Bit Index Explicit Replication (BIER) is an architecture that provides optimal multicast forwarding through a "BIER domain" without requiring intermediate routers to maintain any multicast related per-flow state. BIER also does not require any explicit tree-building protocol for its operation. A multicast data packet enters a BIER domain at a "Bit-Forwarding Ingress Router" (BFIR), and leaves the BIER domain at one or more "Bit-Forwarding Egress Routers" (BFERs). The BFIR router adds a BIER header to the packet. The BIER header contains a bitstring in which each bit represents exactly one BFER to forward the packet to. The set of BFERs to which the multicast packet needs to be forwarded is expressed by setting the bits that correspond to those routers in the BIER header.

This document specifies extensions to the BGP Link-state address-family in order to advertise BIER information.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 2, 2020.
1. Introduction

Bit Index Explicit Replication (BIER) is an architecture that provides optimal multicast forwarding through a "BIER domain" without requiring intermediate routers to maintain any multicast related per-flow state. BIER also does not require any explicit tree-building protocol for its operation. A multicast data packet enters a BIER domain at a "Bit-Forwarding Ingress Router" (BFIR), and leaves the BIER domain at one or more "Bit-Forwarding Egress Routers" (BFERs). The BFIR router adds a BIER header to the packet. The BIER header contains a bitstring in which each bit represents exactly one BFER to forward the packet to. The set of BFERs to which the multicast packet needs to be forwarded is expressed by setting the bits that correspond to those routers in the BIER header.

When BIER is enabled in an IGP domain, BIER-related information will be advertised via IGP link-state routing protocols. IGP extensions
are described in: ISIS[[RFC8401]], OSPFv2[[RFC8444]] and OSPFv3[[I-D.ietf-bier-ospfv3-extensions]]. The contents of a Link State Database (LSDB) or of an IGP’s Traffic Engineering Database (TED) has the scope of an IGP area and therefore, by using the IGP alone it is not enough to construct segments across multiple IGP Area or AS boundaries.

In order to satisfy the need for applications that require topological visibility across one area or Autonomous System (AS). This document specifies extensions to the BGP Link-state address-family in order to advertise BIER-specific. An external component (e.g., a controller) then can collect BIER information in the "northbound" direction within the BIER domain.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119.

3. BGP-LS Extensions for BIER

[RFC8279] defines the BFR - A router that supports BIER is known as a "Bit-Forwarding Router" (BFR), and each BFR MUST be assigned a "BFR-Prefix". A BFR’s BFR-Prefix MUST be an IP address (either IPv4 or IPv6) of the BFR, and MUST be unique and routable within the BIER domain as described in section 2 of [RFC8279], and then external component (e.g., a controller) need to collect BIER information of BIER routers are associated with the BFR-Prefix in the "northbound" direction within the BIER domain.

Given that the BIER information is associated with the prefix, the Prefix Attribute TLV [RFC7752] can be used to carry the BIER information. A new Prefix Attribute TLVs are defined for the encoding of BIER information.

3.1. Prefix Attributes TLVs

The following Prefix Attribute TLVs are defined:
A new Prefix Attribute TLV (defined in [RFC7752]) is defined for distributing BIER information. The new TLV is called the BIER TLV. The BIER information TLVs may appear multiple times.

The following BIER information TLV is defined:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type     |            Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     BAR       |     IPA       |  subdomain-id  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            BFR-id             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Sub-TLVs (variable)                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 2: The BIER information TLV

- **Type**: 2 octet field with value TBD, see IANA Considerations section.
- **Length**: 2 octet.
- **Reserved**: MUST be 0 on transmission, ignored on reception. May be used in future versions.
- **BAR**: A 1 octet field encoding the BIER Algorithm, used to calculate underlay paths to reach BFEs. Values are allocated from the "BIER Algorithms" registry which is defined in [RFC8401].
- **IPA**: A 1 octet field encoding the IGP Algorithm, used to either modify, enhance, or replace the calculation of underlay paths to reach
BFERs as defined by the BAR value. Values are from the IGP Algorithm registry.

Subdomain-id: Unique value identifying the BIER sub-domain, 1 octet.

MT-ID: Multi-Topology ID that identifies the topology that is associated with the BIER sub-domain. 1 octet.

BFR-id: A 2 octet field encoding the BFR-id, as documented in [RFC8279]. If the BFR-id is zero, it means, the advertising router is not advertising any BIER-id. In some environment, BFR-id can be configured by NMS. The BFR-id should be sent to a controller.

BS Length: A 1 octet field encoding the Bitstring length as per [RFC8296].

If the MT-ID value is outside of the values specified in [RFC4915], the BIER Sub-TLV MUST be ignored.

3.1.2. The BIER MPLS Encapsulation TLV

The BIER MPLS Encapsulation TLV is used in order to advertise MPLS specific information used for BIER. It MAY appear multiple times.

In some environment, each router allocates its labels, and advertises it to the controller. That solution is simpler as the controller does not need to deal with label allocation. If the controller has to deal with Label allocation, there needs to be a (global) range carved out such there are no conflicts. We can avoid all that by having the router allocate the BIER Label range and advertise it to the controller.

The following the BIER MPLS Encapsulation Sub-TLV is defined:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Type               |                Length         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Max SI   |                      Label                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|BS Len |                          Reserved                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 3: The BIER MPLS Encapsulation TLV

Type: 2 octet field with value TBD, see IANA Considerations section.
Length: 2 octet.

Max SI: A 1 octet field encoding the maximum Set Identifier (as defined in [RFC8279]), used in the encapsulation for this BIER subdomain for this BitString length.

Label: A 3 octet field, where the 20 rightmost bits represent the first label in the label range.

BS Length: A 1 octet field encoding the Bitstring length as per [RFC8296]

BS length in multiple BIER MPLS Encapsulation Sub-TLV inside the same BIER Sub-TLV MUST NOT repeat, otherwise only the first BIER MPLS Encapsulation Sub-TLV with such BS length MUST be used and any subsequent BIER MPLS Encapsulation Sub-TLVs with the same BS length MUST be ignored.

4. Equivalent IS-IS BIER TLVs/Sub-TLVs

This section illustrates the BIER TLVs mapped to the ones defined in this document.

The following table, illustrates for each BGP-LS TLV, its equivalence in IS-IS.

<table>
<thead>
<tr>
<th>Description</th>
<th>IS-IS TLV /Sub-TLV</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIER</td>
<td>BIER Info Sub-TLV</td>
<td>[RFC8401]</td>
</tr>
<tr>
<td>information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIER MPLS</td>
<td>BIER MPLS Encapsulation Sub-Sub-TLV</td>
<td>[RFC8401]</td>
</tr>
<tr>
<td>Encapsulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: IS-IS BIER Sub-TLVs/Sub-Sub-TLVs

5. Equivalent OSPFv2/OSPFV3 BIER TLVs/Sub-TLVs

This section illustrates the BIER TLVs mapped to the ones defined in this document.

The following table, illustrates for each BGP-LS TLV, its equivalence in OSPFv2/OSPFV3.
Table 3: OSPFv2/OSPFV3 BIER TLVs/Sub-TLVs

<table>
<thead>
<tr>
<th>Description</th>
<th>OSPFv2/OSPFV3 sub-TLV /Sub-Sub-TLV</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIER information</td>
<td>BIER Sub-TLV</td>
<td>[RFC8444] & [I-D.ietf-bier-ospfv3-extensions]</td>
</tr>
<tr>
<td>BIER MPLS Encapsulation</td>
<td>BIER MPLS Encapsulation Sub-TLV</td>
<td>[RFC8444] & [I-D.ietf-bier-ospfv3-extensions]</td>
</tr>
</tbody>
</table>

Table 4: The new Prefix Attribute TLV

<table>
<thead>
<tr>
<th>TLV Code Point</th>
<th>Description</th>
<th>Value defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>BIER information</td>
<td>this document</td>
</tr>
<tr>
<td>TBD</td>
<td>BIER MPLS Encapsulation</td>
<td>this document</td>
</tr>
</tbody>
</table>

6. IANA Considerations

This document requests assigning code-points from the registry for the new Prefix Attribute TLVs.

<table>
<thead>
<tr>
<th>TLV Code Point</th>
<th>Description</th>
<th>Value defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>BIER information</td>
<td>this document</td>
</tr>
<tr>
<td>TBD</td>
<td>BIER MPLS Encapsulation</td>
<td>this document</td>
</tr>
</tbody>
</table>

7. Security Considerations

Procedures and protocol extensions defined in this document do not affect the BGP security model. See the "Security Considerations" section of [RFC4271] for a discussion of BGP security. Also, refer to [RFC4272] and [RFC6952] for analyses of security issues for BGP. Security considerations for acquiring and distributing BGP-LS information are discussed in [RFC7752].

The TLVs introduced in this document are used to propagate the Bit Index Explicit Replication (BIER) defined in [[RFC8401]], [[RFC8444]] and [[I-D.ietf-bier-ospfv3-extensions]]. These TLVs represent the bier information associated with the prefix. It is assumed that the IGP instances originating these TLVs will support all the required security and authentication mechanisms in [[RFC8401]], [[RFC8444]] and [[I-D.ietf-bier-ospfv3-extensions]] in order to prevent any security issues when propagating the TLVs into BGP-LS. The
advertisement of the link attribute information defined in this
document presents no additional risk beyond that associated with the
existing link attribute information already supported in [RFC7752].

8. Acknowledgements

We would like to thank Peter Psenak (Cisco) and Ketan
Talaulikar (Cisco) for his comments and support of this work.

9. Normative references

[I-D.ietf-bier-ospfv3-extensions]
Psenak, P., Kumar, N., and I. Wijnands, "OSPFv3 Extensions
for BIER", draft-ietf-bier-ospfv3-extensions-00 (work in
progress), May 2019.

(TE) Extensions to OSPF Version 2", RFC 3630,
DOI 10.17487/RFC3630, September 2003,

Border Gateway Protocol 4 (BGP-4)", RFC 4271,
DOI 10.17487/RFC4271, January 2006,

[RFC4272] Murphy, S., "BGP Security Vulnerabilities Analysis",
RFC 4272, DOI 10.17487/RFC4272, January 2006,

Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
RFC 4915, DOI 10.17487/RFC4915, June 2007,

BGP, LDP, PCEP, and MSDP Issues According to the Keying
and Authentication for Routing Protocols (KARP) Design
Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,

S. Ray, "North-Bound Distribution of Link-State and
Traffic Engineering (TE) Information Using BGP", RFC 7752,
DOI 10.17487/RFC7752, March 2016,

Authors’ Addresses

Ran Chen
ZTE Corporation
No.50 Software Avenue, Yuhuatai District
Nanjing, Jiangsu Province 210012
China

Phone: +86 025 88014636
Email: chen.ran@zte.com.cn

Zheng Zhang
ZTE Corporation
No.50 Software Avenue, Yuhuatai District
Nanjing, Jiangsu Province 210012
China

Email: zhang.zheng@zte.com.cn

Vengada Prasad Govindan
Cisco

Email: venggovi@cisco.com
IJsbrand Wijnands
Cisco
De Kleetlaan 6a
Diegem 1831
Belgium

Email: ice@cisco.com