1m1ZPyLGbGRVcJc2FuzZVsbWFUMt0wQYVQDQDRm3VudGpbip02ZOXN0mV4YWlwc
bGUuYy9tC1bVn0nVvZyLGB3vUGFpbiB5Bs290IENMB4XDE5DQ0xMjJd
EQTqmxV0xETD5M0xnZaAO5QxM0vuxEMBACgCmSmJosT81xkAARKWAmNhMrkW

C.4. COSE signed voucher

The resulting voucher is created by the MASA and returned via the JRC to the Pledge. It is signed by the MASA’s private key Appendix C.1.6 and can be verified by the pledge using the MASA’s public key.

This is the CBOR diagnostic format, folded to 60 characters:

```
18((h’A0’, {}, h’A11A000F468CA505666C6F6767656406C11A5D1E499
A0E7130302D4302D45352D46322D30302D3030B765F715674477738565
342626C65394D34557036354C770C790274D949423054434315661674
1774942167494216A414B4267671686B6A4F5051514417A42784D524
97745159B435A496D695A50794C475142752594359325475874541584
2676FA6B6914A6B2F49735A1455A46676C7A5957356B5A57787459753
478514412B25264E5642414D44794D38553336C7A64475675462646796
1574669624755364D4867774D441774E4759354D5446684D44
4675657357A6448A31626D6367526D3931626E526861573467513045774
868634E4D5463784D541334D6A43D04E5449345768634E4D546B784D544
1334D64D04E544934576A42444D524977451594B435A946D95A50794
C47514275259435932457845415842676F4A6B6914A6B2F49735A414
55A66676C7A5957356B5A57787459537485654151426745642414D404
357786593246736147379A6444254A4D424742797147534D343941674
54743437147534D343941745484130494124A5A6C5548930750F26FC3
365A663976434262B6C496E65F454D45676337526F2B585A43746A41493
0434431664A66A522F68497979446D45877595694E466252435896796
172666B7A67583470307A54697A716A445414C4D416B47413155465775
1434D4147743675949B4F5A497A6A34541774D44615141775A6749784
14C514D4E7527638747635306C524F443544515848454F4A4AE5733515
632673951456444536B32D592B416F537242536D475346A68346F6C454
F6845754C67497841A346E57664E772B426A625A64694969554653457
484D684756816D48592F46376E3339777774B634242534F6E45E50714
3704F454C6C3662713343A715133D34’, h’7468FB16A403C5F0510DBBF5
A8B2F67B6FB849CFAAB8094B77AD524890E4BCD6E892FE74B39AB787637B
121944BED4D1CB4B8DC8F59212EAC2AD20469C71C1F6’))
```

This is the raw binary, encoded in base64:
Authors’ Addresses

Michael Richardson
Sandelman Software Works

Email: mcr+ietf@sandelman.ca

Peter van der Stok
vanderstok consultancy

Email: consultancy@vanderstok.org

Panos Kampanakis
Cisco Systems

Email: pkampana@cisco.com