Abstract

This document specifies mechanisms for backward compatibility of Ethernet VPN (EVPN) and Provider Backbone Bridge Ethernet VPN (PBB-EVPN) solutions with Virtual Private LAN Service (VPLS) and Provider Backbone Bridge VPLS (PBB-VPLS) solutions. It also provides mechanisms for seamless integration of these two technologies in the same MPLS/IP network on a per-VPN-instance basis. Implementation of this document enables service providers to introduce EVPN/PBB-EVPN PEs in their brown-field deployments of VPLS/PBB-VPLS networks. This document specifies control-plane and forwarding behavior needed for auto-discovery of a VPN instance, multicast and unicast operation, as well as MAC-mobility operation in order to enable seamless integration between EVPN and VPLS PEs as well as between PBB-VPLS and PBB-EVPN PEs.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at...
1 Introduction

Virtual Private LAN Service (VPLS) and Provider Backbone Bridging (PBB-VPLS) are widely-deployed Layer-2 VPN (L2VPN) technologies. Many service providers who are looking at adopting Ethernet VPN (EVPN) and Provider Backbone Bridging EVVPN (PBB-EVPN) want to preserve their investment in the VPLS and PBB-VPLS networks. Hence, they require mechanisms by which EVVPN and PBB-EVPN technologies can be introduced into their brown-field VPLS and PBB-VPLS networks without requiring any upgrades (software or hardware) to these networks. This document specifies procedures for the seamless integration of the two technologies in the same MPLS/IP network.

Throughout this document, we use the term (PBB-)EVPN to correspond to both EVPN and PBB-EVPN and we use the term (PBB-)VPLS to correspond to both VPLS and PBB-VPLS. This document specifies control-plane and forwarding behavior needed for auto-discovery of a VPN instance, multicast and unicast operations, as well as MAC-mobility operation in order to enable seamless integration between (PBB-)EVPN Provider Edge (PE) devices and (PBB-)VPLS PEs.

Figure 1: Seamless Integration of (PBB-)EVPN & (PBB-)VPLS

Section 2 provides the details of the requirements. Section 3 specifies procedures for the seamless integration of VPLS and EVPNN networks. And section 4 specifies procedures for the seamless integration of PBB-VPLS and PBB-EVPN networks.

It should be noted that the scenarios for PBB-VPLS integration with EVPNN and VPLS integration with PBB-EVPN are not covered in this document because there haven’t been any requirements from service providers for these scenarios. The reason for that is that...
deployments which employ PBB-VPLS typically require PBB encapsulation for various reasons. Hence, it is expected that for those deployments the evolution path would be from PBB-VPLS towards PBB-EVPN. Furthermore, the evolution path from VPLS is expected to be towards EVPN.

The seamless integration solution described in this document has the following attributes:

- When ingress replication is used for multi-destination traffic delivery, the solution reduces the scope of [MMRP] (which is a soft-state protocol) to only that of existing VPLS PEs, and uses the more robust BGP-based mechanism for multicast pruning among new EVPN PEs.

- It is completely backward compatible.

- New PEs can leverage the extensive multi-homing mechanisms and provisioning simplifications of (PBB-)EVPN:
 a. Auto-sensing of MHN / MHD
 b. Auto-discovery of redundancy group
 c. Auto-provisioning of Designated Forwarder election and VLAN carving

1.1. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.2. Terms and Abbreviations

Broadcast Domain: In a bridged network, the broadcast domain corresponds to a Virtual LAN (VLAN), where a VLAN is typically represented by a single VLAN ID (VID) but can be represented by several VIDs where Shared VLAN Learning (SVL) is used per [IEEE.802.1ah].

Bridge Table: An instantiation of a broadcast domain on a MAC-VRF

RIB: Routing Information Base - An instantiation of a routing table on a MAC-VRF

FIB: Forwarding Information Base - An instantiation of a forwarding table on a MAC-VRF

CE: A Customer Edge device, e.g., a host, router, or switch.
MAC-VRF: A Virtual Routing and Forwarding table for Media Access Control (MAC) addresses on an EVPN PE.

MAC address: Media Access Control address

C-MAC address: Customer MAC address - e.g., host or CE’s MAC address

B-MAC address: Backbone MAC address - e.g., PE’s MAC address

Ethernet segment (ES): Refers to the set of Ethernet links that connects a customer site (device or network) to one or more PEs.

Ethernet Tag: An Ethernet Tag identifies a particular broadcast domain, e.g., a VLAN. An EVPN instance consists of one or more broadcast domains

FEC: Forwarding Equivalence Class

LSP: Label Switched Path

MHD: Multi-Homed Device

MHN: Multi-Homed Network

P2MP: Point to Multipoint - a P2MP LSP typically refers to a LSP for multicast traffic

MP2P: Multipoint to Point - a MP2P LSP typically refers to a LSP for unicast traffic as the result of downstream-assigned label

PBB: Provider Backbone Bridge

PE: Provider Edge device

VSI: Virtual Switch Instance

VPLS: Virtual Private LAN Service

Single-Active Redundancy Mode: When only a single PE, among all the PEs attached to an Ethernet segment, is allowed to forward traffic to/from that Ethernet segment for a given VLAN, then the Ethernet segment is defined to be operating in Single-Active redundancy mode.

All-Active Redundancy Mode: When all PEs attached to an Ethernet segment are allowed to forward known unicast traffic to/from that Ethernet segment for a given VLAN, then the Ethernet segment is defined to be operating in All-Active redundancy mode.
(PBB-)EVPN: refers to both, PBB-EVPN and EVPN. This document uses this abbreviation when a given description applies to both technologies.

(PBB-)VPLS: refers to both, PBB-VPLS and VPLS. This document uses this abbreviation when a given description applies to both technologies.

VPLS A-D: refers to Virtual Private LAN Services with BGP-based Auto Discovery as in [RFC6074].

PW: Pseudowire

I-SID: Ethernet Services Instance Identifier

2. Requirements

Following are the key requirements for backward compatibility between (PBB-)EVPN and (PBB-)VPLS:

1. The solution must allow for staged migration towards (PBB-)EVPN on a site-by-site basis per VPN instance - e.g., new EVPN sites to be provisioned on (PBB-)EVPN Provider Edge devices (PEs).

2. The solution must not require any changes to existing VPLS or PBB-VPLS PEs, not even a software upgrade.

3. The solution must allow for the co-existence of PE devices running (PBB-)EVPN and (PBB-)VPLS for the same VPN instance and single-homed segments.

4. The solution must support single-active redundancy of multi-homed networks and multi-homed devices for (PBB-)EVPN PEs.

5. In case of single-active redundancy, the participant VPN instances may span across both (PBB-)EVPN PEs and (PBB-)VPLS PEs as long as the MHD or MHN is connected to (PBB-)EVPN PEs.

6. The support of All-Active redundancy mode across both (PBB-)EVPN PEs and (PBB-)VPLS PEs is outside the scope of this document. All-Active redundancy is not applicable to VPLS and PBB-VPLS. Therefore, when EVPN (or PBB-EVPN) PEs need to operate seamlessly with VPLS (or PBB-VPLS) PEs, then they MUST use a redundancy mode that is applicable to VPLS (or PBB-VPLS). This redundancy mode is Single-Active.
These requirements collectively allow for the seamless insertion of the (PBB-)EVPN technology into brown-field (PBB-)VPLS deployments.

3 VPLS Integration with EVPN

In order to support seamless integration with VPLS PEs, this document requires that VPLS PEs support VPLS A-D per [RFC6074] and EVPN PEs support both BGP EVPN routes per [RFC7432] and VPLS A-D per [RFC6074]. All the logic for seamless integration shall reside on the EVPN PEs. If a VPLS instance is setup without the use of VPLS A-D, it is still possible (but cumbersome) for EVPN PEs to integrate into that VPLS instance by manually configuring Pseudowires (PWs) to all the VPLS PEs in that instance (i.e., the integration is no longer seamless).

3.1 Capability Discovery

The EVPN PEs MUST advertise both the BGP VPLS Auto-Discovery (A-D) route as well as the BGP EVPN Inclusive Multicast Ethernet Tag (IMET) route for a given VPN instance. The VPLS PEs only advertise the BGP VPLS A-D route, per the procedures specified in [RFC4761], [RFC4762] and [RFC6074]. The operator may decide to use the same Route Target (RT) to identify a VPN on both EVPN and VPLS networks. In this case, when a VPLS PE receives the EVPN IMET route, it MUST ignore it on the basis that it belongs to an unknown SAFI. However, the operator may choose to use two RTs - one to identify the VPN on VPLS network and another for EVPN network and employ RT-constrained [RFC4684] in order to prevent BGP EVPN routes from reaching the VPLS PEs.

When an EVPN PE receives both a VPLS A-D route as well as an EVPN IMET route from a given remote PE for the same VPN instance, it MUST give preference to the EVPN route for the purpose of discovery. This ensures that, at the end of the route exchanges, all EVPN capable PEs discover other EVPN capable PEs in addition to the VPLS-only PEs for that VPN instance. Furthermore, all the VPLS-only PEs will discover the EVPN PEs as if they were standard VPLS PEs. In other words, when the discovery phase is complete, the EVPN PEs will have discovered all the PEs in the VPN instance along with their associated capability (EVPN or VPLS-only), whereas the VPLS PEs will have discovered all the PEs in the VPN instance as if they were all VPLS-only PEs.

3.2 Forwarding Setup and Unicast Operation

The procedures for forwarding state setup and unicast operation on the VPLS PE are per [RFC8077], [RFC4761], [RFC4762].
The procedures for forwarding state setup and unicast operation on the EVPN PE are as follows:

- The EVPN PE MUST establish a PW to each remote PE from which it has received only a VPLS A-D route for the corresponding VPN instance, and MUST set up the label stack corresponding to the PW FEC. For seamless integration between EVPN and VPLS PEs, the PW that is setup between a pair of VPLS and EVPN PEs is between the VSI of the VPLS PE and the MAC-VRF of the EVPN PE.

- The EVPN PE MUST set up the label stack corresponding to the MP2P VPN unicast FEC to any remote PE that has advertised EVPN IMET route.

- If an EVPN PE receives a VPLS A-D route from a given PE, it sets up a PW to that PE. If it then receives an EVPN IMET route from the same PE, then the EVPN PE MUST bring that PW operationally down.

- If an EVPN PE receives an EVPN IMET route followed by a VPLS A-D route from the same PE, then the EVPN PE will setup the PW but MUST keep it operationally down.

- If VPLS A-D is not used in some VPLS PEs, the EVPN PEs need to be provisioned manually with PWs to those remote VPLS PEs for each VPN instance. In that case, if an EVPN PE receives an EVPN IMET route from a PE to which a PW exists, the EVPN PE MUST bring the PW operationally down.

When the EVPN PE receives traffic over the VPLS PWs, it learns the associated C-MAC addresses in the data-plane. The C-MAC addresses learned over these PWs MUST be injected into the bridge table of the associated MAC-VRF on that EVPN PE. The learned C-MAC addresses MAY also be injected into the RIB/FIB tables of the associated MAC-VRF on that EVPN PE. For seamless integration between EVPN and VPLS PEs, since these PWs belong to the same split-horizon group ([RFC4761] and [RFC4762]) as the MP2P EVPN service tunnels, then the C-MAC addresses learned and associated to the PWs MUST NOT be advertised in the control plane to any remote EVPN PEs. This is because every EVPN PE can send and receive traffic directly to/from every VPLS PE belonging to the same VPN instance and thus every EVPN PE can learn the C-MAC addresses over the corresponding PWs directly.

The C-MAC addresses learned over local Attachment Circuits (ACs) by an EVPN PE are learned in data-plane. For EVPN PEs, these C-MAC addresses MUST be injected into the corresponding MAC-VRF and advertised in the control-plane using BGP EVPN routes. Furthermore, the C-MAC addresses learned in the control plane via the BGP EVPN routes sent by remote EVPN PEs, are injected into the corresponding MAC-VRF table.
In case of a link failure in a single-active Ethernet Segment, the EVPN PEs MUST perform both of the following tasks:

a) send a BGP mass-withdraw to the EVPN peers

b) follow existing VPLS MAC Flush procedures with the VPLS peers.

3.3 MAC Mobility

In EVPN, host addresses (C-MAC addresses) can move around among EVPN PEs or even between EVPN and VPLS PEs.

When a C-MAC address moves from an EVPN PE to a VPLS PE, then as soon as Broadcast/Unknown-unicast/Multicast (BUM) traffic is initiated from that MAC address, it is flooded to all other PEs (both VPLS and EVPN PEs) and the receiving PEs update their MAC tables (VSI or MAC-VRF). The EVPN PEs do not advertise the C-MAC addresses learned over the PW to each other because every EVPN PE learns them directly over its associated PW to that VPLS PE. If only known-unicast traffic is initiated from the moved C-MAC address toward a known C-MAC, then this can result in black-holing of traffic destined to the C-MAC that has moved until there is a BUM traffic originated with the moved C-MAC address as the source MAC address (e.g., as a result of MAC age-out timer expires). Such black-holing happens for traffic destined to the moved C-MAC from both EVPN and VPLS PEs. It should be noted that such black-holing behavior is typical for VPLS PEs.

When a C-MAC address moves from a VPLS PE to an EVPN PE, then as soon as any traffic is initiated from that C-MAC address, the C-MAC is learned and advertised in BGP to other EVPN PEs and MAC mobility procedure is exercised among EVPN PEs. For BUM traffic, both EVPN and VPLS PEs learn the new location of the moved C-MAC address; however, if there is only known-unicast traffic, then only EVPN PEs learn the new location of the C-MAC that has moved but not VPLS PEs. This can result in black-holing of traffic sent from VPLS PEs destined to the C-MAC that has moved until there is a BUM traffic originated with the moved C-MAC address as the source MAC address (e.g., as a result of MAC age-out timer expires). Such black-holing happens for traffic destined to the moved C-MAC for only VPLS PEs but not for EVPN PEs. It should be noted that such black-holing behavior is typical for VPLS PEs.

3.4 Multicast Operation

3.4.1 Ingress Replication

The procedures for multicast operation on the VPLS PE, using ingress
replication, are per [RFC4761], [RFC4762], and [RFC7080].

The procedures for multicast operation on the EVPN PE, for ingress replication, are as follows:

- The EVPN PE builds a replication sub-list to all the remote EVPN PEs per EVPN instance as the result of the exchange of the EVPN IMET routes per [RFC7432]. This will be referred to as sub-list A. It comprises MP2P service tunnels (for ingress replication) used for delivering EVPN BUM traffic [RFC7432].

- The EVPN PE builds a replication sub-list per VPLS instance to all the remote VPLS PEs. This will be referred to as sub-list B. It comprises PWs from the EVPN PE in question to all the remote VPLS PEs in the same VPLS instance.

The replication list, maintained per VPN instance, on a given EVPN PE will be the union of sub-list A and sub-list B. The EVPN PE MUST enable split-horizon over all the entries in the replication list, across both PWs and MP2P service tunnels.

3.4.2 P2MP Tunnel

The procedures for multicast operation on the EVPN PEs using P2MP tunnels are outside of the scope of this document.

4 PBB-VPLS Integration with PBB-EVPN

In order to support seamless integration between PBB-VPLS and PBB-EVPN PEs, this document requires that PBB-VPLS PEs support VPLS A-D per [RFC6074] and PBB-EVPN PEs support both BGP EVPN routes per [RFC7432] and VPLS A-D per [RFC6074]. All the logic for this seamless integration shall reside on the PBB-EVPN PEs.

4.1 Capability Discovery

The procedures for capability discovery are per Section 3.1 above.

4.2 Forwarding Setup and Unicast Operation

The procedures for forwarding state setup and unicast operation on the PBB-VPLS PE are per [RFC8077] and [RFC7080].

The procedures for forwarding state setup and unicast operation on the PBB-EVPN PE are as follows:
- The PBB-EVPN PE MUST establish a PW to each remote PBB-VPLS PE from which it has received only a VPLS A-D route for the corresponding VPN instance, and MUST set up the label stack corresponding to the PW FEC. For seamless integration between PBB-EVPN and PBB-VPLS PEs, the PW that is setup between a pair of PBB-VPLS and PBB-EVPN PEs, is between B-components of PBB-EVPN PE and PBB-VPLS PE per section 4 of [RFC7041].

- The PBB-EVPN PE MUST set up the label stack corresponding to the MP2P VPN unicast FEC to any remote PBB-EVPN PE that has advertised EVPN IMET route.

- If a PBB-EVPN PE receives a VPLS A-D route from a given PE, it sets up a PW to that PE. If it then receives an EVPN IMET route from the same PE, then the PBB-EVPN PE MUST bring that PW operationally down.

- If a PBB-EVPN PE receives an EVPN IMET route followed by a VPLS A-D route from the same PE, then the PBB-EVPN PE will setup the PW but MUST keep it operationally down.

- In case VPLS A-D is not used in some PBB-VPLS PEs, the PBB-EVPN PEs need to be provisioned manually with PWs to those remote PBB-VPLS PEs for each VPN instance. In that case, if a PBB-EVPN PE receives an EVPN IMET route from a PE to which a PW exists, the PBB-EVPN PE MUST bring the PW operationally down.

- When the PBB-EVPN PE receives traffic over the PBB-VPLS PWs, it learns the associated B-MAC addresses in the data-plane. The B-MAC addresses learned over these PWs MUST be injected into the bridge table of the associated MAC-VRF on that PBB-EVPN PE. The learned B-MAC addresses MAY also be injected into the RIB/FIB tables of the associated the MAC-VRF on that BFP-EVPN PE. For seamless integration between PBB-EVPN and PBB-VPLS PEs, since these PWs belongs to the same split-horizon group as the MP2P EVPN service tunnels, then the B-MAC addresses learned and associated to the PWs MUST NOT be advertised in the control plane to any remote PBB-EVPN PEs. This is because every PBB-EVPN PE can send and receive traffic directly to/from every PBB-VPLS PE belonging to the same VPN instance.

- The C-MAC addresses learned over local Attachment Circuits (ACs) by an PBB-EVPN PE are learned in data-plane. For PBB-EVPN PEs, these C-MAC addresses are learned in I-component of PBB-EVPN PEs and they are not advertised in the control-plane per [RFC7623].

- The B-MAC addresses learned in the control plane via the BGP EVPN routes sent by remote PBB-EVPN PEs, are injected into the corresponding MAC-VRF table.
In case of a link failure in a single-active Ethernet Segment, the PBB-EVPN PEs MUST perform both of the following tasks:

a) send a BGP B-MAC withdraw message to the PBB-EVPN peers OR MAC advertisement with MAC Mobility extended community

b) follow existing VPLS MAC Flush procedures with the PBB-VPLS peers

4.3 MAC Mobility

In PBB-EVPN, a given B-MAC address can be learned either over the BGP control-plane from a remote PBB-EVPN PE, or in the data-plane over a PW from a remote PBB-VPLS PE. There is no mobility associated with B-MAC addresses in this context. Hence, when the same B-MAC address shows up behind both a remote PBB-VPLS PE as well as a PBB-EVPN PE, the local PE can deduce that it is an anomaly and SHOULD notify the operator.

4.4 Multicast Operation

4.4.1 Ingress Replication

The procedures for multicast operation on the PBB-VPLS PE, using ingress replication, are per [RFC7041] and [RFC7080].

The procedures for multicast operation on the PBB-EVPN PE, for ingress replication, are as follows:

- The PBB-EVPN PE builds a replication sub-list per I-SID to all the remote PBB-EVPN PEs in a given VPN instance as a result of the exchange of the EVPN IMET routes, as described in [RFC7623]. This will be referred to as sub-list A. It comprises MP2P service tunnels used for delivering PBB-EVPN BUM traffic.

- The PBB-EVPN PE builds a replication sub-list per VPN instance to all the remote PBB-VPLS PEs. This will be referred to as sub-list B. It comprises PWs from the PBB-EVPN PE in question to all the remote PBB-VPLS PEs in the same VPN instance.

- The PBB-EVPN PE may further prune sub-list B, on a per I-SID basis, by running [MMRP] over the PBB-VPLS network. This will be referred to as sub-list C. This list comprises a pruned set of the PWs in the sub-list B.

The replication list maintained per I-SID on a given PBB-EVPN PE will be the union of sub-list A and sub-list B if [MMRP] is not used, and
the union of sub-list A and sub-list C if [MMRP] is used. Note that
the PE MUST enable split-horizon over all the entries in the
replication list, across both pseudowires and MP2P service tunnels.

4.4.2 P2MP Tunnel - Inclusive Tree

The procedures for multicast operation on the PBB-EVPN PEs using P2MP
tunnels are outside of the scope of this document.

5 Security Considerations

All the security considerations in [RFC4761], [RFC4762], [RFC7080],
[RFC7432], and [RFC7623] apply directly to this document because this
document leverages the control plane and the data plane procedures
described in these RFCs.

This document does not introduce any new security considerations
beyond that of the above RFCs because the advertisements and
processing of MAC addresses in BGP follow that of [RFC7432] and
processing of MAC addresses learned over PWs follow that of
[RFC4761], [RFC4762], and [RFC7080].

6 IANA Considerations

This document has no actions for IANA.

7 References

7.1 Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

[RFC7432] Sajassi et al., "BGP MPLS Based Ethernet VPN", RFC 7432,
February, 2015.

7.2 Informative References

Authors’ Addresses

Ali Sajassi
Cisco
Email: sajassi@cisco.com

Samer Salam
Cisco
Email: ssalam@cisco.com

Nick Del Regno
Verizon
Email: nick.delregno@verizon.com

Jorge Rabadan
Nokia
Email: jorge.rabadan@nokia.com