The ARIA Algorithm and Its Use with the Secure Real-time Transport Protocol (SRTP)
draft-ietf-avtcore-aria-srtp-11

Abstract

This document defines the use of the ARIA block cipher algorithm within the Secure Real-time Transport Protocol (SRTP). It details two modes of operation (CTR, GCM) and the SRTP Key Derivation Functions for ARIA. Additionally, this document defines DTLS-SRTP protection profiles and MIKEY parameter sets for the use with ARIA.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 9, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents...
1. Introduction

1.1. ARIA

ARIA is a general-purpose block cipher algorithm developed by Korean cryptographers in 2003. It is an iterated block cipher with 128-, 192-, and 256-bit keys and encrypts 128-bit blocks in 12, 14, and 16
rounds, depending on the key size. It is secure and suitable for most software and hardware implementations on 32-bit and 8-bit processors. It was established as a Korean standard block cipher algorithm in 2004 [ARIAKS] and has been widely used in Korea, especially for government-to-public services. It was included in PKCS #11 in 2007 [ARIAPKCS]. The algorithm specification and object identifiers are described in [RFC5794].

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Cryptographic Transforms

Block ciphers ARIA and AES share common characteristics including mode, key size, and block size. ARIA does not have any restrictions for modes of operation that are used with this block cipher. We define two modes of running ARIA within the SRTP protocol, (1) ARIA in Counter Mode (ARIA-CTR) and (2) ARIA in Galois/Counter Mode (ARIA-GCM).

2.1. ARIA-CTR

Section 4.1.1 of [RFC3711] defines AES-128 counter mode encryption, which it refers to as "AES_CM". Section 2 of [RFC6188] defines "AES_256_CM" in SRTP. ARIA counter modes are defined in the same manner except that each invocation of AES is replaced by that of ARIA [RFC5794], and are denoted by ARIA_128_CTR and ARIA_256_CTR, respectively, according to the key lengths. The plaintext inputs to the block cipher are formed as in AES-CTR(AES_CM, AES_256_CM) and the block cipher outputs are processed as in AES-CTR. Note that, ARIA-CTR MUST be used only in conjunction with an authentication transform.

Section 3.2 of [RFC6904] defines AES-CTR for SRTP header extension keystream generation. When ARIA-CTR is used, the header extension keystream SHALL be generated in the same manner except that each invocation of AES is replaced by that of ARIA [RFC5794].

2.2. ARIA-GCM

GCM (Galois Counter Mode) [GCM][RFC5116] is an AEAD (Authenticated Encryption with Associated Data) block cipher mode. A detailed description of ARIA-GCM is defined similarly as AES-GCM found in [RFC5116][RFC5282].
The document [RFC7714] describes the use of AES-GCM with SRTP [RFC3711][RFC6904]. The use of ARIA-GCM with SRTP is defined the same as that of AES-GCM except that each invocation of AES is replaced by ARIA [RFC5794]. When encryption of header extensions [RFC6904] is in use, a separate keystream to encrypt selected RTP header extension elements MUST be generated in the same manner defined in [RFC7714] except that AES-CTR is replaced by ARIA-CTR.

3. Key Derivation Functions

Section 4.3.3 of [RFC3711] defines the AES-128 counter mode key derivation function, which it refers to as "AES-CM PRF". Section 3 of [RFC6188] defines the AES-256 counter mode key derivation function, which it refers to as "AES_256_CM_PRF". The ARIA-CTR PRF is defined in a same manner except that each invocation of AES is replaced by that of ARIA. According to the key lengths of underlying encryption algorithm, ARIA-CTR PRFs are denoted by "ARIA_128_CTR_PRF" and "ARIA_256_CTR_PRF". The usage requirements of [RFC6188][RFC7714] regarding the AES-CM PRF apply to the ARIA-CTR PRF as well.

4. Protection Profiles

This section defines SRTP Protection Profiles that use the ARIA transforms and key derivation functions defined in this document. The following list indicates the SRTP transform parameters for each protection profile. Those are described for use with DTLS-SRTP [RFC5764].

The parameters cipher_key_length, cipher_salt_length, auth_key_length, and auth_tag_length express the number of bits in the values to which they refer. The maximum_lifetime parameter indicates the maximum number of packets that can be protected with each single set of keys when the parameter profile is in use. All of these parameters apply to both RTP and RTCP, unless the RTCP parameters are separately specified.

SRTP_ARIA_128_CTR_HMAC_SHA1_80

cipher: ARIA_128_CTR
cipher_key_length: 128 bits
cipher_salt_length: 112 bits
key derivation function: ARIA_128_CTR_PRF
auth_function: HMAC-SHA1
auth_key_length: 160 bits
auth_tag_length: 80 bits
maximum_lifetime: at most 2^31 SRTCP packets and
 at most 2^48 SRTP packets

SRTP_ARIA_128_CTR_HMAC_SHA1_32
cipher: ARIA_128_CTR
cipher_key_length: 128 bits
cipher_salt_length: 112 bits
key derivation function: ARIA_128_CTR_PRF
auth_function: HMAC-SHA1
auth_key_length: 160 bits
SRTP auth_tag_length: 32 bits
SRTCP auth_tag_length: 80 bits
maximum_lifetime: at most 2^{31} SRTCP packets and
at most 2^{48} SRTP packets

SRTP_ARIA_256_CTR_HMAC_SHA1_80
cipher: ARIA_256_CTR
cipher_key_length: 256 bits
cipher_salt_length: 112 bits
key derivation function: ARIA_256_CTR_PRF
auth_function: HMAC-SHA1
auth_key_length: 160 bits
auth_tag_length: 80 bits
maximum_lifetime: at most 2^{31} SRTCP packets and
at most 2^{48} SRTP packets

SRTP_ARIA_256_CTR_HMAC_SHA1_32
cipher: ARIA_256_CTR
cipher_key_length: 256 bits
cipher_salt_length: 112 bits
key derivation function: ARIA_256_CTR_PRF
auth_function: HMAC-SHA1
auth_key_length: 160 bits
SRTP auth_tag_length: 32 bits
SRTCP auth_tag_length: 80 bits
maximum_lifetime: at most 2^{31} SRTCP packets and
at most 2^{48} SRTP packets

SRTP_AEAD_ARIA_128_GCM
cipher: ARIA_128_GCM
cipher_key_length: 128 bits
cipher_salt_length: 96 bits
aead_auth_tag_length: 128 bits
auth_function: NULL
auth_key_length: N/A
auth_tag_length: N/A
key derivation function: ARIA_128_CTR_PRF
maximum_lifetime: at most 2^{31} SRTCP packets and
at most 2^{48} SRTP packets

SRTP_AEAD_ARIA_256_GCM
cipher: ARIA_256_GCM
The ARIA-CTR protection profiles use the same authentication transform that is mandatory to implement in SRTP, HMAC-SHA1 with a 160-bit key.

Note that SRTP Protection Profiles that use AEAD algorithms do not specify an auth_function, auth_key_length, or auth_tag_length, since they do not use a separate auth_function, auth_key, or auth_tag. The term aead_auth_tag_length is used to emphasize that this refers to the authentication tag provided by the AEAD algorithm and that this tag is not located in the authentication tag field provided by SRTP/SRTCP.

The PRFs for ARIA protection profiles are defined by ARIA-CTR PRF of the equal key length with the encryption algorithm (see Section 2). SRTP_ARIA_128_CTR_HMAC and SRTP_AEAD_ARIA_128_GCM MUST use the ARIA_128_CTR_PRF Key Derivation Function. And SRTP_ARIA_256_CTR_HMAC and SRTP_AEAD_ARIA_256_GCM MUST use the ARIA_256_CTR_PRF Key Derivation Function.

MIKEY specifies the SRTP protection profile definition separately from the key length (which is specified by the Session Encryption key length) and the authentication tag length. The DTLS-SRTP [RFC5764] protection profiles are mapped to MIKEY parameter sets as shown below.

+--------------------------------------+
| Encryption | Encryption | Auth. |
| Algorithm | Key Length | Tag Length |
+======================================+
SRTP_ARIA_128_CTR_HMAC_80	ARIA-CTR	16 octets	10 octets
SRTP_ARIA_128_CTR_HMAC_32	ARIA-CTR	16 octets	4 octets
SRTP_ARIA_256_CTR_HMAC_80	ARIA-CTR	32 octets	10 octets
SRTP_ARIA_256_CTR_HMAC_32	ARIA-CTR	32 octets	4 octets
+======================================+

Figure 1: Mapping MIKEY parameters to ARIA-CTR with HMAC algorithm
5. Security Considerations

At the time of publication of this document no security problem has been found on ARIA. Previous security analysis results are summarized in [ATY].

The security considerations in [GCM] [RFC3711] [RFC5116] [RFC6188] [RFC6904] [RFC7714] apply to this document as well. This document includes crypto suites with authentication tags of length less than 80 bits. These suites MAY be used for certain application contexts where longer authentication tags may be undesirable, for example, those mentioned in [RFC3711] section 7.5. Otherwise, short authentication tags SHOULD NOT be used, since may reduce authentication strength. See [RFC3711] section 9.5 for a discussion of risks related to weak authentication in SRTP.

At the time of publication of this document, SRTP recommends HMAC-SHA1 as the default and mandatory-to-implement MAC algorithm. All currently registered SRTP crypto suites except the GCM based ones use HMAC-SHA1 as their HMAC algorithm to provide message authentication. Due to security concerns with SHA-1 [RFC6194], the IETF is gradually moving away from SHA-1 and towards stronger hash algorithms such as SHA-2 or SHA-3 families. For SRTP, however, SHA-1 is only used in the calculation of an HMAC, and no security issue is known for this usage at the time of this publication.

6. IANA Considerations

6.1. DTLS-SRTP

DTLS-SRTP [RFC5764] defines a DTLS-SRTP "SRTP Protection Profile". In order to allow the use of the algorithms defined in this document in DTLS-SRTP, IANA is requested to add the protection profiles below to the "DTLS-SRTP Protection Profiles" created by [RFC5764], located on the following IANA page at time of writing:

http://www.iana.org/assignments/srtp-protection/

\[
\text{SRTP_ARIA_128_CTR_HMAC_SHA1_80 = (TBD,TBD)}
\]
6.2. MIKEY

[RFC3830] and [RFC5748] define encryption algorithms and PRFs for the SRTP policy in MIKEY. In order to allow the use of the algorithms defined in this document in MIKEY, IANA is requested to add the two encryption algorithms below to the "MIKEY Security Protocol Parameters SRTP Type 0 (Encryption algorithm)" and to add the PRF below to the "MIKEY Security Protocol Parameters SRTP Type 5 (Pseudo Random Function)" created by [RFC3830], located on the following IANA page at time of writing: http://www.iana.org/assignments/mikey-payloads/.

<table>
<thead>
<tr>
<th>SRTP Enc. alg</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIA-CTR</td>
<td>TBD</td>
</tr>
<tr>
<td>ARIA-GCM</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Default session encryption key length is 16 octets.

<table>
<thead>
<tr>
<th>SRTP PRF</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIA-CTR</td>
<td>TBD</td>
</tr>
</tbody>
</table>

7. References

7.1. Normative References

Kim, et al. Expires February 9, 2018

7.2. Informative References

Appendix A. Test Vectors

All values are in hexadecimal and represented by the network order (called big endian).

A.1. ARIA-CTR Test Vectors

Common values are organized as follows:

- Rollover Counter: 00000000
- Sequence Number: 315e
- SSRC: 20e8f5eb
- Authentication Key: f93563311b354748c97891379553063116452309
- Session Salt: cd3a7c42c671e0067a2a2639b43a
- Initialization Vector: cd3a7c42e69915ed7a2a263985640000
- RTP header: 8008315ebf2e6fe020e8f5eb
- RTP Payload: f57af5fd4ae19562976ec57a5a7ad55a5af5c5e5c5fd5c55ad57a4a7272d57262e9729566ed66e97ac54a4a5a7ad5e15ae5fdd5fd5ac5d56ae56ad5c572d54a

A.1.1. SRTP_ARIA_128_CTR_HMAC_SHA1_80
Session Key: 0c5ffd37a11edc42c325287fc0604f2e

Encrypted RTP Payload: 1bf753f412e6f35058cc398dc851aae3a6ccdcba63fbed9cfa6e2fb76fdffaf4e481f5ef59dabd7cedc7ca57
092485f3fbd87888820b86037311fa44330e18a59a1e1338ba22c21458493a57
463475c54691f91cec785429119e0dfe9d9048f90e07f8e5o5b52888c6e6e71445de5d7f659405135aff3604c2ca4ff4aaca40809cb9e342cc4ad23230757081ca289f2851d3315e9568b501fdce6d

Authenticated portion || Rollover Counter: 8008315ebf2e6fe020e8f5eb1bf753f412e6f35058cc398dc851aae3a6ccdcba63fbed9cfa6e2fb76fdffaf4e481f5ef59dabd7cedc7ca57
092485f3fbd87888820b86037311fa44330e18a59a1e1338ba22c21458493a57
463475c54691f91cec785429119e0dfe9d9048f90e07f8e5o5b52888c6e6e71445de5d7f659405135aff3604c2ca4ff4aaca40809cb9e342cc4ad23230757081ca289f2851d3315e9568b501fdce6d00000000

Authentication Tag: f9de4e729054672b0e35

A.1.2. SRTP_ARIA_256_CTR_HMAC_SHA1_80
Session Key: 0c5ffd37a11edc42c325287fc0604f2e 3e8cd5671a00fe3216aa5eb105783b54

Encrypted RTP Payload: c424c59fd5696305e5b13d8e8ca76566 17ccd7471088af9debf07b55c750f804 a5ac2b737be48140958a9b420524112a e72e4da5bca59d2b1019dd7dbdc30b4 3d5f046152ced40947d62d2c93e7b8e5 0f02db2b6b61b010e4c1566884de1fa9 702cdf8157e8aeefe3dd77c76bb50c25 ae4d624615c15acfddeeb5f79482aaa01 d3e4c05eb601eca2bd10518e9d46b021 16359232e9eac0fabd05235dd09e6dea

Authenticated portion || Rollover Counter: 8008315ebf2e6fe020e8f5ebc424c59f d5696305e5b13d8e8ca7656617ccd747 1088af9debf07b55c750f804a5ac2b73 7be48140958a9b420524112ae72e4da5 bca59d2b1019dd7dbdc30b43d5f0461 52ced40947d62d2c93e7b8e50f02db2b 6b61b010e4c1566884de1fa9702cdf81 57e8aede3dd77c76bb50c25ae4d6246 15c15acfddeeb5f79482aaa01d3e4c05e b601eca2bd10518e9d46b02116359232 e9eac0fabd05235dd09e6dea00000000

Authentication Tag: 192f515fab04bbb4e62c

A.2. ARIA-GCM Test Vectors

Common values are organized as follows:
Rollover Counter: 00000000
Sequence Number: 315e
SSRC: 20e8f5eb
Encryption Salt: 000000000000000000000000
Initialization Vector: 000020e8f5eb00000000315e
RTP Payload: f57af5fd4ae19562976ec57a5a7ad55a 5af5c5e5c5f5df5c55ad57a4a7272d572 62e9729566ed66e97ac54a4a5a7ad5e1 5ae5fdd5f5ac5d56ae56ad5c572d54a 5e4ac55a956af636ed5a4ac562957a95 16991691d572fd14e97ae962ed7a9f4a 95af572e162f57a956666e17ae1f54a 95f566d54a66e16e4af69f7ae1c5c5 5ae5d56afde916c5e94a6ec56695e14a fde1148416e94ad57ac5146ed59d1cc5
Associated Data: 8008315ebf2e6fe020e8f5eb

The length of encrypted payload is larger than that of payload by 16 octets that is the length of the tag from GCM.

A.2.1. SRTP_AEAD_ARIA_128_GCM

Key: e91e5e75da65554a48181f3846349562

Encrypted RTP Payload: 4d8a9a0675550c704b17d8c9ddc8a5c d6f7da34f2fe1b3db7cb3dfb9697102e a0f3c1fc2dbc873d44bceaae8e44297 4ba21ff6789d3272613fb9631a7cf3f1 4bacbe421633a90ffbe58c2fa6bdca5 34f10d0de0502e1d531b6336e588782 78531e5c22bc6c85b6d784789e680a a19031aa8910d669d7a3965c1f7e16 229d7463e0535f4e253f5d18187d40b8 ae0f564bd970b5e7e2adfb211e89a953 5abace3f37f5a736f4be984bbffbedc1

A.2.2. SRTP_AEAD_ARIA_256_GCM
A.3. Key Derivation Test Vector

This section provides test vectors for the default key derivation function that uses ARIA in Counter Mode. In the following, we walk through the initial key derivation for the ARIA Counter Mode cipher that requires a 16/24/32 octet session encryption key according to the session encryption key length and a 14 octet session salt, and an authentication function that requires a 94 octet session authentication key. These values are called the cipher key, the cipher salt, and the auth key in the following. The test vectors are generated in the same way with the test vectors of key derivation functions in [RFC3711] and [RFC6188] but with each invocation of AES replaced with an invocation of ARIA.

A.3.1. ARIA_128_CTR_PRF

The inputs to the key derivation function are the 16 octet master key and the 14 octet master salt:

master key: e1f97a0d3e018be0d64fa32c06de4139
master salt: 0ec675ad498afeebb6960b3aabe6

index DIV kdr: 000000000000
label: 00
master salt: 0ec675ad498afeebb6960b3aabe6

xor: 0ec675ad498afeebb6960b3aabe6 (x, PRF input)
x*2^16: 0ec675ad498afeebb6960b3aabe60000 (ARIA-CTR input)
cipher key: dbd85a3c4d9219b3e81f7d942e299de4 (ARIA-CTR output)
ARIA-CTR protection profile requires a 14 octet cipher salt while ARIA-GCM protection profile requires a 12 octet cipher salt.

index DIV kdr: 000000000000
label: 02
master salt: 0ec675ad498afeebb6960b3aabe6

--
xor: 0ec675ad498afeeeb6960b3aabe6 (x, PRF input)
x*2^16: 0ec675ad498afeeeb6960b3aabe60000 (ARIA-CTR input)
 970065f5f34161830d7d85f5dc8be7f (ARIA-CTR output)
cipher salt: 970065f5f34161830d7d85f5dc8 (ARIA-CTR profile)
index DIV kdr: 000000000000
label: 01
master salt: 0ec675ad498afeebb6960b3aabe6

xor: 0ec675ad498afeeb6960b3aabe6 (x, PRF input)
x*2^16: 0ec675ad498afeeb6960b3aabe60000 (ARIA-CTR input)

Below, the auth key is shown on the left, while the corresponding ARIA input blocks are shown on the right.

auth key ARIA input blocks

d021877bd3eaf92d581ed70dcd050e03	0ec675ad498afeeb6960b3aabe60000
f11257032676f2a29f57b21ab3a1423	0ec675ad498afeeb6960b3aabe60001
769749bdc5dd9ca5b43ca6b6c1f3a7de	0ec675ad498afeeb6960b3aabe60002
4047904bcf81f601cc03ea5d7af6db	0ec675ad498afeeb6960b3aabe60003
9f88efa2e51ca832fc2a15b126fa7be2	0ec675ad498afeeb6960b3aabe60004
469af896acb1852c31d822c45799	0ec675ad498afeeb6960b3aabe60005

A.3.2. ARIA_256_CTR_PRF

The inputs to the key derivation function are the 32 octet master key and the 14 octet master salt:
master key: 0c5fffd37a11edc42c325287fc0604f2e
3e8cd5671a00fe3216aa5eb105783b54
master salt: 0ec675ad498afeebb6960b3aabe6

index DIV kdr: 000000000000
label: 00
master salt: 0ec675ad498afeebb6960b3aabe6

 xor: 0ec675ad498afeebb6960b3aabe6 (x, PRF input)
x*2^16: 0ec675ad498afeebb6960b3aabe60000 (ARIA-CTR input)
cipher key: 0649a09d93755fe9c2b2efbalccee930a (ARIA-CTR 1st output)
f2e76ce8b77e4b175950321aa94b0cf4 (ARIA-CTR 2nd output)

ARIA-CTR protection profile requires a 14 octet cipher salt while
ARIA-GCM protection profile requires a 12 octet cipher salt.

index DIV kdr: 000000000000
label: 02
master salt: 0ec675ad498afeebb6960b3aabe6

 xor: 0ec675ad498afeee9b6960b3aabe6 (x, PRF input)
x*2^16: 0ec675ad498afeee9b6960b3aabe60000 (ARIA-CTR input)
194abaa8553a8eba8a413a340fc80a3d (ARIA-CTR output)
cipher salt: 194abaa8553a8eba8a413a340fc8 (ARIA-CTR profile)
194abaa8553a8eba8a413a34 (ARIA-GCM profile)

index DIV kdr: 000000000000
label: 01
master salt: 0ec675ad498afeebb6960b3aabe6

 xor: 0ec675ad498afeeeab6960b3aabe6 (x, PRF input)
x*2^16: 0ec675ad498afeeeab6960b3aabe60000 (ARIA-CTR input)

Below, the auth key is shown on the left, while the corresponding
ARIA input blocks are shown on the right.
auth key ARIA input blocks

e58d42915873b71899234807334658f2 0ec675ad498afeeab6960b3aabe60000
0bc460181d06e02b7a9e60f02ff10bfc 0ec675ad498afeeab6960b3aabe60001
9ade3795cf78f3e0f2556d9d913470c4 0ec675ad498afeeab6960b3aabe60002
e82e45d254bf8e2933851a3930ffe7d 0ec675ad498afeeab6960b3aabe60003
fca751c03ec1e77e35e28dac4f17d1a5 0ec675ad498afeeab6960b3aabe60004
80bdac028766d3b1e8f5a41faa3c 0ec675ad498afeeab6960b3aabe60005

Authors' Addresses

Woo-Hwan Kim
National Security Research Institute
P.O.Box 1, Yuseong
Daejeon 34188
Korea
EMail: whkim5@nsr.re.kr

Jungkeun Lee
National Security Research Institute
P.O.Box 1, Yuseong
Daejeon 34188
Korea
EMail: jklee@nsr.re.kr

Je-Hong Park
National Security Research Institute
P.O.Box 1, Yuseong
Daejeon 34188
Korea
EMail: jhpark@nsr.re.kr

Daesung Kwon
National Security Research Institute
P.O.Box 1, Yuseong
Daejeon 34188
Korea
EMail: ds_kwon@nsr.re.kr