Address Autoconfiguration for MANET: Terminology and Problem Statement
draft-ietf-autoconf-statement-03

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 3, 2008.

Copyright Notice

Copyright (C) The IETF Trust (2008).
Abstract

This document states the problems pertaining to automatic IPv6 address configuration and prefix allocation in MANETs.

This draft currently contains terminology, target scenarios and goals for MANET autoconfiguration. Future versions of this document will also review the applicability of existing IPv6 address autoconfiguration and prefix allocation mechanisms, and security considerations.

Table of Contents

1. Introduction ... 3
2. Terminology ... 4
3. MANET Categories ... 5
 3.1. Subordinate MANET .. 5
 3.1.1. Scenarios of Subordinate MANETs 6
 3.2. Autonomous MANET ... 6
 3.2.1. Scenarios of Autonomous MANETs 7
4. MANET Autoconfiguration Goals 8
5. Security Considerations 9
6. IANA Considerations ... 10
7. References .. 11
 7.1. Normative References 11
 7.2. Informative References 11
Contributors ... 13
Authors’ Addresses ... 14
Intellectual Property and Copyright Statements 15
1. Introduction

As defined in [1], a MANET is a network composed of MANET routers, each of which has at least one MANET interface. This document states the goals of autoconfiguration mechanism(s) for MANETs, with respect to the necessary parameters for basic IP identification. Specifically, this document thus states the requirements for:

- autoconfiguring MANET interfaces with IPv6 addresses;
- automatic allocation of IPv6 prefixes to MANET routers.

This draft currently contains terminology, target scenarios and goals for MANET autoconfiguration. Future versions of this document will also review the applicability of existing IPv6 address autoconfiguration and prefix allocation mechanisms, and security considerations.
2. Terminology

This document uses the terminology defined in [1], as well as the following terms:

External Network - a network connected to the MANET, through an interface that is not part of this MANET.

Subordinate MANET - a MANET, which is connected to one or more external network(s), and where such external network(s) are imposing an addressing hierarchy scheme on the MANET.

Autonomous MANET - a MANET upon which no external network imposes an addressing hierarchy.

Address autoconfiguration - the process of configuring an interface with a given address, using an automatic mechanism (contrary to manual configuration).

Prefix allocation - the process of providing a router with authority over an aggregatable pool of addresses (i.e. a prefix), for the purpose of configuring interfaces or other routers.

Disjoint prefixes - two prefixes are said to be disjoint if and only if their respective address ranges do not overlap.

Network merging - the process by which two or more previously disjoint MANETs get connected.

Network partitioning - the process by which a MANET splits into two or more disconnected MANETs.
3. MANET Categories

IP address autoconfiguration on MANET interfaces and prefix allocation for MANET routers may be used in a number of deployment scenarios. This section outlines the different types of scenarios that are to be addressed by solutions for MANET autoconfiguration.

Note that solutions should also aim at coping with special cases such as a MANET transiting from one type of scenario to an other, or such as routers pre-configured with IP addresses (or prefixes) joining the MANET.

3.1. Subordinate MANET

A subordinate MANET, as shown in Fig. 1, is a MANET which is connected to at least one external network N that imposes a specific addressing hierarchy on the MANET. In a subordinate MANET, this addressing hierarchy yields the use of specific prefixes for communications between nodes in the MANET and nodes in or across network N. For instance, in Fig. 1, these prefixes need to be topologically correct, i.e. allocated from within a prefix p::, over which the point of attachment to network N has authority.
3.1.1. Scenarios of Subordinate MANETs

This section contains a non-exhaustive list of examples of MANETs falling in the subordinate category.

A typical example of subordinate MANET is a MANET that is part of the Internet, which yields the use of topologically correct IP addresses in order to communicate over the Internet. For instance public wireless mesh networks, i.e. scattered fixed WLAN access routers participating in a MANET of mobile users, and acting as border routers.

Another typical example is the coverage extension of a fixed wide-area wireless network, where one or more MANET router(s) are connected to the Internet through technologies such as UMTS or WiMAX.

Car-to-car communication networks connected to an external infrastructure may also be understood as an instance of subordinate MANET.

3.2. Autonomous MANET

Autonomous MANETs are MANETs upon which no external network imposes an addressing hierarchy. This is shown in Fig. 2, as opposed to the subordinate MANET category described in Section 3.1.
3.2.1. Scenarios of Autonomous MANETs

This section contains a non-exhaustive list of instances of MANETs falling in the autonomous category.

Typical examples of autonomous MANETs are networks set-up in areas where infrastructure is unavailable or inappropriate. For instance, car-to-car communication for sharing traffic and safety-related information, on-site emergency communication among rescue team members for disaster recovery, file sharing in conference or class rooms.
4. MANET Autoconfiguration Goals

The goals of AUTOCONF is to provide autoconfiguration mechanisms which allow each MANET router to:

1. configure IPv6 addresses that are unique within the MANET, on their MANET interface(s).

2. be allocated IPv6 prefixes that are disjoint from prefixes allocated to other routers within the MANET.

3. maintain, within the MANET, the uniqueness of configured addresses and the disjoint character of allocated prefixes (even in face of network merging).

4. be allocated topologically correct prefixes, in the subordinate MANET scenario.
5. Security Considerations

This document does not currently introduce security considerations beyond those captured by [1].
6. IANA Considerations

This document does not specify IANA considerations.
7. References

7.1. Normative References

7.2. Informative References

[14] Aura, T., "Cryptographically Generated Addresses (CGA)",
RFC 3972, 2005.

Contributors

This document is the result of joint efforts, including those of the following contributors, listed in alphabetical order: C. Adjih, C. Bernardos, T. Boot, T. Clausen, C. Dearlove, U. Herberg, G. Montenegro, H. Moustafa, C. Perkins, A. Petrescu, P. Ruiz, P. Stupar, F. Templin, D. Thaler, R. Wakikawa, K. Weniger.
Authors’ Addresses

Emmanuel Baccelli
INRIA

Phone: +33 1 69 33 55 11
Email: Emmanuel.Baccelli@inria.fr

Kenichi Mase
Niigata University

Phone: +81 25 262 7446
Email: Mase@ie.niigata-u.ac.jp

Simone Ruffino
Telecom Italia

Phone: +39 011 228 7566
Email: Simone.Ruffino@telecomitalia.it

Shubhranshu Singh
Samsung

Phone: +82 31 280 9569
Email: Shubranshu@gmail.com