Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes two MIB modules which will be used by other MIB modules for monitoring and/or configuring Layer 2 and Layer 3 Virtual Private Networks that support multicast.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 12, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
1. Introduction

In BGP/MPLS Virtual Private Networks (VPNs), Border Gateway Protocol (BGP) is used for distributing routes and MultiProtocol Label Switching (MPLS) is used for forwarding packets across service provider networks.

The procedures for supporting multicast in BGP/MPLS Layer 3 (L3) VPN are specified in [RFC6513]. The procedures for supporting multicast in BGP/MPLS Layer 2 (L2) VPN are specified in [RFC7117]. Throughout this document, we will use the term "L2L3VpnMCast network" to mean BGP/MPLS L2 and L3 VPN that support multicast.

L2L3VpnMCast networks use various transport mechanisms for forwarding a packet to all or a subset of Provider Edge routers (PEs) across service provider networks. These transport mechanisms are abstracted as provider tunnels (P-tunnels). The type of a P-tunnel indicates the type of the tunneling technology used to establish the P-tunnel. The syntax and semantics of a Tunnel identifier is determined by the corresponding P-tunnel type [RFC6514]. P-tunnel type and P-tunnel identifier together identify a P-tunnel.

A BGP attribute that specifies information of a P-tunnel is called Provider Multicast Service Interface (PMSI) tunnel attribute. The PMSI tunnel attribute is advertised/received by PEs in BGP auto-discovery (A-D) routes. [RFC6514] defines the format of a PMSI tunnel attribute. P-tunnel type and the P-tunnel identifier are included in the corresponding PMSI tunnel attribute.
This document describes textual conventions (TCs) and common managed objects (MOs) which will be used by other Management Information Base (MIB) modules for monitoring and/or configuring L2L3VpnMCast networks.

This document defines two TCs to represent

(a) the type of a P-tunnel and
(b) the identifier of a P-tunnel

respectively.

The document also defines MOs that will provide the information contained in a PMSI tunnel attribute and corresponding P-tunnel information.

1.1. Terminology

This document adopts the definitions, acronyms and mechanisms described in [RFC6513] [RFC6514] [RFC7117] and other documents that they refer to. Familiarity with Multicast, MPLS, Layer 3 VPN, Multicast VPN concepts and/or mechanisms is assumed. Some terms specifically related to this document are explained below.

"Provider Multicast Service Interface (PMSI)" [RFC6513] is a conceptual interface instantiated by a P-tunnel, a transport mechanism used to deliver multicast traffic. A PE uses it to send customer multicast traffic to all or some PEs in the same VPN.

There are two kinds of PMSIs: "Inclusive PMSI (I-PMSI)" and "Selective PMSI (S-PMSI)" [RFC6513]. An I-PMSI is a PMSI that enables a PE attached to a particular Multicast VPN to transmit a message to all PEs in the same VPN. An S-PMSI is a PMSI that enables a PE attached to a particular Multicast VPN to transmit a message to some of the PEs in the same VPN.

Throughout this document, we will use the term "PMSI" to refer both "I-PMSI" and "S-PMSI."

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Summary of MIB Modules

This document defines two MIB modules: L2L3-VPN-MCAST-TC-MIB and L2L3-VPN-MCAST-MIB.

- L2L3-VPN-MCAST-TC-MIB contains two Textual Conventions:
 - L2L3VpnMcastProviderTunnelType
 - L2L3VpnMcastProviderTunnelId
 L2L3VpnMcastProviderTunnelType provides an enumeration of the P-tunnel types. L2L3VpnMcastProviderTunnelId represents an identifier of a P-tunnel.

- L2L3-VPN-MCAST-MIB defines a table l2L3VpnMcastPmsiTunnelAttributeTable. An entry in this table corresponds to the attribute information of a specific P-tunnel on a PE router. Entries in this table will be used by other MIB modules for monitoring and/or configuring L2L3VpnMCast network. The table index uniquely identifies a P-tunnel. It is composed of a type and identifier of a P-tunnel. The table may also be used in conjunction with other MIBs, such as MPLS Traffic Engineering MIB (MPLS-TE-STD-MIB) [RFC3812], to obtain further information about a P-tunnel. It may also be used in conjunction with the Interfaces Group MIB (IF-MIB) [RFC2863] to obtain further information about the interface corresponding to a P-tunnel.

4. Definitions

4.1. L2L3-VPN-MCAST-TC-MIB Object Definitions

L2L3-VPN-MCAST-TC-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, mib-2
 FROM SNMPv2-SMI -- [RFC2578]

Zhang & Tsunoda Expires February 12, 2019 [Page 4]
l2L3VpnMcastTCMIB MODULE-IDENTITY
LAST-UPDATED "201808101200Z" -- 10th August, 2018
ORGANIZATION "IETF BESS Working Group."
CONTACT-INFO
" Zhaohui Zhang
Juniper Networks, Inc.
10 Technology Park Drive
Westford, MA 01886
USA
Email: zzhang@juniper.net

Hiroshi Tsunoda
Tohoku Institute of Technology
35-1, Yagiyama Kasumi-cho
Taihaku-ku, Sendai, 982-8577
Japan
Email: tsuno@m.ieice.org

Comments and discussion to bess@ietf.org"

DESCRIPTION
"This MIB module specifies textual conventions for
Border Gateway Protocol/MultiProtocol Label
Switching Layer 2 and Layer 3 Virtual Private Networks
that support multicast (L2L3VpnMCast networks).

Copyright (C) The Internet Society (2018).
"

-- Revision history.

REVISION "201808101200Z" -- 10th August, 2018
DESCRIPTION
"Initial version, published as RFC XXXX."

-- RFC Ed.: replace XXXX with actual RFC number and remove this note

::= { mib-2 AAAA }

-- IANA Reg.: Please assign a value for "AAAA" under the
-- ‘mib-2’ subtree and record the assignment in the SMI
-- Numbers registry.

-- RFC Ed.: When the above assignment has been made, please
-- remove the above note
-- Textual convention

L2L3VpnMcastProviderTunnelType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "This textual convention enumerates values representing the type of a provider tunnel (P-tunnel) used for L2L3VpnMcast networks. These labeled numbers are aligned with the definition of Tunnel types in Section 5 of [RFC6514] and Section 14.1 of [RFC7524].

The enumerated values and the corresponding P-tunnel types are as follows:

noTunnelInfo (0) : no tunnel information present
 [RFC6514]
rsvpP2mp (1) : RSVP-TE P2MP LSP [RFC4875]
ldpP2mp (2) : mLDP P2MP LSP [RFC6388]
pimSsm (3) : PIM-SSM Tree [RFC7761]
pimAsm (4) : PIM-SM Tree [RFC7761]
pimBidir (5) : BIDIR-PIM Tree [RFC5015]
ingressReplication (6) : Ingress Replication [RFC6513]
ldpMp2mp (7) : mLDP MP2MP LSP [RFC6388]
transportTunnel (8) : Transport Tunnel [RFC7524]

These numbers are registered at IANA. A current list of assignments can be found at <https://www.iana.org/assignments/bgp-parameters/bgp-parameters.xhtml#pmsi-tunnel-types>.

"REFERENCE
"RFC4875
RFC5015
RFC6388
RFC6513
RFC6514, Section 5
RFC7524, Section 14.1
RFC7761
"
SYNTAX INTEGER
{
 noTunnelInfo (0),
 rsvpP2mp (1),
 ldpP2mp (2),
 pimSsm (3),
 pimAsm (4),
 pimBidir (5),
 ingressReplication (6),
 ldpMp2mp (7),
 transportTunnel (8)
}

L2L3VpnMcastProviderTunnelId ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION
"This textual convention represents the tunnel identifier of a P-tunnel.

The size of the identifier depends on the address family (IPv4 or IPv6) and the value of the corresponding L2L3VpnMcastProviderTunnelType object.

The corresponding L2L3VpnMcastProviderTunnelType object represents the type of the tunneling technology used to establish the P-tunnel.

The size of the identifier for each tunneling technology is summarized below.

<table>
<thead>
<tr>
<th>L2L3VpnMcastProviderTunnelType</th>
<th>Size (in octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tunneling technology)</td>
<td>IPv4 IPv6</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>noTunnelInfo</td>
<td>0 0</td>
</tr>
<tr>
<td>rsvpP2mp</td>
<td>12 24</td>
</tr>
<tr>
<td>ldpP2mp</td>
<td>17 29</td>
</tr>
<tr>
<td>pimSsm</td>
<td>8 32</td>
</tr>
<tr>
<td>pimAsm</td>
<td>8 32</td>
</tr>
<tr>
<td>pimBidir</td>
<td>8 32</td>
</tr>
<tr>
<td>ingressReplication</td>
<td>4 16</td>
</tr>
<tr>
<td>ldpMp2mp</td>
<td>17 29</td>
</tr>
<tr>
<td>transportTunnel</td>
<td>8 32</td>
</tr>
</tbody>
</table>

Tunnel type is set to 'No tunnel information present' when the PMSI Tunnel attribute carries no tunnel information (there is no Tunnel Identifier).

The value of the corresponding L2L3VpnMcastProviderTunnelId object will be a string of length zero.
For tunnel type rsvpP2mp(1), the corresponding Tunnel Identifier is composed of Extended Tunnel ID (4 octets in IPv4, 16 octets in IPv6), Reserved (2 octets), Tunnel ID (2 octets), and P2MP ID (4 octets).

The size of the corresponding L2L3VpnMcastProviderTunnelId object will be 12 octets in IPv4 and 24 octets in IPv6.

For tunnel type ldpP2mp(2), the corresponding Tunnel Identifier is the P2MP Forwarding Equivalence Class (FEC) Element [RFC6388]. The size of the corresponding L2L3VpnMcastProviderTunnelId object will be 17 octets in IPv4 and 29 octets in IPv6.

For tunnel type pimSsm(3), PimAsm(4), and PimBidir(5), the corresponding Tunnel Identifier is composed of the source IP address and the group IP address.

The size of the corresponding L2L3VpnMcastProviderTunnelId object will be 8 octets in IPv4 and 32 octets in IPv6.

For tunnel type ingressReplication(6), the Tunnel Identifier is the unicast tunnel endpoint IP address of the local PE.

The size of the corresponding L2L3VpnMcastProviderTunnelId object will be 4 octets in IPv4 and 16 octets in IPv6.

For tunnel type ldpMp2mp(7), the Tunnel Identifier is MP2MP FEC Element [RFC6388].

The size of the corresponding L2L3VpnMcastProviderTunnelId object will be 17 octets in IPv4 and 29 octets in IPv6.

For tunnel type transportTunnel(8), the Tunnel Identifier is a tuple of Source PE Address and Local Number, which is a number that is unique to the Source PE [RFC7524].

Both Source PE Address and Local Number are 4 octets in IPv4 and 16 octets in IPv6.

The size of the corresponding L2L3VpnMcastProviderTunnelId object will be 8 octets in IPv4 and 32 octets in IPv6.

"REFERENCE
"RFC6514, Section 5
RFC4875, Section 19.1
RFC6388, Section 2.2 and 3.2
RFC7524, Section 14.1
" SYNTAX OCTET STRING (SIZE (0|4|8|12|16|17|24|29|32)) END
4.2. L2L3-VPN-MCAST-MIB Object Definitions

L2L3-VPN-MCAST-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, mib-2, zeroDotZero
 FROM SNMPv2-SMI -- [RFC2578]

 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF -- [RFC2580]

 RowPointer
 FROM SNMPv2-TC -- [RFC2579]

 MplsLabel
 FROM MPLS-TC-STD-MIB -- [RFC3811]

 L2L3VpnMcastProviderTunnelType,
 L2L3VpnMcastProviderTunnelId
 FROM L2L3-VPN-MCAST-TC-MIB; -- [RFCXXXX]

-- RFC Ed.: replace XXXX with actual RFC number and remove this note

L2L3VpnMcastMIB MODULE-IDENTITY
 LAST-UPDATED "201808101200Z" -- 10th August, 2018
 ORGANIZATION "IETF BESS Working Group."
 CONTACT-INFO
 " Zhaohui Zhang
 Juniper Networks, Inc.
 10 Technology Park Drive
 Westford, MA 01886
 USA
 Email: zzhang@juniper.net
 "

 " Hiroshi Tsunoda
 Tohoku Institute of Technology
 35-1, Yagiyama Kasumi-cho
 Taihaku-ku, Sendai, 982-8577
 Japan
 Email: tsuno@m.ieice.org
 "

 Comments and discussion to bess@ietf.org

Zhang & Tsunoda Expires February 12, 2019 [Page 9]
DESCRIPTION
"This MIB module defines a table representing the attribute information of the provider tunnels (P-tunnels) on a PE router. This MIB module will be used by other MIB modules designed for monitoring and/or configuring Border Gateway Protocol/MultiProtocol Label Switching Layer 2 and Layer 3 Virtual Private Network that support multicast (L2L3VpnMCast network). Copyright (C) The Internet Society (2018)."

-- Revision history.

REVISION "201808101200Z" -- 10th August, 2018
DESCRIPTION
"Initial version, published as RFC XXXX."

-- RFC Ed.: replace XXXX with actual RFC number and remove this note

::= { mib-2 BBBB }

-- IANA Reg.: Please assign a value for "BBBB" under the
-- 'mib-2' subtree and record the assignment in the SMI
-- Numbers registry.

-- RFC Ed.: When the above assignment has been made, please
-- remove the above note
-- replace "BBBB" here with the assigned value and
-- remove this note.

-- Top level components of this MIB.
12L3VpnMcastStates OBJECT IDENTIFIER
 ::= { 12L3VpnMcastMIB 1 }

12L3VpnMcastConformance OBJECT IDENTIFIER
 ::= { 12L3VpnMcastMIB 2 }

-- tables, scalars, conformance information
-- Table of PMSI Tunnel Attributes

12L3VpnMcastPmsiTunnelAttributeTable OBJECT-TYPE
 SYNTAX SEQUENCE OF L2L3VpnMcastPmsiTunnelAttributeEntry
 MAX-ACCESS not-accessible
 STATUS current

Zhang & Tsunoda Expires February 12, 2019 [Page 10]
DESCRIPTION

"An entry in this table corresponds to
the attribute information of a specific
P-tunnel on a PE router.
A part of attributes correspond to fields in
a Provider Multicast Service Interface (PMSI) Tunnel
attribute advertised and received by a PE router.
The entries will be referred to by other MIB modules
for monitoring and/or configuring L2L3VpnMCast networks.
"

REFERENCE

"RFC6514, Section 5"
::= { l2L3VpnMcastStates 1 }

l2L3VpnMcastPmsiTunnelAttributeEntry OBJECT-TYPE
SYNTAX L2L3VpnMcastPmsiTunnelAttributeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"A conceptual row corresponding to a specific
P-tunnel on this router.
"

REFERENCE

"RFC6514, Section 5"
INDEX {
 l2L3VpnMcastPmsiTunnelAttributeType,
 l2L3VpnMcastPmsiTunnelAttributeId
}
::= { l2L3VpnMcastPmsiTunnelAttributeTable 1 }

L2L3VpnMcastPmsiTunnelAttributeEntry ::= SEQUENCE {
 l2L3VpnMcastPmsiTunnelAttributeType
 L2L3VpnMcastProviderTunnelType,
 l2L3VpnMcastPmsiTunnelAttributeId
 L2L3VpnMcastProviderTunnelId,
 l2L3VpnMcastPmsiTunnelLeafInfoRequired
 INTEGER,
 l2L3VpnMcastPmsiTunnelAttributeMplsLabel
 MplsLabel,
 l2L3VpnMcastPmsiTunnelPointer
 RowPointer,
 l2L3VpnMcastPmsiTunnelIf
 RowPointer
}

12L3VpnMcastPmsiTunnelAttributeType OBJECT-TYPE
SYNTAX L2L3VpnMcastProviderTunnelType
This object indicates the type of the tunneling technology used to establish the P-tunnel corresponding to this entry.

When BGP-based PMSI signaling is used, the value of this object corresponds to the Tunnel Type field in the PMSI Tunnel attribute advertised/received in a PMSI auto-discovery (A-D) route.

REFERENCE

"RFC6514, Section 5"

::= { l2L3VpnMcastPmsiTunnelAttributeEntry 1 }

l2L3VpnMcastPmsiTunnelAttributeId OBJECT-TYPE
SYNTAX L2L3VpnMcastProviderTunnelId
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

This object represents the Tunnel Identifier field, which uniquely identifies a P-tunnel, in the PMSI Tunnel attribute of the P-tunnel corresponding to this entry.

The size of the identifier depends on the address family (IPv4 or IPv6) and the value of the corresponding l2L3VpnMcastPmsiTunnelAttributeType object i.e., the type of the tunneling technology used to establish the P-tunnel.

REFERENCE

"RFC6514, Section 5"

::= { l2L3VpnMcastPmsiTunnelAttributeEntry 2 }

l2L3VpnMcastPmsiTunnelLeafInfoRequired OBJECT-TYPE
SYNTAX INTEGER {
 false (0),
 true (1),
 notAvailable (2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

When the value of this object is set to 1 (true), it indicates that the PE which originated the PMSI Tunnel attribute of the P-tunnel corresponding to this entry requests receivers to originate a new Leaf A-D (Auto-Discovery) route.
A value of 0 (false) indicates that there is no such request.

When the P-tunnel does not have a corresponding PMSI tunnel attribute, the value of this object will be 2 (notAvailable).

In the case of Multicast in MPLS/BGP IP VPNs, this object represents the 'Leaf Information Required flag' [RFC6514] in the Flags field in the PMSI Tunnel attribute of the P-tunnel corresponding to this entry.

REFERENCE

"RFC6514, Section 5"

::= { l2L3VpnMcastPmsiTunnelAttributeEntry 3 }

12L3VpnMcastPmsiTunnelAttributeMplsLabel OBJECT-TYPE
SYNTAX MplsLabel
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object represents the MPLS Label in the PMSI Tunnel attribute of the P-tunnel corresponding to this entry.

When BGP-based PMSI signaling is used, the PMSI Tunnel attribute of the P-tunnel will be advertised/received in a PMSI auto-discovery (A-D) route. The value of this object corresponds to the MPLS Label in the attribute.

When the P-tunnel does not have a PMSI tunnel attribute, the value of this object will be 0.

REFERENCE

"RFC6514, Section 5"

::= { l2L3VpnMcastPmsiTunnelAttributeEntry 4 }

12L3VpnMcastPmsiTunnelPointer OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Details of a P-tunnel identified by l2L3VpnMcastPmsiTunnelAttributeId may be present in some other table, e.g., mplsTunnelTable [RFC3812]. This object specifies the pointer to the row that pertains to the entry in the table.
If no such entry exists, the value of this object will be zeroDotZero.

REFERENCES
"RFC3812, Section 6.1 and Section 11"
DEFVAL { zeroDotZero }

 ::= { l2L3VpnMcastPmsiTunnelAttributeEntry 5 }

12L3VpnMcastPmsiTunnelIf OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the P-tunnel identified by 12L3VpnMcastPmsiTunnelAttributeId has a corresponding entry in ifXTable [RFC2863], this object will point to the row in ifXTable that pertains to the entry. Otherwise, the value of this object will be zeroDotZero."

REFERENCES
"RFC2863, Section 6"
DEFVAL { zeroDotZero }
 ::= { l2L3VpnMcastPmsiTunnelAttributeEntry 6 }

-- Conformance Information

12L3VpnMcastCompliances OBJECT IDENTIFIER
 ::= { 12L3VpnMcastConformance 1 }
12L3VpnMcastGroups OBJECT IDENTIFIER
 ::= { 12L3VpnMcastConformance 2 }

-- Compliance Statements

12L3VpnMcastCoreCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The core compliance statement for SNMP entities which implement the L2L3-VPN-MCAST-MIB Module."
MODULE -- this module
MANDATORY-GROUPS {
 12L3VpnMcastCoreGroup
}
 ::= { 12L3VpnMcastCompliances 1 }
12L3VpnMcastFullCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The full compliance statement for SNMP entities
 which implement the L2L3-VPN-MCAST-MIB Module."
 MODULE -- this module

 MANDATORY-GROUPS {
 12L3VpnMcastCoreGroup,
 12L3VpnMcastOptionalGroup
 }
 ::= { 12L3VpnMcastCompliances 2 }

 -- units of conformance

12L3VpnMcastCoreGroup OBJECT-GROUP
 OBJECTS {
 12L3VpnMcastPmsiTunnelLeafInfoRequired,
 12L3VpnMcastPmsiTunnelAttributeMplsLabel
 }
 STATUS current
 DESCRIPTION
 "Support of these objects is required."
 ::= { 12L3VpnMcastGroups 1 }

12L3VpnMcastOptionalGroup OBJECT-GROUP
 OBJECTS {
 12L3VpnMcastPmsiTunnelPointer,
 12L3VpnMcastPmsiTunnelIf
 }
 STATUS current
 DESCRIPTION
 "Support of these objects is optional."
 ::= { 12L3VpnMcastGroups 2 }

END

5. Security Considerations

There are no management objects defined in these MIB modules that
have a MAX-ACCESS clause of read-write and/or read-create. So, if
this MIB module is implemented correctly, then there is no risk that
an intruder can alter or create any management objects of this MIB
module via direct SNMP SET operations.

Some of the readable objects in these MIB modules (i.e., objects with
a MAX-ACCESS other than not-accessible) may be considered sensitive
or vulnerable in some network environments. It is thus important to
control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:

- the l2L3VpnMcastPmsiTunnelAttributeTable collectively shows the P-tunnel network topology and its performance characteristics. For instance, l2L3VpnMcastPmsiTunnelAttributeId in this table will contain the identifier that uniquely identifies a P-tunnel. This identifier may be composed of source and multicast group IP addresses. l2L3VpnMcastPmsiTunnelPointer and l2L3VpnMcastPmsiTunnelIf will point to the corresponding entries in other tables containing configuration and/or performance information of a P-tunnel and its interface. If an Administrator does not want to reveal this information, then these objects should be considered sensitive/vulnerable.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

Implementations SHOULD provide the security features described by the SNMPv3 framework (see [RFC3410]), and implementations claiming compliance to the SNMPv3 standard MUST include full support for authentication and privacy via the User-based Security Model (USM) [RFC3414] with the AES cipher algorithm [RFC3826]. Implementations MAY also provide support for the Transport Security Model (TSM) [RFC5591] in combination with a secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353].

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

6. IANA Considerations

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:
Editor's Note (to be removed prior to publication): the IANA is requested to assign a value for "AAAA" and "BBBB" under the 'mib-2' subtree and to record the assignment in the SMI Numbers registry. When the assignment has been made, the RFC Editor is asked to replace "AAAA" and "BBBB" (here and in the MIB module) with the assigned value and to remove this note.

7. Acknowledgement

Glenn Mansfield Keeni did the MIB Doctor review and provided valuable comments.

8. References

8.1. Normative References

8.2. Informative References

Authors’ Addresses

Zhaohui (Jeffrey) Zhang
Juniper Networks, Inc.
10 Technology Park Drive
Westford, MA 01886
USA
Email: zzhang@juniper.net

Hiroshi Tsunoda
Tohoku Institute of Technology
35-1, Yagiyama Kasumi-cho
Taihaku-ku, Sendai 982-8577
Japan
Phone: +81-22-305-3411
Email: tsuno@m.ieice.org