Use of BIER Entropy for Data Center Clos Networks
draft-ietf-bier-entropy-staged-dc-clos-01

Abstract

Bit Index Explicit Replication (BIER) introduces a new multicast-specific BIER Header. BIER can be applied to the Multi Protocol Label Switching (MPLS) data plane or Non-MPLS data plane. Entropy is a technique used in BIER to support load-balancing. This document examines and describes how BIER Entropy is to be applied to Data Center Clos networks for path selection.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 9, 2019.
1. Introduction

Bit Index Explicit Replication (BIER) [RFC8279] is an architecture that provides optimal multicast forwarding without requiring intermediate routers to maintain any per-flow state by using a multicast-specific BIER header. [RFC8296] defines two types of BIER encapsulation formats: one is MPLS encapsulation, the other is non-MPLS encapsulation. Entropy is a technique used in BIER to support load-balancing. This document examines and describes how BIER Entropy is to be applied to Data Center Clos networks for path selection.
2. Terminology

Readers of this document are assumed to be familiar with the terminology and concepts of the documents listed as Normative References.

3. Problem Statement and Considerations

3.1. Problem Statement

A common choice for a horizontally scalable topology used in Data Center is a Clos topology. This topology features an odd number of stages, for example, a 5-Stage Clos Topology as a example in [RFC7938].

ECMP is the fundamental load-sharing mechanism used by a Clos topology. Effectively, every lower-tier device will use all of its directly attached upper-tier devices to load-share traffic destined to the same IP prefix. The number of ECMP paths between any two Tier 3 devices in Clos topology is equal to the number of the devices in the middle stage (Tier 1). For example, Figure 1 illustrates a topology where Tier 3 device L1 has four paths to reach servers X and Y, via Tier 2 devices S1 and S2 and then Tier 1 devices S11, S12, S21 and S22 respectively.
When BIER is deployed in a multi-tenant data center network environment for efficient delivery of Broadcast, Unknown-unicast and Multicast (BUM) traffic, a network operator may want a deterministic path for every packet. For example, when L1 needs to send a BUM packet to L3 and L4, which are in different SIs, L1 has to send the packet twice, and expects the packet along two deterministic paths of L1->S1->S11-->L3 and L1->S2->S21-->L4 separately. Another example of using a deterministic path in a DC is for per-flow steering of "elephant" flows defined in [I-D.ietf-spring-segment-routing-msdc].

A deterministic path for a multicast packet, with multiple staged equal cost paths, is comparable to a traffic-engineering path defined in [I-D.ietf-mpls-spring-entropy-label] for a unicast path with multiple hop equal cost paths.

3.2. Considerations

The idea behind entropy is that the ingress router computes a hash based on several fields from a given packet and places the result in an additional label, named "entropy label". Then this entropy label can be used as part of the hash keys used by an transit router. When
entropy label is used, the keys used in the hashing functions are still a local configuration matter. A router may solely use the entropy label or use a combination of multiple fields from the incoming packet. The hashing function is to randomly load balance the mass of flows between the small number of equal cost paths.

If one wants, however, to get a deterministic path from the equal cost paths, one can use part of the 20-bit entropy field. For example, bit 0 to bit 2 of entropy label can represent a value of 0 to 7, and thus can be used to select a deterministic path from 8 equal cost paths. And thus, a 20-bit entropy label can be used by routers in different tiers to select a deterministic path independently by using different parts of the 20-bit entropy label, and form an end-to-end deterministic path.

This is simple and applicable especially for DC Clos networks, because data delivery in DC Clos networks for tenants is always multi-staged, with the upstream direction stages having equal cost paths.

4. Use of BIER Entropy for DC Clos Network

4.1. Use of BIER Entropy for DC Clos Network

Take the 5-stage Clos network in figure 1 as an example.

Tier 2 in every cluster has N nodes, and the Tier 1 has M nodes. M is equal to N multiplied by P.

Tier 3 switches, in upstream direction, act as stage 1 of data delivery and have N equal cost paths to every BFERs in other clusters. Tier 2 switches, in upstream direction, act as stage 2 of data delivery and have P equal cost paths to every BFERs in other clusters.

Example 1: One can configure, on each Tier 3 switch, the use of bit 0 for path selection when N is equal to 2, and configure, on each Tier 2 switch, to use bit 1 for path selection when P is equal to 2.

Example 2: One can configure, on each Tier 3 switch, the use of bit 0 to bit 1 for path selection when N is equal to 4, and configure on each Tier 2 switches the use of bit 2 to bit 7 for path selection when P is equal to 48.

Assume that, each of the Tier 3 and Tier 2 switchs in the example has two parameters, X and Y, configured locally for using part of entropy label to do path selection, then in example 2:
Each of Tier 3 (Stage 1) switches has a pair of parameters \((X_1=1, Y_1=4)\)

Each of Tier 2 (Stage 2) switches has a pair of parameters
\((X_2=X_1\times Y_1=4, Y_2=64)\)

Each of Tier 3 (Stage 1) switches populates its BIFTs for ECMP, for example, BIFT-0 to BIFT-3.

Each of Tier 2 (Stage 2) switches populates its BIFTs for ECMP, for example, BIFT-0 to BIFT-47.

For each of Tier 3 (Stage 1) switches, each of the BIFT will have a preferred neighboring BFR. For example, LEAF L1 will have a preferred neighbor S1/S2 for BIFT-0/1 separately, and when forming the BIFT-0 table through the underlay routing to every BFER, the preferred neighboring BFR will has a highest priority among all the locally available ECMP path.

Then an end-to-end deterministic path for a BIER packet can be had by calculating an entropy label value like this:

\[
\text{Entropy} = (P_1-1)\times X_1 + (P_2-1)\times X_2
\]

Where \(P_1\) represents one of the Stage 1 equal cost paths with a value between 1 and \(N\), and \(P_2\) represents one of the Stage 2 equal cost paths with a value between 1 and \(P\).

4.2. Steering for elephant flows

One can steer an "elephant" flow to an end-to-end deterministic path, or some divided end-to-end deterministic paths across different SIs.

4.3. Path Division for Tenant flows to different SIs

When the VNEs for a tenant span multiple SIs, then it is useful to divide the BUM packet's paths across different SIs.

One can configure a policy to use different paths for BIER SIs when using BIER as the BUM tunnel, on each VNE for each VNI.

4.4. Link Failure and Convergence

As stated above, each of the BIFT on a BFR will have a preferred neighboring BFR. But when the link to the preferred neighbor of some BIFT (say BIFT-X) fail, BIFT-X will converge normally, and the path of this BIFT-X will then probably not being the 'best optimized' path. For example, the link between S1 and L2 fail, then the
prefered neighbor of BIFT-0 of LEAF L1, S1, is no longer the
neighboring BFR for LEAF L2, and the flow using a Entropy using LEAF
L1's BIFT-0 will have to replicate on L1, one packet to S1 for BFER
L3 and L4, and one packet to S2 for BFER L2. If the flow changes to
use a Entropy using LEAF L1’s BIFT-1, it will then be the 'best
optimized' path, because the flow doesn’t have to replicate on L1,
and it need to forward only one copy to S1 for BFER L2 and L3 and L4.
Such a change to a flow’s entropy is the Ingress switch’s
responsibility, possibly with the assisstance of a controller.

5. Data-Plane Processing

The use of BIER entropy label to select a path between some equal
cost paths is a local configuration matter. This draft defines a
method to use part of the 20-bit entropy label in each router, and
this needs a data-plane to do some bit operation function. It is
expected to be easier than hashing function.

6. Security Considerations

This document introduces no new security considerations beyond those
already specified in [RFC8279] and [RFC8296].

7. IANA Considerations

This document contains no actions for IANA.

8. Acknowledgements

The authors wish to thank Tony Przygienda, Greg Shepherd, Alia Atlas,
Jeffery Zhang, Andrew Dolganow, and Toerless Eckert for their
reviews, comments and suggestions.

9. References

9.1. Normative References

[I-D.ietf-mpls-spring-entropy-label]
Kini, S., Kompella, K., Sivabalan, S., Litkowski, S.,
Shakir, R., and J. Tantsura, "Entropy label for SPRING
tunnels", draft-ietf-mpls-spring-entropy-label-12 (work in
progress), July 2018.

[I-D.ietf-spring-segment-routing-msdc]
Filsfils, C., Previdi, S., Dawra, G., Aries, E., and P.
Lapukhov, "BGP-Prefix Segment in large-scale data
centers", draft-ietf-spring-segment-routing-msdc-11 (work
in progress), November 2018.
9.2. Informative References

Authors' Addresses

Jingrong Xie
Huawei Technologies
Email: xiejingrong@huawei.com

Xiaohu Xu
Alibaba Inc.
Email: xiaohu.xxh@alibaba-inc.com

Gang Yan
Huawei Technologies
Email: yangang@huawei.com