Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects to configure and/or monitor Multicast communication over IP Virtual Private Networks (VPNs) supported by MultiProtocol Label Switching/Border Gateway Protocol (MPLS/BGP) on a Provider Edge router.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 12, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
1. Introduction

[RFC6513], [RFC6514], and [RFC6625] specify procedures for supporting multicast in Border Gateway Protocol/MultiProtocol Label Switching (BGP/MPLS) Layer 3 (IP) Virtual Private Networks (VPNs). Throughout this document, we will use the term "Multicast VPN" (MVPN) [RFC6513] to refer to a BGP/MPLS IP VPN that supports multicast.

Provider Edge routers (PEs) attaching to a particular MVPN exchange customer multicast (C-multicast) routing information with neighboring PEs. In [RFC6513], two basic methods for exchanging C-multicast routing information are defined (1) Protocol Independent Multicast (PIM) [RFC7761] and (2) BGP.

In the rest of this document we will use the term "PIM-MVPN" to refer to the case where PIM is used for exchanging C-multicast routing information, and "BGP-MVPN" to refer to the case where BGP is used for exchanging C-multicast routing information.

This document describes managed objects to configure and/or monitor MVPNs. Most of the managed objects are common to both PIM-MVPN and BGP-MVPN, and some managed objects are BGP-MVPN specific.

1.1. Terminology

This document adopts the definitions, acronyms and mechanisms described in [RFC4364], [RFC6513], and [RFC6514]. Familiarity with Multicast, MPLS, Layer 3 (L3) VPN, MVPN concepts and/or mechanisms is...
assumed. Some terms specifically related to this document are explained below.

An MVPN can be realized by using various kinds of transport mechanisms for forwarding a packet to all or a subset of PEs across service provider networks. Such transport mechanisms are referred to as provider tunnels (P-tunnels).

A "Provider Multicast Service Interface" (PMSI) [RFC6513] is a conceptual interface instantiated by a P-tunnel. A PE uses a PMSI to send customer multicast traffic to all or some PEs in the same VPN.

There are two kinds of PMSI: "Inclusive PMSI" (I-PMSI) and "Selective PMSI" (S-PMSI) [RFC6513]. An I-PMSI enables a PE attached to a particular MVPN to transmit a message to all PEs in the same MVPN. An S-PMSI enables a PE to transmit a message to a selected set of PEs in the same MVPN.

As described in [RFC4382], each PE maintains one default forwarding table and zero or more "Virtual Routing and Forwarding tables" (VRFs). Throughout this document, we will use the term "multicast VRF" (MVRF) to refer to a VRF that contains multicast routing information.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].
3. MCAST-VPN-MIB

This document defines MCAST-VPN-MIB, a MIB module for monitoring and/or configuring MVPNs on PEs. This MIB module will be used in conjunction with MPLS-L3VPN-STD-MIB [RFC4382] and IPMCAST-MIB [RFC5132].

3.1. Summary of MIB Module

MCAST-VPN-MIB provides the following functionalities.

- Monitoring attributes of MVPNs on a PE
- Configuring timers and thresholds related to an MVPN on a PE
- Notifying creation, deletion, and modification of MVRFs on a PE
- Monitoring PMSI attributes
- Monitoring statistics of advertisements exchanged by a PE
- Monitoring routing information for multicast destinations
- Monitoring next-hops for each multicast destination

To provide these functionalities, MCAST-VPN-MIB defines following tables.

- mvpnGenericTable
 This table contains generic information about MVPNs on a PE. Each entry in this table represents an instance of an MVPN on a PE and contains generic information related to the MVPN. For each entry in this table there MUST be a corresponding VRF in MPLS-L3VPN-STD-MIB [RFC4382].

- mvpnBgpTable
 This table contains information specific to BGP-MVPNs. Each BGP-MVPN on a PE will have an entry in this table.

- mvpnPmsiTable
 This table contains managed objects representing attribute information that is common to I-PMSIs and S-PMSIs on a PE.
This table contains managed objects representing attribute information specific to S-PMSIs. An S-PMSI represented in this table will have a corresponding entry in mvpnPmsiTable.

- mvpnAdvtStatsTable
 This table contains statistics pertaining to I-PMSI and S-PMSI advertisements sent/received.

- mvpnMrouteTable
 This table contains multicast routing information in MVRFs on a PE.

- mvpnMrouteNextHopTable
 This table contains information on the next-hops for routing IP multicast datagrams in MVPNs on a PE.

3.2. MIB Module Definitions

MCAST-VPN-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Counter32, Counter64, Gauge32, Unsigned32, TimeTicks,
 mib-2
FROM SNMPv2-SMI -- [RFC2578]

 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
FROM SNMPv2-CONF -- [RFC2580]

 RowPointer, TimeStamp, DateAndTime
FROM SNMPv2-TC -- [RFC2579]

 InterfaceIndex, InterfaceIndexOrZero
FROM IF-MIB -- [RFC2863]

 InetAddress, InetAddressType, InetAddressPrefixLength
FROM INET-ADDRESS-MIB -- [RFC4001]

 mplsL3VpnVrfName, MplsL3VpnRouteDistinguisher
FROM MPLS-L3VPN-STD-MIB -- [RFC4382]

 IANAipRouteProtocol, IANAipMRouteProtocol
FROM IANA-RTPROTO-MIB -- [RTPROTO]

 L2L3VpnMcastProviderTunnelType

Tsunoda Expires February 12, 2019
FROM L2L3-VPN-MCAST-TC-MIB; -- [RFCXXXX]

-- RFC Ed.: replace XXXX with actual RFC number and remove this note

mvpnMIB MODULE-IDENTITY
LAST-UPDATED "201808101200Z" -- 10th August 2018 12:00:00 GMT
ORGANIZATION "IETF BESS Working Group."
CONTACT-INFO

"Hiroshi Tsunoda
Tohoku Institute of Technology
35-1, Yagiyama Kasumi-cho
Taihaku-ku, Sendai, 982-8577
Japan
Email: tsuno@m.ieice.org"

Comments and discussion to bess@ietf.org"

DESCRIPTION
"This MIB module contains managed object definitions to
configure and/or monitor Multicast communication over IP
Virtual Private Networks (VPNs) supported by MultiProtocol
Label Switching/Border Gateway Protocol (MPLS/BGP) on a
Provider Edge router (PE).
Copyright (C) The Internet Society (2018).
"

-- Revision history.

REVISION "201808101200Z" -- 10th August, 2018
DESCRIPTION
"Initial version, published as RFC YYYY."

-- RFC Ed. replace YYYY with the actual RFC number and
-- remove this note

::= { mib-2 AAAA }

-- IANA Reg.: Please assign a value for "AAAA" under the
-- 'mib-2' subtree and record the assignment in the SMI
-- Numbers registry.

-- RFC Ed.: When the above assignment has been made, please
-- remove the above note
-- replace "AAAA" here with the assigned value and
-- remove this note.

-- Top level components of this MIB module.
mvpnNotifications OBJECT IDENTIFIER ::= { mvpnMIB 0 }

-- scalars, tables
mvpnObjects OBJECT IDENTIFIER ::= { mvpnMIB 1 }

-- conformance information
mvpnConformance OBJECT IDENTIFIER ::= { mvpnMIB 2 }

-- mvpn Objects
mvpnScalars OBJECT IDENTIFIER ::= { mvpnObjects 1 }

-- Scalar Objects

mvpnMvrfs OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The total number of Multicast Virtual Routing and Forwarding tables (MVRFs) that are present on this Provider Edge router (PE). This includes MVRFs for IPv4, IPv6, and mLDP C-Multicast."
 ::= { mvpnScalars 1 }

mvpnV4Mvrfs OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of MVRFs for IPv4 C-Multicast on this PE."
 ::= { mvpnScalars 2 }

mvpnV6Mvrfs OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of MVRFs for IPv6 C-Multicast on this PE."
 ::= { mvpnScalars 3 }

mvpnMldpMvrfs OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION ""
"The number of MVRFs on this PE that use BGP for exchanging Multipoint Label Distribution Protocol (mLDP) C-Multicast routing information.
"
::= { mvpnScalars 4 }

mvpnPimV4Mvrfs OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of MVRFs on this PE that use Provider Independent Multicast (PIM) for exchanging IPv4 C-Multicast routing information.
"
::= { mvpnScalars 5 }

mvpnPimV6Mvrfs OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of MVRFs on this PE that use PIM for exchanging IPv6 C-Multicast routing information.
"
::= { mvpnScalars 6 }

mvpnBgpV4Mvrfs OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of MVRFs on this PE that use BGP for exchanging IPv4 C-Multicast routing information.
"
::= { mvpnScalars 7 }

mvpnBgpV6Mvrfs OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of MVRFs on this PE that use BGP for exchanging IPv6 C-Multicast routing information.
"
::= { mvpnScalars 8 }

mvpnSPTunnelLimit OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The maximum number of selective provider tunnels that
 this PE allows for a particular MVPN on this PE.
 "
REFERENCE
 "RFC6513, Section 13"
::= { mvpnScalars 9 }

mvpnBgpCmcastRouteWithdrawalTimer OBJECT-TYPE
SYNTAX Unsigned32
UNITS "milliseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "A configurable timer to control the delay
 of C-multicast route withdrawal advertisements.
 "
REFERENCE
 "RFC6514, Section 16.1.1"
::= { mvpnScalars 10 }

mvpnBgpSrcSharedTreeJoinTimer OBJECT-TYPE
SYNTAX Unsigned32
UNITs "milliseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "A configurable timer to control the delay
 of Source/Shared Tree Join C-multicast route
 advertisements.
 "
REFERENCE
 "RFC6514, Section 16.1.2"
::= { mvpnScalars 11 }

-- Generic MVRF Information Table

mvpnGenericTable OBJECT-TYPE
SYNTAX SEQUENCE OF MvpnGenericEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A conceptual table containing generic information about MVPNs
 on this PE.
 "
mvpnGenericEntry OBJECT-TYPE
SYNTAX MvpnGenericEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A conceptual row that represents an MVPN on this PE. The MVPN represented by this entry will have one or more corresponding P-Multicast Service Interfaces (PMSIs) and a corresponding VRF in MPLS-L3VPN-STD-MIB [RFC4382]."
INDEX {
 mplsL3VpnVrfName
}
::= { mvpnGenericTable 1 }

MvpnGenericEntry ::= SEQUENCE {
 mvpnGenMvrfLastAction INTEGER,
 mvpnGenMvrfLastActionTime DateAndTime,
 mvpnGenMvrfCreationTime DateAndTime,
 mvpnGenCmcastRouteProtocol INTEGER,
 mvpnGenIpmsiInfo RowPointer,
 mvpnGenInterAsPmsiInfo RowPointer,
 mvpnGenUmhSelection INTEGER,
 mvpnGenCustomerSiteType INTEGER
}

mvpnGenMvrfLastAction OBJECT-TYPE
SYNTAX INTEGER {
 createdMvrf (1),
 deletedMvrf (2),
 modifiedMvrfIpmsiConfig (3),
 modifiedMvrfSpmsiConfig (4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object describes the last action pertaining to the MVPN represented by this entry.

The enumerated action types and the corresponding descriptions are as follows:

createdMvrf:
 MVRF was created for this MVPN on the PE.

deletedMvrf:
MVRF for this MVPN was deleted from the PE.
A conceptual row in this table will never have
mvpnGenMvrfLastAction equal to deletedMvrf,
because in that case the row itself will not exist
in the table.
This value for mvpnGenMvrfLastAction is defined
solely for use in mvpnMvrfActionChange notification.

modifiedMvrfIpmsiConfig:
an I-PMSI for this MVPN was configured, deleted or
changed.
modifiedMvrfSpmsiConfig:
an S-PMSI for this MVPN was configured, deleted or
changed.

::= { mvpnGenericEntry 2 }

mvpnGenMvrfLastActionTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The timestamp when the last action, given in
 the corresponding mvpnGenMvrfLastAction object,
 was carried out.
"
::= { mvpnGenericEntry 3 }

mvpnGenMvrfCreationTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The timestamp when the MVRF was created for
 the MVPN represented by this entry.
"
::= { mvpnGenericEntry 4 }

mvpnGenCmcastRouteProtocol OBJECT-TYPE
SYNTAX INTEGER {
 pim (1),
 bgp (2) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The protocol used to signal C-multicast routing
information across the provider core for the MVPN represented by this entry.

The enumerated protocols and the corresponding descriptions are as follows:

pim : PIM (PIM-MVPN)
bgp : BGP (BGP-MVPN)

"REFERENCE
"RFC6513, Section 5"
::= { mvpnGenericEntry 5 }

mvpnGenIpmsiInfo OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A pointer to a conceptual row representing the corresponding I-PMSI in mvpnPmsiTable. If there is no I-PMSI for the MVPN represented by this entry, the value of this object will be zeroDotZero."
::= { mvpnGenericEntry 6 }

mvpnGenInterAsPmsiInfo OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A pointer to a conceptual row representing the corresponding segmented Inter-AS I-PMSI in mvpnPmsiTable. If there is no segmented Inter-AS I-PMSI for the MVPN, the value of this object will be zeroDotZero."
::= { mvpnGenericEntry 7 }

mvpnGenUmhSelection OBJECT-TYPE
SYNTAX INTEGER {
 highestPeAddress (1),
 cRootGroupHashing (2),
 ucastUmhRoute (3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Upstream Multicast Hop (UMH) selection method for the MVPN"
represented by this entry.

The enumerated methods and the corresponding
descriptions are as follows:

 highestPeAddress : PE with the highest address
 (see RFC6513, Section 5.1.3)
 cRootGroupHashing : hashing based on (c-root, c-group)
 ucastUmhRoute : per unicast route towards c-root

"REFERENCE
 RFC6513, Section 5.1"
::= { mvpnGenericEntry 8 }

mvpnGenCustomerSiteType OBJECT-TYPE
SYNTAX INTEGER {
 senderReceiver (1),
 receiverOnly (2),
 senderOnly (3)
 } MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The type of the customer site, connected to
the MVPN represented by this entry.

The enumerated types and the corresponding
descriptions are as follows:

 senderReceiver : Site is both sender and receiver
 receiverOnly : Site is receiver-only
 senderOnly : Site is sender-only

"REFERENCE
 RFC6513, Section 2.3"
::= { mvpnGenericEntry 9 }

-- Generic BGP-MVPN table

mvpnBgpTable OBJECT-TYPE
SYNTAX SEQUENCE OF MvpnBgpEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A conceptual table that supplements mvpnGenericTable
 with BGP-MVPN specific information for BGP-MVPNs on this PE.

::= { mvpnObjects 3 }
mvpnBgpEntry OBJECT-TYPE
SYNTAX MvpnBgpEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A conceptual row corresponding to a BGP-MVPN on this PE."
INDEX {
mplsL3VpnVrfName
}
::= { mvpnBgpTable 1 }

MvpnBgpEntry ::= SEQUENCE {
mvpnBgpMode INTEGER,
mvpnBgpVrfRouteImportExtendedCommunity MplsL3VpnRouteDistinguisher,
mvpnBgpSrcASExtendedCommunity Unsigned32,
mvpnBgpMsgRateLimit Unsigned32,
mvpnBgpMaxSpmsiAdRoutes Unsigned32,
mvpnBgpMaxSpmsiAdRouteFreq Unsigned32,
mvpnBgpMaxSrcActiveAdRoutes Unsigned32,
mvpnBgpMaxSrcActiveAdRouteFreq Unsigned32
}

mvpnBgpMode OBJECT-TYPE
SYNTAX INTEGER {
 other (0),
 rptSpt (1),
 sptOnly (2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The inter-site C-tree mode used by the BGP-MVPN represented by this entry.

 other : none of the following
 rptSpt : inter-site shared tree mode
 (Rendezvous Point Tree (RPT) and source-specific shortest-path tree (SPT))
 sptOnly : inter-site source-only tree mode"

REFERENCE "RFC6513, Section 9.3.1"
::= { mvpnBgpEntry 1 }

mvpnBgpVrfRouteImportExtendedCommunity OBJECT-TYPE
SYNTAX MplsL3VpnRouteDistinguisher
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The VRF Route Import Extended Community added by this PE to unicast VPN routes that it advertises for the BGP-MVPN corresponding to this entry."
REFERENCE
"RFC6514, Section 7"
::= { mvpnBgpEntry 2 }

mvpnBgpSrcASExtendedCommunity OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Source AS Extended Community added by this PE to the unicast VPN routes that it advertises for the BGP-MVPN represented by this entry."
REFERENCE
"RFC6514, Section 6"
::= { mvpnBgpEntry 3 }

mvpnBgpMsgRateLimit OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
UNITS "messages per second"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The configurable upper bound for the rate of BGP C-multicast routing information message exchange between this PE and other PEs in the BGP-MVPN corresponding to this entry."
REFERENCE
"RFC6514, Section 17"
::= { mvpnBgpEntry 4 }

mvpnBgpMaxSpmsiAdRoutes OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The configurable upper bound for the number of S-PMSI A-D routes for the BGP-MVPN corresponding to this entry."

Tsunoda Expires February 12, 2019 [Page 15]
REFERENCE
"RFC6514, Section 17"
::= { mvpnBgpEntry 5 }

mvpnBgpMaxSpmsiAdRouteFreq OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
UNITS "routes per second"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The configurable upper bound for the frequency of
S-PMSI A-D route generation for the BGP-MVPN corresponding
to this entry.
"
REFERENCE
"RFC6514, Section 17"
::= { mvpnBgpEntry 6 }

mvpnBgpMaxSrcActiveAdRoutes OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The configurable upper bound for the number of
Source Active A-D routes for the BGP-MVPN corresponding
to this entry.
"
REFERENCE
"RFC6514, Section 17"
::= { mvpnBgpEntry 7 }

mvpnBgpMaxSrcActiveAdRouteFreq OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
UNITS "routes per second"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The configurable upper bound for the frequency of Source
Active A-D route generation for the BGP-MVPN corresponding
to this entry.
"
REFERENCE
"RFC6514, Section 17"
::= { mvpnBgpEntry 8 }

-- Table of PMSI information

mvpnPmsiTable OBJECT-TYPE
SYNTAX SEQUENCE OF MvpnPmsiEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A conceptual table containing information related
to PMSIs on this PE.
"
 ::= { mvpnObjects 4 }

mvpnPmsiEntry OBJECT-TYPE
SYNTAX MvpnPmsiEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A conceptual row corresponding to a
PMSI on this PE.
"
INDEX {
 mvpnPmsiTunnelIfIndex
}
 ::= { mvpnPmsiTable 1 }

MvpnPmsiEntry ::= SEQUENCE {
 mvpnPmsiTunnelIfIndex InterfaceIndex,
 mvpnPmsiRD MplsL3VpnRouteDistinguisher,
 mvpnPmsiTunnelType L2L3VpnMcastProviderTunnelType,
 mvpnPmsiTunnelAttribute RowPointer,
 mvpnPmsiTunnelPimGroupAddrType InetAddressType,
 mvpnPmsiTunnelPimGroupAddr InetAddress,
 mvpnPmsiEncapsulationType INTEGER
}

mvpnPmsiTunnelIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A unique value for this conceptual row. Its value
will be the same as that of the ifIndex object instance
for the corresponding PMSI in ifTable.
"
REFERENCE
"RFC2863 Sec. 3.1.5"

 ::= { mvpnPmsiEntry 1 }

mvpnPmsiRD OBJECT-TYPE
SYNTAX MplsL3VpnRouteDistinguisher
max-access read-only
status current
description "The Route Distinguisher for this I-PMSI."
::= { mvpnPmsiEntry 3 }

mvpnPmsiTunnelType OBJECT-TYPE
syntax L2L3VpnMcastProviderTunnelType
max-access read-only
status current
description "The type of tunnel used to instantiate the PMSI corresponding to this entry."
reference "RFC6513", Sec. 2.6
::= { mvpnPmsiEntry 4 }

mvpnPmsiTunnelAttribute OBJECT-TYPE
syntax RowPointer
max-access read-only
status current
description "A pointer to a conceptual row representing the P-tunnel used by the PMSI in l2L3VpnMcastPmsiTunnelAttributeTable."
::= { mvpnPmsiEntry 5 }

mvpnPmsiTunnelPimGroupAddrType OBJECT-TYPE
syntax InetAddressType
max-access read-only
status current
description "The InetAddressType of the mvpnPmsiTunnelPimGroupAddr object that follows. When the PMSI corresponding to this entry does not use the PIM provider tunnel, i.e., the value of mvpnPmsiTunnelType is not one of pimSsm(3), pimAsm(4), or pimBidir(5), this object should be unknown(0)."
::= { mvpnPmsiEntry 6 }

mvpnPmsiTunnelPimGroupAddr OBJECT-TYPE
syntax InetAddress
max-access read-only
Internet-Draft L3VPN Multicast MIB August 2018

STATUS current
DESCRIPTION
"The tunnel address which is used by the PMSI
 corresponding to this entry.
 When the PMSI corresponding to this entry does not
 use PIM provider tunnel, i.e.,
 the value of mvpnPmsiTunnelType is not one of
 pimSsm(3), pimAsm(4), or pimBidir(5),
 this object should be a zero-length octet string.
"
::= { mvpnPmsiEntry 7 }

mvpnPmsiEncapsulationType OBJECT-TYPE
SYNTAX INTEGER {
 greIp (1),
 ipIp (2),
 mpls (3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The encapsulation type used for sending
 packets through the PMSI corresponding to this entry.

 The enumerated encapsulation types and the corresponding
descriptions are as follows:

 greIp : GRE (Generic Routing Encapsulation) [RFC2784]
 ipIp : IP-in-IP encapsulation [RFC2003]
 mpls : MPLS encapsulation [RFC3032]
"
REFERENCE
"RFC2003
RFC2784
RFC3032
RFC6513, Sec. 12.1
"
::= { mvpnPmsiEntry 8 }

-- Table of S-PMSI specific information

mvpnSpmsiTable OBJECT-TYPE
SYNTAX SEQUENCE OF MvpnSpmsiEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual table containing information related
This table stores only S-PMSI specific attribute information. Generic PMSI attribute information of S-PMSIs is stored in mvpnPmsiTable.

::= { mvpnObjects 5 }

mvpnSpmsiEntry OBJECT-TYPE
SYNTAX MvpnSpmsiEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A conceptual row corresponding to an S-PMSI on this PE. Implementers need to be aware that if the total number of octets in mplsL3VpnVrfName, mvpnSpmsiCmcastGroupAddr and mvpnSpmsiCmcastSourceAddr exceeds 113, the OIDs of column instances in this row will have more than 128 sub-identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3."

INDEX { mplsL3VpnVrfName, mvpnSpmsiCmcastGroupAddrType, mvpnSpmsiCmcastGroupAddr, mvpnSpmsiCmcastGroupPrefixLen, mvpnSpmsiCmcastSourceAddrType, mvpnSpmsiCmcastSourceAddr, mvpnSpmsiCmcastSourcePrefixLen }

::= { mvpnSpmsiTable 1 }

MvpnSpmsiEntry ::= SEQUENCE {
 mvpnSpmsiCmcastGroupAddrType InetAddressType,
 mvpnSpmsiCmcastGroupAddr InetAddress,
 mvpnSpmsiCmcastGroupPrefixLen InetAddressPrefixLength,
 mvpnSpmsiCmcastSourceAddrType InetAddressType,
 mvpnSpmsiCmcastSourceAddr InetAddress,
 mvpnSpmsiCmcastSourcePrefixLen InetAddressPrefixLength,
 mvpnSpmsiPmsiPointer RowPointer
}

mvpnSpmsiCmcastGroupAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The InetAddressType of the mvpnSpmsiCmcastGroupAddr object that follows."

Tsunoda Expires February 12, 2019 [Page 20]
mvpnSpmsiCmcastGroupAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The group address of the C-flow assigned to the
S-PMSI corresponding to this entry."
REFERENCE "RFC6513, Sec. 3.1"
::= { mvpnSpmsiEntry 2 }

mvpnSpmsiCmcastGroupPrefixLen OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The prefix length of the corresponding
mvpnSpmsiCmcastGroupAddr object."
::= { mvpnSpmsiEntry 3 }

mvpnSpmsiCmcastSourceAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The InetAddressType of the mvpnSpmsiCmcastSourceAddr object
that follows."
::= { mvpnSpmsiEntry 4 }

mvpnSpmsiCmcastSourceAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The source address of the C-flow assigned to the
S-PMSI corresponding to this entry."
::= { mvpnSpmsiEntry 5 }

mvpnSpmsiCmcastSourcePrefixLen OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The prefix length of the corresponding
mvpnSpmsiCmcastSourceAddr object.

::= { mvpnSpmsiEntry 6 }

mvpnSpmsiPmsiPointer OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A pointer to a conceptual row representing
generic information of this S-PMSI in mvpnPmsiTable.
"
::= { mvpnSpmsiEntry 7 }

-- Table of statistics pertaining to
-- advertisements sent/received

mvpnAdvtStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF MvpnAdvtStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual table containing statistics pertaining to
I-PMSI and S-PMSI advertisements sent/received by this PE.
"
::= { mvpnObjects 6 }

mvpnAdvtStatsEntry OBJECT-TYPE
SYNTAX MvpnAdvtStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row corresponding to statistics
pertaining to advertisements sent/received
for a particular MVPN on this PE.

Implementers need to be aware that if the total number of
octets in mplsL3VpnVrfName and mvpnAdvtPeerAddr exceeds 115,
then OIDs of column instances in this row will have more than
128 sub-identifiers and cannot be accessed using SNMPv1,
SNMPv2c, or SNMPv3.
"

INDEX {
 mplsL3VpnVrfName,
 mvpnAdvtType,
 mvpnAdvtPeerAddrType,
 mvpnAdvtPeerAddr
}
::= { mvpnAdvtStatsTable 1 }

MvpnAdvtStatsEntry ::= SEQUENCE {
 mvpnAdvtType INTEGER,
 mvpnAdvtPeerAddrType InetAddressType,
 mvpnAdvtPeerAddr InetAddress,
 mvpnAdvtSent Counter32,
 mvpnAdvtReceived Counter32,
 mvpnAdvtReceivedError Counter32,
 mvpnAdvtReceivedMalformedTunnelType Counter32,
 mvpnAdvtReceivedMalformedTunnelId Counter32,
 mvpnAdvtLastSentTime DateAndTime,
 mvpnAdvtLastReceivedTime DateAndTime,
 mvpnAdvtCounterDiscontinuityTime TimeStamp
}

mvpnAdvtType OBJECT-TYPE
SYNTAX INTEGER {
 intraAsIpmsi (0),
 interAsIpmsi (1),
 sPmsi (2)
}
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The PMSI type.

The enumerated PMSI types and corresponding
descriptions are as follows:

 intraAsIpmsi : Intra-AS Inclusive PMSI
 interAsIpmsi : Inter-AS Inclusive PMSI
 sPmsi : Selective PMSI
"
REFERENCE
 "RFC6513, Sec. 3.2.1"
::= { mvpnAdvtStatsEntry 1 }

mvpnAdvtPeerAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The InetAddressType of the mvpnAdvtPeerAddr object
 that follows.
"
::= { mvpnAdvtStatsEntry 2 }
mvpnAdvtPeerAddr OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The address of a peer PE that exchanges advertisement with
 this PE."
 ::= { mvpnAdvtStatsEntry 3 }

mvpnAdvtSent OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of advertisements successfully
 sent to the peer PE specified by the corresponding
 mvpnAdvtPeerAddr.

 Discontinuities in the value of this counter can
 occur at re-initialization of the management system,
 and at other times as indicated by the corresponding
 mvpnAdvtCounterDiscontinuityTime object."
 ::= { mvpnAdvtStatsEntry 4 }

mvpnAdvtReceived OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of advertisements received from the peer PE
 specified by the corresponding mvpnAdvtPeerAddr object.
 This includes advertisements that were discarded.

 Discontinuities in the value of this counter can
 occur at re-initialization of the management system,
 and at other times as indicated by the corresponding
 mvpnAdvtCounterDiscontinuityTime object."
 ::= { mvpnAdvtStatsEntry 5 }

mvpnAdvtReceivedError OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of advertisements received from a peer PE,
specified by the corresponding mvpnAdvtPeerAddr object, that were rejected due to error(s) in the advertisement. The value of this object includes the error cases counted in the corresponding mvpnAdvtReceivedMalformedTunnelType and mvpnAdvtReceivedMalformedTunnelId objects.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnAdvtCounterDiscontinuityTime object.

::= { mvpnAdvtStatsEntry 6 }

mvpnAdvtReceivedMalformedTunnelType OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of advertisements received from the peer PE specified by the corresponding mvpnAdvtPeerAddr object, that were rejected due to malformed Tunnel Type in the PMSI Tunnel attribute.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnAdvtCounterDiscontinuityTime object.

REFERENCE
"RFC6514 Sec.5"
::= { mvpnAdvtStatsEntry 7 }

mvpnAdvtReceivedMalformedTunnelId OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of advertisements received from the peer PE specified by the corresponding mvpnAdvtPeerAddr object, that were rejected due to malformed Tunnel Identifier in the PMSI Tunnel attribute.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnAdvtCounterDiscontinuityTime object.

REFERENCE
"RFC6514 Sec.5"
::= { mvpnAdvtStatsEntry 8 }

mvpnAdvtLastSentTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The timestamp when the last advertisement
was successfully sent by this PE.
If no advertisement has been sent since the
last re-initialization of this PE, then this
object will have a zero-length string."
::= { mvpnAdvtStatsEntry 9 }

mvpnAdvtLastReceivedTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The timestamp when the last advertisement
was successfully received from the peer PE specified
by the corresponding mvpnAdvtPeerAddr object and
processed by this PE.
If no advertisement has been received since the
last re-initialization of this PE, then this
object will have a zero-length string."
::= { mvpnAdvtStatsEntry 10 }

mvpnAdvtCounterDiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime on the most recent occasion
at which any one or more of this application’s
counters, viz., counters with OID prefix
‘mvpnAdvtSent’ or
‘mvpnAdvtReceived’ or
‘mvpnAdvtReceivedError’ or
‘mvpnAdvtReceivedMalformedTunnelType’ or
‘mvpnAdvtReceivedMalformedTunnelId’ suffered a
discontinuity.
If no such discontinuities have occurred since the
last re-initialization of the local management
subsystem, then this object will have a zero value."
"::= { mvpnAdvtStatsEntry 11 }

-- Table of multicast routes in an MVPN

mvpnMrouteTable OBJECT-TYPE
SYNTAX SEQUENCE OF MvpnMrouteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A conceptual table containing multicast routing information
corresponding to the MVRFs present on the PE."
::= { mvpnObjects 7 }

mvpnMrouteEntry OBJECT-TYPE
SYNTAX MvpnMrouteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A conceptual row corresponding to a route for IP datagrams
from a particular source and addressed to a particular IP
multicast group address.

Implementers need to be aware that if the total number of
octets in mplsL3VpnVrfName, mvpnMrouteCmcastGroupAddr and
mvpnMrouteCmcastSourceAddrs exceeds 113, the OIDs of column
instances in this row will have more than 128 sub-identifiers
and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3.
"
INDEX {
mplsL3VpnVrfName,
mvpnMrouteCmcastGroupAddrType,
mvpnMrouteCmcastGroupAddr,
mvpnMrouteCmcastGroupPrefixLength,
mvpnMrouteCmcastSourceAddrType,
mvpnMrouteCmcastSourceAddrs,
mvpnMrouteCmcastSourcePrefixLength
} ::= { mvpnMrouteTable 1 }

MvpnMrouteEntry ::= SEQUENCE {
mvpnMrouteCmcastGroupAddrType InetAddressType,
mvpnMrouteCmcastGroupAddr InetAddress,
mvpnMrouteCmcastGroupPrefixLength InetAddressPrefixLength,
mvpnMrouteCmcastSourceAddrType InetAddressType,
mvpnMrouteCmcastSourceAddrs InetAddress,
mvpnMrouteCmcastSourcePrefixLength InetAddressPrefixLength,
mvpnMrouteUpstreamNeighborAddrType InetAddressType,
mvpnMrouteUpstreamNeighborAddr InetAddress,
mvpnMrouteInIfIndex InterfaceIndexOrZero,
mvpnMrouteExpiryTime TimeTicks,
mvpnMrouteProtocol IANAipMRouteProtocol,
mvpnMrouteRtProtocol IANAipRouteProtocol,
mvpnMrouteRtAddrType InetAddressType,
mvpnMrouteRtAddr InetAddress,
mvpnMrouteRtPrefixLength InetAddressPrefixLength,
mvpnMrouteRtType INTEGER,
mvpnMrouteOctets Counter64,
mvpnMroutePkts Counter64,
mvpnMrouteTtlDroppedOctets Counter64,
mvpnMrouteTtlDroppedPackets Counter64,
mvpnMrouteDroppedInOctets Counter64,
mvpnMrouteDroppedInPackets Counter64,
mvpnMroutePmsiPointer RowPointer,
mvpnMrouteNumberOfLocalReplication Unsigned32,
mvpnMrouteNumberOfRemoteReplication Unsigned32,
mvpnMrouteCounterDiscontinuityTime TimeStamp

mvpnMrouteCmcastGroupAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The InetAddressType of the mvpnMrouteCmcastGroupAddr object
that follows.
"
::= { mvpnMrouteEntry 1 }

mvpnMrouteCmcastGroupAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The IP multicast group address which, along with
the corresponding mvpnMrouteCmcastGroupPrefixLength object,
identifies destinations for which this entry contains
multicast routing information.

This address object is only significant up to
mvpnMrouteCmcastGroupPrefixLength bits. The remaining address
bits MUST be set to zero.

For addresses of type ‘ipv4z’ or ‘ipv6z’, the appended zone
index is significant even though it lies beyond the prefix
length. The use of these address types indicate that this forwarding state applies only within the given zone. Zone index zero is not valid in this table.

::= { mvpnMrouteEntry 2 }

mvpnMrouteCmcastGroupPrefixLength OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The length in bits of the mask which, along with the corresponding mvpnMrouteCmcastGroupAddr object, identifies destinations for which this entry contains multicast routing information.

If the corresponding InetAddressType is ‘ipv4’ or ‘ipv4z’, this object must be in the range 4..32.
If the corresponding InetAddressType is ‘ipv6’ or ‘ipv6z’, this object must be in the range 8..128.

":= { mvpnMrouteEntry 3 }

mvpnMrouteCmcastSourceAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The InetAddressType of the mvpnMrouteCmcastSourceAddrs object that follows.

A value of unknown(0) indicates a non-source-specific entry, corresponding to all sources in the group. Otherwise, the value MUST be the same as the value of mvpnMrouteCmcastGroupAddrType.

":= { mvpnMrouteEntry 4 }
This address object is only significant up to mvpnMrouteMcastSourcePrefixLength bits. The remaining address bits MUST be set to zero.

For addresses of type 'ipv4z' or 'ipv6z', the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicate that this source address applies only within the given zone. Zone index zero is not valid in this table.

::= { mvpnMrouteEntry 5 }

mvpnMrouteMcastSourcePrefixLength OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The length in bits of the mask which, along with the corresponding mvpnMrouteMcastSourceAddr object, identifies the sources for which this entry contains multicast routing information.

If the corresponding InetAddressType is 'ipv4' or 'ipv4z', this object must be in the range 4..32.
If the corresponding InetAddressType is 'ipv6' or 'ipv6z', this object must be in the range 8..128.
If the corresponding InetAddressType is 'unknown', this object must be zero.
"
::= { mvpnMrouteEntry 6 }

mvpnMrouteUpstreamNeighborAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The InetAddressType of the mvpnMrouteUpstreamNeighborAddr object that follows.

A value of unknown(0) indicates that the upstream neighbor is unknown, for example in BIDIR-PIM."
REFERENCE
"RFC 5015"
::= { mvpnMrouteEntry 7 }

mvpnMrouteUpstreamNeighborAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The address of the upstream neighbor (for example, Reverse Path Forwarding (RPF) neighbor) from which IP datagrams from these sources represented by this entry to this multicast address are received."

::= { mvpnMrouteEntry 8 }

mvpnMrouteInIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value of ifIndex for the interface on which IP datagrams sent by these sources represented by this entry to this multicast address are received.

A value 0 indicates that datagrams are not subject to an incoming interface check, but may be accepted on multiple interfaces (for example, in BIDIR-PIM)."

REFERENCE "RFC 5015"

::= { mvpnMrouteEntry 9 }

mvpnMrouteExpiryTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The minimum amount of time remaining before this entry will be aged out. The value 0 indicates that the entry is not subject to aging. If the corresponding mvpnMrouteNextHopState object is pruned(1), this object represents the remaining time for the prune to expire after which the state will return to forwarding(2). If the corresponding mvpnMrouteNextHopState object is forwarding(2), this object indicates the time after which this entry will be removed from the table."

::= { mvpnMrouteEntry 10 }

mvpnMrouteProtocol OBJECT-TYPE
SYNTAX IANAipMRouteProtocol
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The multicast routing protocol via which this multicast forwarding entry was learned."
::= { mvpnMrouteEntry 11 }

mvpnMrouteRtProtocol OBJECT-TYPE
SYNTAX IANAipRouteProtocol
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The routing protocol via which the route used to find the upstream or parent interface for this multicast forwarding entry was learned."
::= { mvpnMrouteEntry 12 }

mvpnMrouteRtAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The InetAddressType of the mvpnMrouteRtAddr object that follows."
::= { mvpnMrouteEntry 13 }

mvpnMrouteRtAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The address portion of the route used to find the upstream or parent interface for this multicast forwarding entry.

This address object is only significant up to mvpnMrouteRtPrefixLength bits. The remaining address bits MUST be set to zero.

For addresses of type ‘ipv4z’ or ‘ipv6z’, the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicate that this forwarding state applies only within the given zone. Zone index zero is not valid in this table."
::= { mvpnMrouteEntry 14 }

mvpnMrouteRtPrefixLength OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The length in bits of the mask associated with the route
used to find the upstream or parent interface for this
multicast forwarding entry.

If the corresponding InetAddressType is 'ipv4' or 'ipv4z',
this object must be in the range 4..32.
If the corresponding InetAddressType is 'ipv6' or 'ipv6z',
this object must be in the range 8..128.
"
::= { mvpnMrouteEntry 15 }

mvpnMrouteRtType OBJECT-TYPE
SYNTAX INTEGER {
 unicast (1),
 multicast (2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The reason for placing the route in the (logical)
multicast Routing Information Base (RIB).

The enumerated reasons and the corresponding
descriptions are as follows:

unicast:
The route would normally be placed only in
the unicast RIB, but was placed in the multicast RIB
by local configuration, such as when running PIM over
RIP.

multicast:
The route was explicitly added to the multicast RIB by
the routing protocol, such as the Distance Vector
Multicast Routing Protocol (DVMRP) or Multiprotocol BGP.
"
::= { mvpnMrouteEntry 16 }

mvpnMrouteOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets contained in IP datagrams that were
received from sources represented by this entry and
addressed to this multicast group address, and which were forwarded by this router.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object.

::= { mvpnMrouteEntry 17 }

mvpnMroutePkts OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets routed using this multicast route entry.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object.

::= { mvpnMrouteEntry 18 }

mvpnMrouteTtlDroppedOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets contained in IP datagrams that this router has received from sources represented by this entry and addressed to this multicast group address, which were dropped due to Time To Live (TTL) issues. TTL issues occur when the TTL (IPv4) or Hop Limit (IPv6) of the incoming packet was decremented to zero, or to a value less than ipMcastInterfaceTtl of the corresponding interface.

The ipMcastInterfaceTtl object is defined in IPMCAST-MIB [RFC5132] and represents the datagram TTL threshold for the interface. Any IP multicast datagrams with a TTL (IPv4) or Hop Limit (IPv6) less than this threshold will not be forwarded out of the interface. The default value of 0 means all multicast packets are forwarded out of the interface. A value of 256 means that no multicast packets are forwarded out of the interface.
Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object.

REFERENCE
"RFC5132, Sec. 6"

::= { mvpnMrouteEntry 19 }

mvpnMrouteTtlDroppedPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets that this router has received from the sources represented by this entry and addressed to this multicast group address, which were dropped due to Time To Live (TTL) issues. TTL issues occur when the TTL (IPv4) or Hop Limit (IPv6) of the incoming packet was decremented to zero, or to a value less than ipMcastInterfaceTtl of the corresponding interface.

The ipMcastInterfaceTtl object is defined in IPMCAST-MIB [RFC5132] and represents the datagram TTL threshold for the interface. Any IP multicast datagrams with a TTL (IPv4) or Hop Limit (IPv6) less than this threshold will not be forwarded out of the interface. The default value of 0 means all multicast packets are forwarded out of the interface. A value of 256 means that no multicast packets are forwarded out of the interface.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object.

REFERENCE
"RFC5132, Sec. 6"

::= { mvpnMrouteEntry 20 }

mvpnMrouteDroppedInOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets contained in IP datagrams that this
 router has received from sources represented by this entry and addressed to this multicast group address, which were dropped due to error(s). The value of this object includes the octets counted in the corresponding mvpnMrouteTtlDroppedOctets object.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object.

::= { mvpnMrouteEntry 21 }

mvpnMrouteDroppedInPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets which this router has received from sources represented by this entry and addressed to this multicast group address, which were dropped due to error(s). The value of this object includes the number of octets counted in the corresponding mvpnMrouteTtlDroppedPackets object.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object.

::= { mvpnMrouteEntry 22 }

mvpnMroutePmsiPointer OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A pointer to a conceptual row representing the corresponding I-PMSI in mvpnPmsiTable or S-PMSI in mvpnSpmsiTable, that this C-multicast route is using.

::= { mvpnMrouteEntry 23 }

mvpnMrouteNumberOfLocalReplication OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of replications for local receivers. For example, if an ingress PE needs to send traffic out of N PE-CE interfaces, then mvpnMrouteNumberOfLocalReplication is N.
"
::= { mvpnMrouteEntry 24 }

mvpnMrouteNumberOfRemoteReplication OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Number of local replications for remote PEs. For example, if the number of remote PEs that need to receive traffic is N, then mvpnMrouteNumberOfRemoteReplication is N in case of Ingress Replication, but may be less than N in case of RSVP-TE or mLDP P2MP tunnels, depending on the actual number of replications the PE needs to do."
::= { mvpnMrouteEntry 25 }

mvpnMrouteCounterDiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value of sysUpTime on the most recent occasion at which any one or more of this application’s counters, viz., counters with OID prefix ‘mvpnMrouteOctets’ or ‘mvpnMroutePkts’ or ‘mvpnMrouteTtlDroppedOctets’ or ‘mvpnMrouteTtlDroppedPkts’ or ‘mvpnMrouteDroppedInOctets’ or ‘mvpnMrouteDroppedInPkts’ suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this object will have a zero value."
::= { mvpnMrouteEntry 26 }

-- Table of next hops for multicast routes in an MVPN

mvpnMrouteNextHopTable OBJECT-TYPE
SYNTAX SEQUENCE OF MvpnMrouteNextHopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A conceptual table containing information on the
next-hops for routing IP multicast datagrams. Each entry is one of a list of next-hops for a set of sources sending to a multicast group address.

::= { mvpnObjects 8 }

mvpnMrouteNextHopEntry OBJECT-TYPE
SYNTAX MvpnMrouteNextHopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A conceptual row corresponding to a next-hop to which IP multicast datagrams from a set of sources to an IP multicast group address are routed.

Implementers need to be aware that if the total number of octets in mplsL3VpnVrfName, mvpnMrouteNextHopGroupAddr, mvpnMrouteNextHopSourceAddrs, and mvpnMrouteNextHopAddr exceeds 111, the OIDs of column instances in this row will have more than 128 sub-identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3.

" INDEX {
 mplsL3VpnVrfName,
 mvpnMrouteNextHopGroupAddrType,
 mvpnMrouteNextHopGroupAddr,
 mvpnMrouteNextHopGroupPrefixLength,
 mvpnMrouteNextHopSourceAddrType,
 mvpnMrouteNextHopSourceAddrs,
 mvpnMrouteNextHopSourcePrefixLength,
 mvpnMrouteNextHopIfIndex,
 mvpnMrouteNextHopAddrType,
 mvpnMrouteNextHopAddr
}
::= { mvpnMrouteNextHopTable 1 }

MvpnMrouteNextHopEntry ::= SEQUENCE {
 mvpnMrouteNextHopGroupAddrType InetAddressType,
 mvpnMrouteNextHopGroupAddr InetAddress,
 mvpnMrouteNextHopGroupPrefixLength InetAddressPrefixLength,
 mvpnMrouteNextHopSourceAddrType InetAddressType,
 mvpnMrouteNextHopSourceAddrs InetAddress,
 mvpnMrouteNextHopSourcePrefixLength InetAddressPrefixLength,
 mvpnMrouteNextHopIfIndex InterfaceIndex,
 mvpnMrouteNextHopAddrType InetAddressType,
 mvpnMrouteNextHopAddr InetAddress,
mvpnMrouteNextHopGroupAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The InetAddressType of the mvpnMrouteNextHopGroupAddr object that follows."
::= { mvpnMrouteNextHopEntry 1 }

mvpnMrouteNextHopGroupAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The IP multicast group address which, along with the corresponding mvpnMrouteNextHopGroupPrefixLength object, identifies destinations for which this entry contains multicast forwarding information.

This address object is only significant up to mvpnMrouteNextHopGroupPrefixLength bits. The remaining address bits MUST be set to zero.

For addresses of type ‘ipv4z’ or ‘ipv6z’, the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicate that this forwarding state applies only within the given zone. Zone index zero is not valid in this table."
::= { mvpnMrouteNextHopEntry 2 }

mvpnMrouteNextHopGroupPrefixLength OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The length in bits of the mask which, along with the corresponding mvpnMrouteGroupAddr object, identifies destinations for which this entry contains
multicast routing information.

If the corresponding InetAddressType is 'ipv4' or 'ipv4z', this object must be in the range 4..32.
If the corresponding InetAddressType is 'ipv6' or 'ipv6z', this object must be in the range 8..128.

::= { mvpnMrouteNextHopEntry 3 }

mvpnMrouteNextHopSourceAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The InetAddressType of mvpnMrouteNextHopSourceAddrs object that follows.

A value of unknown(0) indicates a non-source-specific entry, corresponding to all sources in the group. Otherwise, the value MUST be the same as the value of mvpnMrouteNextHopGroupAddrType."

::= { mvpnMrouteNextHopEntry 4 }

mvpnMrouteNextHopSourceAddrs OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The network address which, along with the corresponding mvpnMrouteNextHopSourcePrefixLength object, identifies the sources for which this entry specifies a next-hop.

This address object is only significant up to mvpnMrouteNextHopSourcePrefixLength bits. The remaining address bits MUST be set to zero.

For addresses of type 'ipv4z' or 'ipv6z', the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicate that this source address applies only within the given zone. Zone index zero is not valid in this table."

::= { mvpnMrouteNextHopEntry 5 }

mvpnMrouteNextHopSourcePrefixLength OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS not-accessible
"The length in bits of the mask which, along with
the corresponding mvpnMrouteNextHopSourceAddr object,
identifies the sources for which this entry specifies
a next-hop.

If the corresponding InetAddressType is 'ipv4' or 'ipv4z',
this object must be in the range 4..32.
If the corresponding InetAddressType is 'ipv6' or 'ipv6z',
this object must be in the range 8..128.
If the corresponding InetAddressType is 'unknown',
this object must be zero.
"
 ::= { mvpnMrouteNextHopEntry 6 }

mvpnMrouteNextHopIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The ifIndex value of the outgoing interface
for this next-hop.
"
 ::= { mvpnMrouteNextHopEntry 7 }

mvpnMrouteNextHopAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The InetAddressType of the mvpnMrouteNextHopAddr object
that follows.
"
 ::= { mvpnMrouteNextHopEntry 8 }

mvpnMrouteNextHopAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The address of the next-hop specific to this entry. For
most interfaces, this is identical to
mvpnMrouteNextHopGroupAddr. Non-Broadcast Multi-Access
(NBMA) interfaces, however, may have multiple next-hop
addresses out of a single outgoing interface.
"
 ::= { mvpnMrouteNextHopEntry 9 }

Tsunoda Expires February 12, 2019 [Page 41]
mvpnMrouteNextHopState OBJECT-TYPE
SYNTAX INTEGER {
 pruned(1),
 forwarding(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An indication of whether the outgoing interface and next-hop represented by this entry is currently being used to forward IP datagrams.

The enumerated states and the corresponding descriptions are as follows:

pruned : this entry is not currently being used.
forwarding : this entry is currently being used.
"
::= { mvpnMrouteNextHopEntry 10 }

mvpnMrouteNextHopExpiryTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The minimum amount of time remaining before this entry will be aged out. If mvpnMrouteNextHopState is pruned(1), this object represents the remaining time for the prune to expire after which the state will return to forwarding(2). If mvpnMrouteNextHopState is forwarding(2), this object indicates the time after which this entry will be removed from the table.

The value of 0 indicates that the entry is not subject to aging.
"
::= { mvpnMrouteNextHopEntry 11 }

mvpnMrouteNextHopClosestMemberHops OBJECT-TYPE
SYNTAX Unsigned32 (0..256)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The minimum number of hops between this router and any member of this IP multicast group reached via this next-hop on the corresponding outgoing interface. Any IP multicast datagram for the group that has a TTL (IPv4) or Hop Count (IPv6) less than mvpnMrouteNextHopClosestMemberHops will
not be forwarded through this interface.

A value of 0 means all multicast datagrams are forwarded out of the interface. A value of 256 means that no multicast datagrams are forwarded out of the interface.

This is an optimization applied by multicast routing protocols that explicitly track hop counts to downstream listeners. Multicast protocols that are not aware of hop counts to downstream listeners set this object to 0.

::= {mvpnMrouteNextHopEntry 12}

mvpnMrouteNextHopProtocol OBJECT-TYPE
SYNTAX IANAipMRouteProtocol
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The routing protocol via which this next-hop was learned."
::= {mvpnMrouteNextHopEntry 13}

mvpnMrouteNextHopOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of octets of multicast packets that have been forwarded using this route.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnMrouteNextHopCounterDiscontinuityTime object.

::= {mvpnMrouteNextHopEntry 14}

mvpnMrouteNextHopPkts OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of packets which have been forwarded using this route.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the corresponding mvpnMrouteNextHopCounterDiscontinuityTime object."
mvpnMrouteNextHopCounterDiscontinuityTime
OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime on the most recent occasion
at which any one or more of this application’s
counters, viz., counters with OID prefix
‘mvpnMrouteNextHopOctets’ or ‘mvpnMrouteNextHopPackets’
suffered a discontinuity.
If no such discontinuities have occurred since the
last re-initialization of the local management
subsystem, then this object will have a zero value.
"
::= { mvpnMrouteNextHopEntry 15 }

-- MVPN Notifications

mvpnMvrfActionTaken
NOTIFICATION-TYPE
OBJECTS {
mvpnGenMvrfCreationTime,
mvpnGenMvrfLastAction,
mvpnGenMvrfLastActionTime,
mvpnGenMvrfCreationTime,
mvpnGenCmcastRouteProtocol,
mvpnGenUmhSelection,
mvpnGenCustomerSiteType
}
STATUS current
DESCRIPTION
"mvpnMvrfActionTaken notifies about a change
in a MVRF on the PE. The change itself will be given by
mvpnGenMvrfLastAction.
"
::= { mvpnNotifications 1 }

-- MVPN MIB Conformance Information

mvpnGroups OBJECT IDENTIFIER ::= { mvpnConformance 1 }
mvpnCompliances OBJECT IDENTIFIER ::= { mvpnConformance 2 }

-- Compliance Statements

mvpnModuleFullCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION

"Compliance statement for agents that provide full support for the MCAST-VPN-MIB"

MODULE -- this module
MANDATORY-GROUPS {
mvpnScalarGroup,
mvpnGenericGroup,
mvpnPmsiGroup,
mvpnAdvtStatsGroup,
mvpnMrouteGroup,
mvpnMrouteNextHopGroup,
mvpnNotificationGroup
}

GROUP mvpnBgpScalarGroup
 DESCRIPTION
 "This group is mandatory for systems that support BGP-MVPN.
"

GROUP mvpnBgpGroup
 DESCRIPTION
"This group is mandatory for systems that support BGP-MVPN.
"

::= { mvpnCompliances 1 }

mvpnModuleReadOnlyCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "Compliance requirement for implementations that only provide read-only support for MCAST-VPN-MIB. Such devices can then be monitored but cannot be configured using this MIB module."

MODULE -- this module
MANDATORY-GROUPS {
mvpnScalarGroup,
mvpnGenericGroup,
mvpnPmsiGroup,
mvpnAdvtStatsGroup,
mvpnMrouteGroup,
mvpnMrouteNextHopGroup,
mvpnNotificationGroup
}
GROUP mvpnBgpScalarGroup
DESCRIPTION "This group is mandatory for systems that support BGP-MVPN."

GROUP mvpnBgpGroup
DESCRIPTION "This group is mandatory for systems that support BGP-MVPN."

OBJECT mvpnSPTunnelLimit
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT mvpnBgpCmcastRouteWithdrawalTimer
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT mvpnBgpSrcSharedTreeJoinTimer
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT mvpnBgpMsgRateLimit
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT mvpnBgpMaxSpmsiAdRoutes
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT mvpnBgpMaxSpmsiAdRouteFreq
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT mvpnBgpMaxSrcActiveAdRoutes
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT mvpnBgpMaxSrcActiveAdRouteFreq
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

::= { mvpnCompliances 2 }

mvpnModuleAdvtStatsCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"Compliance statement for agents that support
monitoring of the statistics pertaining to
advertisements sent/received by a PE.
"

MODULE -- this module
MANDATORY-GROUPS {
mvpnAdvtStatsGroup
}

::= { mvpnCompliances 3 }

-- units of conformance

mvpnScalarGroup OBJECT-GROUP
OBJECTS {
mvpnMvrfs,
mvpnV4Mvrfs,
mvpnV6Mvrfs,
mvpnPimV4Mvrfs,
mvpnPimV6Mvrfs,
mvpnSPTunnelLimit
}
STATUS current
DESCRIPTION
"These objects are used to monitor/manage
global statistics and parameters.
"
::= { mvpnGroups 1 }

mvpnBgpScalarGroup OBJECT-GROUP
OBJECTS {
mvpnMldpMvrfs,
mvpnBgpV4Mvrfs,
mvpnBgpV6Mvrfs,
mvpnBgpCmcastRouteWithdrawalTimer,
mvpnBgpSrcSharedTreeJoinTimer
}
STATUS current
DESCRIPTION
"These objects are used to monitor/manage
BGP-MVPN specific global parameters.
"
::= { mvpnGroups 2 }

mvpnGenericGroup OBJECT-GROUP
OBJECTS {
mvpnGenMvrfLastAction,
mvpnGenMvrfLastActionTime,
mvpnGenMvrfCreationTime,
mvpnGenCmcastRouteProtocol,
mvpnGenIpmsiInfo,
mvpnGenInterAsPmsiInfo,
mvpnGenUmhSelection,
mvpnGenCustomerSiteType
}

STATUS current
DESCRIPTION
"These objects are used to monitor MVPNs on a PE.
"
 ::= { mvpnGroups 3 }

mvpnBgpGroup OBJECT-GROUP
OBJECTS {
 mvpnBgpMode,
mvpnBgpVrfRouteImportExtendedCommunity,
mvpnBgpSrcASEndpointCommunity,
mvpnBgpMsgRateLimit,
mvpnBgpMaxSpmsiAdRoutes,
mvpnBgpMaxSpmsiAdRouteFreq,
mvpnBgpMaxSrcActiveAdRoutes,
mvpnBgpMaxSrcActiveAdRouteFreq
}

STATUS current
DESCRIPTION
"These objects are used to monitor/manage the MVPN-wise BGP specific parameters.
"
 ::= { mvpnGroups 4 }

mvpnPmsiGroup OBJECT-GROUP
OBJECTS {
 mvpnPmsiRD,
mvpnPmsiTunnelType,
mvpnPmsiTunnelAttribute,
mvpnPmsiTunnelPimGroupAddrType,
mvpnPmsiTunnelPimGroupAddr,
mvpnPmsiEncapsulationType,
mvpnSpmsiPmsiPointer
}

STATUS current
DESCRIPTION
"These objects are used to monitor I-PMSIs and S-PMSIs tunnel on a PE.
"
 ::= { mvpnGroups 5 }

Tsunoda Expires February 12, 2019
[Page 48]
mvpnAdvtStatsGroup OBJECT-GROUP
 OBJECTS {
 mvpnAdvtSent,
 mvpnAdvtReceived,
 mvpnAdvtReceivedError,
 mvpnAdvtReceivedMalformedTunnelType,
 mvpnAdvtReceivedMalformedTunnelId,
 mvpnAdvtLastSentTime,
 mvpnAdvtLastReceivedTime,
 mvpnAdvtCounterDiscontinuityTime
 }
 STATUS current
 DESCRIPTION "These objects are used to monitor the statistics pertaining to I-PMSI and S-PMSI advertisements sent/received by a PE."
 ::= { mvpnGroups 6 }

mvpnMrouteGroup OBJECT-GROUP
 OBJECTS {
 mvpnMrouteUpstreamNeighborAddrType,
 mvpnMrouteUpstreamNeighborAddr,
 mvpnMrouteInIfIndex,
 mvpnMrouteExpiryTime,
 mvpnMrouteProtocol,
 mvpnMrouteRtProtocol,
 mvpnMrouteRtAddrType,
 mvpnMrouteRtAddr,
 mvpnMrouteRtPrefixLength,
 mvpnMrouteRtType,
 mvpnMrouteOctets,
 mvpnMroutePktcs,
 mvpnMrouteTtlDroppedOctets,
 mvpnMrouteTtlDroppedPackets,
 mvpnMrouteDroppedInOctets,
 mvpnMrouteDroppedInPackets,
 mvpnMroutePmsiPointer,
 mvpnMrouteNumberOfLocalReplication,
 mvpnMrouteNumberOfRemoteReplication,
 mvpnMrouteCounterDiscontinuityTime
 }
 STATUS current
 DESCRIPTION "These objects are used to monitor multicast routing information corresponding to the MVRFs on a PE."
 ::= { mvpnGroups 7 }
4. Security Considerations

This MIB module contains some read-only objects that may be deemed sensitive. It also contains some read-write objects, whose setting will change the device’s MVPN related behavior. Appropriate security procedures related to SNMP in general but not specific to this MIB module need to be implemented by concerned operators.

There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection opens devices to attack. These are the tables and objects and their sensitivity/vulnerability:

- **mvpnSPTunnelLimit**

 The value of this object is used to control the maximum number of selective provider tunnels that a PE allows for a particular MVPN. Access to this object may be abused to impact the performance of
the PE or prevent the PE from having new selective provider

tunnels.

- **mvpnBgpCmcastRouteWithdrawalTimer**

 The value of this object is used to control the delay for the
 advertisement of withdrawals of C-multicast routes. Access to
 this object may be abused to impact the performance of a PE.

- **mvpnBgpSrcSharedTreeJoinTimer**

 The value of this object is used to control the delay for the
 advertisement of Source/Shared Tree Join C-multicast routes.
 Access to this object may be abused to impact the propagation of
 C-multicast routing information.

- **mvpnBgpMsgRateLimit**

 The value of this object is used to control the upper bound for
 the rate of BGP C-multicast routing information message exchange
 among PEs. Access to this object may be abused to impact the
 performance of the PE or disrupt the C-multicast routing
 information message exchange using BGP.

- **mvpnBgpMaxSpmsiAdRoutes**

 The value of this object is used to control the upper bound for
 the number of S-PMSI A-D routes. Access to this object may be
 abused to impact the performance of the PE or prevent the PE from
 receiving S-PMSI A-D routes.

- **mvpnBgpMaxSpmsiAdRouteFreq**

 The value of this object is used to control the upper bound for
 the frequency of S-PMSI A-D route generation. Access to this
 object may be abused to impact the performance of the PE or prevent
 the PE from generating new S-PMSI A-D routes.

- **mvpnBgpMaxSrcActiveAdRoutes**

 The value of this object is used to control the upper bound for
 the number of Source Active A-D routes. Access to this object may
 be abused to impact the performance of the PE or prevent the PE
 from receiving Source Active A-D routes.

- **mvpnBgpMaxSrcActiveAdRouteFreq**
The value of this object is used to control the upper bound for the frequency of Source Active A-D route generation. Access to this object may be abused to impact the performance of the PE or prevent the PE from generating new Source Active A-D routes.

Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:

- The address-related objects in this MIB module may have impact on privacy and security. These objects may reveal the locations of senders and recipients.
 * mvpnPmsiTunnelPimGroupAddr
 * mvpnSpmsiCmcastGroupAddr
 * mvpnSpmsiCmcastSourceAddr
 * mvpnAdvtPeerAddr
 * mvpnMrouteCmcastGroupAddr
 * mvpnMrouteCmcastSourceAddrs
 * mvpnMrouteUpstreamNeighborAddr
 * mvpnMrouteNextHopGroupAddr
 * mvpnMrouteNextHopSourceAddrs
 * mvpnMrouteNextHopAddr

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

Implementations SHOULD provide the security features described by the SNMPv3 framework (see [RFC3410]), and implementations claiming compliance to the SNMPv3 standard MUST include full support for authentication and privacy via the User-based Security Model (USM) [RFC3414] with the AES cipher algorithm [RFC3826]. Implementations
MAY also provide support for the Transport Security Model (TSM) [RFC5591] in combination with a secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353].

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

5. IANA Considerations

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>OBJECT IDENTIFIER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvpnMIB</td>
<td>{ mib-2 AAAA }</td>
</tr>
</tbody>
</table>

Editor’s Note (to be removed prior to publication): the IANA is requested to assign a value for "AAAA" under the ‘mib-2’ subtree and to record the assignment in the SMI Numbers registry. When the assignment has been made, the RFC Editor is asked to replace "AAAA" (here and in the MIB module) with the assigned value and to remove this note.

6. Acknowledgement

An earlier draft version of this document was coauthored by Zhaohui (Jeffrey) Zhang, Saud Asif, Andy Green, Sameer Gulrajani, and Pradeep G. Jain, based on an earlier draft written by Susheela Vaidya, Thomas D. Nadeau, and Harmen Van der Linde.

This document also borrows heavily from the design and descriptions of ipMcastRouteTable and ipMcastRouteNextHopTable from IPMCAST-MIB[RFC5132].

Glenn Mansfield Keeni did the MIB Doctor review and provided valuable comments.

7. References
7.1. Normative References

Qiu, "Wildcards in Multicast VPN Auto-Discovery Routes",
RFC 6625, DOI 10.17487/RFC6625, May 2012,

[RFC7761] Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,
Multicast - Sparse Mode (PIM-SM): Protocol Specification
(Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

[RTPROTO] IANA, "IP Route Protocol MIB", 2016,

7.2. Informative References

[RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
"Introduction and Applicability Statements for Internet-
rfc3410>.

Author’s Address

Hiroshi Tsunoda
Tohoku Institute of Technology
35-1, Yagiyama Kasumi-cho, Taihaku-ku
Sendai 982-8577
Japan

Phone: +81-22-305-3411
Email: tsuno@m.ieice.org