Generalized Multiprotocol Label Switching (GMPLS) Traffic Engineering Management Information Base
draft-ietf-ccamp-gmpls-te-mib-16.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects for Generalized Multiprotocol Label Switching (GMPLS) based traffic engineering.
1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects for modeling Generalized Multiprotocol Label Switching (GMPLS) [RFC3945] based traffic engineering. The tables and objects defined in this document extend those defined in the equivalent document for MPLS traffic engineering [RFC3812], and management of GMPLS traffic engineering is built on management of MPLS traffic engineering.

The MIB modules in this document should be used in conjunction with the companion document [GMPLSLSRMIB] for GMPLS based traffic engineering configuration and management.

Comments should be made direct to the CCAMP mailing list at ccamp@ops.ietf.org.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119, reference [RFC2119].

1.1. Migration Strategy

MPLS-TE LSPs may be modeled and managed using the MPLS-TE-STD-MIB module [RFC3812].

LSRs may be migrated to model and manage their TE LSPs using the MIB modules in this document in order to migrate the LSRs to GMPLS support, or to take advantage of additional MIB objects defined in these MIB modules that are applicable to MPLS-TE.

The GMPLS TE MIB module (GMPLS-TE-STD-MIB) defined in this document extends the MPLS-TE-STD-MIB module [RFC3812] through a series of augmentations and sparse augmentations of the MIB tables. The only additions are for support of GMPLS or to support the increased complexity of MPLS and GMPLS systems.

In order to migrate from MPLS-TE-STD-MIB support to GMPLS-TE-STD-MIB support an implementation needs only to add support for the additional tables and objects defined in GMPLS-TE-STD-MIB. The gmplsTunnelLSPEncoding may be set to tunnelLspNotGmpls to allow an MPLS-TE LSP tunnel to benefit from the additional objects and tables of GMPLS-LSR-STD-MIB without supporting the GMPLS protocols.

The companion document for modeling and managing GMPLS based LSRs [GMPLSLSRMIB] extends the MPLS-LSR-STD-MIB module [RFC3813] with the same intentions.

Textual conventions are defined in [RFC3811] and the IANA-GMPLS-TC-MIB MIB module.

2. Terminology

This document uses terminology from the MPLS architecture document [RFC3031], from the GMPLS architecture document [RFC3945], and from the MPLS Traffic Engineering MIB [RFC3812]. Some frequently used terms are described next.

An explicitly routed LSP (ERLSP) is referred to as a GMPLS tunnel. It consists of in-segment(s) and/or out-segment(s) at the egress/ingress LSRs, each segment being associated with one GMPLS enabled interface. These are also referred to as tunnel segments.

Additionally, at an intermediate LSR, we model a connection as consisting of one or more in-segments and/or one or more out-segments. The binding or interconnection between in-segments and
out-segments in performed using a cross-connect.

These segment and cross-connect objects are defined in the MPLS Label Switch Router MIB (MPLS-LSR-STD-MIB) [RFC3813], but see also the GMPLS Label Switching Router MIB (GMPLS-LSR-STD-MIB) [GMPLSLSRMIB] for the GMPLS-specific extensions to these objects.

3. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIV2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

4. Outline

Support for GMPLS traffic-engineered tunnels requires the following configuration.

- Setting up tunnels with appropriate MPLS configuration parameters using [RFC3812].
- Extending the tunnels with GMPLS configuration parameters.
- Configuring tunnel loose and strict source routed hops.

These actions may need to be accompanied with corresponding actions using [RFC3813] and [GMPLSLSRMIB] to establish and configure tunnel segments, if this is done manually. Also, the in-segment and out-segment performance tables, mplsInSegmentPerfTable and mplsOutSegmentPerfTable [RFC3813], should be used to determine performance of the tunnels and tunnel segments although it should be noted that those tables may not be appropriate for measuring performance on some types of GMPLS links.

4.1. Summary of GMPLS Traffic Engineering MIB Module

The following tables contain MIB objects for performing the actions listed above when they cannot be performed solely using MIB objects defined in MPLS-TE-STD-MIB [RFC3812].

- Tunnel Table (gmplsTunnelTable) for providing GMPLS-specific tunnel configuration parameters.
- Tunnel specified, actual, and computed hop tables (gmplsTunnelHopTable, gmplsTunnelARHopTable, and gmplsTunnelCHopTable) for providing additional configuration of strict and loose source routed tunnel hops.
- Performance and error reporting tables (gmplsTunnelReversePerfTable and gmplsTunnelErrorTable).

These tables are described in the subsequent sections.

Additionally, the GMPLS-TE-STD-MIB module contains a new notification.

- The GMPLS Tunnel Down Notification (gmplsTunnelDown) should be used for all GMPLS tunnels in place of the mplsTunnelDown notification defined in [RFC3812]. An implementation must not issue both the gmplsTunnelDown and the mplsTunnelDown notifications for the same event. As well as indicating that a tunnel has transitioned to operational down state, this new notification indicates the cause of the failure.

5. Brief Description of GMPLS TE MIB Objects

The objects described in this section support the functionality described in [RFC3473] and [RFC3472] for GMPLS tunnels. The tables support both manually configured and signaled tunnels.

5.1. gmplsTunnelTable

The gmplsTunnelTable extends the MPLS traffic engineering MIB module (MPLS-TE-STD-MIB [RFC3812]) to allow GMPLS tunnels to be created between an LSR and a remote endpoint, and existing GMPLS tunnels to be reconfigured or removed.

Note that we only support point-to-point tunnel segments, although multi-point-to-point and point-to-multi-point connections are supported by an LSR acting as a cross-connect.

Each tunnel can thus have one out-segment originating at an LSR and/or one in-segment terminating at that LSR.

Three objects within this table utilize enumerations in order to map to enumerations that are used in GMPLS signaling. In order to protect the GMPLS-TE-STD-MIB module from changes (in particular, extensions) to the range of enumerations supported by the signaling protocols, these MIB objects use Textual Conventions with values maintained by IANA. For further details, see the IANA Considerations section of this document.
5.2. gmplsTunnelHopTable

The gmplsTunnelHopTable is used to indicate additional parameters for the hops, strict or loose, of a GMPLS tunnel defined in gmplsTunnelTable, when it is established using signaling. Multiple tunnels may share hops by pointing to the same entry in this table.

5.3. gmplsTunnelARHopTable

The gmplsTunnelARHopTable is used to indicate the actual hops traversed by a tunnel as reported by the signaling protocol after the tunnel is setup. The support of this table is optional since not all GMPLS signaling protocols support this feature.

5.4. gmplsTunnelCHopTable

The gmplsTunnelCHopTable lists the actual hops computed by a constraint-based routing algorithm based on the gmplsTunnelHopTable. The support of this table is optional since not all implementations support computation of hop lists using a constraint-based routing protocol.

5.5. gmplsTunnelErrorTable

The gmplsTunnelErrorTable provides access to information about the last error that occurred on each tunnel known about by the MIB. It indicates the nature of the error, when and how it was reported and can give recovery advice through an admin string.

5.6. gmplsTunnelReversePerfTable

gmplsTunnelReversePerfTable provides additional counters to measure the performance of bidirectional GMPLS tunnels in which packets are visible. It supplements the counters in mplsTunnelPerfTable and augments gmplsTunnelTable.

Note that not all counters may be appropriate or available for some types of tunnel.

5.7. Use of 32-bit and 64-bit Counters

64-bit counters are provided in the GMPLS-TE-STD-MIB module for high-speed interfaces where the use of 32-bit counters might be impractical. The requirements on the use of 32-bit and 64-bit counters (copied verbatim from [RFC2863]) are as follows:

For interfaces that operate at 20,000,000 (20 million) bits per second or less, 32-bit byte and packet counters MUST be supported. For interfaces that operate faster than 20,000,000 bits/second, and slower than 650,000,000 bits/second, 32-bit packet counters MUST be
supported and 64-bit octet counters MUST be supported. For interfaces that operate at 650,000,000 bits/second or faster, 64-bit packet counters AND 64-bit octet counters MUST be supported.

6. Cross-referencing to the gmplsLabelTable

The gmplsLabelTable is found in the GMPLS-LABEL-STD-MIB module in [GMPLSLSRMIB] and provides a way to model labels in a GMPLS system where labels might not be simple 32 bit integers.

The hop tables in this document (gmplsTunnelHopTable, gmplsTunnel1CHopTable and gmplsTunnel1ARHopTable) and the segment tables in the [RFC3813] (mplsInSegmentTable and mplsOutSegmentTable) contain objects with syntax MplsLabel.

MplsLabel (defined in [RFC3811]) is a 32-bit integer that is capable of representing any MPLS label and most GMPLS labels. However, some GMPLS labels are larger than 32 bits and may be of arbitrary length. Further, some labels that may be safely encoded in 32 bits are constructed from multiple sub-fields. Additionally, some GMPLS technologies support the concatenation of individual labels to represent a data flow carried as multiple sub-flows.

These GMPLS cases require that something other than a simple 32-bit integer is made available to represent the labels. This is achieved through the gmplsLabelTable contained in the GMPLS-LABEL-STD-MIB [GMPLSLSRMIB].

The tables in this document and [RFC3813] that include objects with syntax MplsLabel also include companion objects that are row pointers. If the row pointer is set to zeroDotZero (0.0) then object of syntax MplsLabel contains the label encoded as a 32-bit integer. But otherwise the row pointer indicates a row in another MIB table that includes the label. In these cases, the row pointer may indicate a row in the gmplsLabelTable.

This provides both a good way to support legacy systems that implement the MPLS-TE-STD-MIB [RFC3812], and a significant simplification in GMPLS systems that are limited to a single, simple label type.

Note that gmplsLabelTable supports concatenated labels through the use of a label sub-index (gmplsLabelSubindex).

7. Example of GMPLS Tunnel Setup

This section contains an example of which MIB objects should be modified to create a GMPLS tunnel. This example shows a best effort, loosely routed, bidirectional traffic engineered tunnel, which spans two hops of a simple network, uses Generalized Label requests with
Lambda encoding, has label recording and shared link layer protection. Note that these objects should be created on the "head-end" LSR.

First in the mplsTunnelTable:

```
{
  mplsTunnelIndex    = 1,
  mplsTunnelInstance = 1,
  mplsTunnelIngressLSRId  = 192.0.2.1,
  mplsTunnelEgressLSRId  = 192.0.2.2,
  mplsTunnelName      = "My first tunnel",
  mplsTunnelDescr     = "Here to there and back again",
  mplsTunnelIsIf      = true (1),
  mplsTunnelXCPPointer= mplsXCIndex.3.0.0.12,
  mplsTunnelSignallingProto = none (1),
  mplsTunnelSetupPrio = 0,
  mplsTunnelHoldingPrio= 0,
  mplsTunnelSessionAttributes = recordRoute (4),
  mplsTunnelOwner     = snmp (2),
  mplsTunnelLocalProtectInUse = false (2),
  mplsTunnelResourcePointer = mplsTunnelResourceIndex.6,
  mplsTunnelInstancePriority = 1,
  mplsTunnelHopTableIndex = 1,
  mplsTunnelPrimaryInstance = 0,
  mplsTunnelIncludeAnyAffinity = 0,
  mplsTunnelIncludeAllAffinity = 0,
  mplsTunnelExcludeAnyAffinity = 0,
  mplsTunnelPathInUse = 1,
  mplsTunnelRole      = head(1),
  mplsTunnelRowStatus = createAndWait (5),
}
```

In gmplsTunnelTable(1,1,192.0.2.1,192.0.2.2):

```
{
  gmplsTunnelUnnumIf = true (1),
  gmplsTunnelAttributes = labelRecordingRequired (1),
  gmplsTunnelLSPEncoding = tunnelLspLambda,
  gmplsTunnelSwitchingType = lsc,
  gmplsTunnelLinkProtection = shared (2),
  gmplsTunnelGPid = lambda,
  gmplsTunnelSecondary = false (2),
  gmplsTunnelDirection = bidirectional (1)
  gmplsTunnelPathComp = explicit(2),
  gmplsTunnelSendPathNotifyRecipientType = ipv4(1),
  gmplsTunnelSendPathNotifyRecipient = 'C0000201'H,
  gmplsTunnelAdminStatusFlags = 0,
  gmplsTunnelExtraParamsPtr = 0.0
}
```
Entries in the mplsTunnelResourceTable, mplsTunnelHopTable and
gmplsTunnelHopTable are created and activated at this time.

In mplsTunnelResourceTable:
{
 mplsTunnelResourceIndex = 6,
 mplsTunnelResourceMaxRate = 0,
 mplsTunnelResourceMeanRate = 0,
 mplsTunnelResourceMaxBurstSize = 0,
 mplsTunnelResourceRowStatus = createAndGo (4)
}

The next two instances of mplsTunnelHopEntry are used to denote the
hops this tunnel will take across the network.

The following denotes the beginning of the network, or the first hop.
We have used the fictitious LSR identified by "192.0.2.1" as our
example head-end router.

In mplsTunnelHopTable:
{
 mplsTunnelHopListIndex = 1,
 mplsTunnelPathOptionIndex = 1,
 mplsTunnelHopIndex = 1,
 mplsTunnelHopAddrType = ipV4 (1),
 mplsTunnelHopIpv4Addr = 192.0.2.1,
 mplsTunnelHopIpv4PrefixLen = 9,
 mplsTunnelHopType = strict (1),
 mplsTunnelHopRowStatus = createAndWait (5),
}

The following denotes the end of the network, or the last hop in our
example. We have used the fictitious LSR identified by
"192.0.2.2" as our tail end router.

In mplsTunnelHopTable:
{
 mplsTunnelHopListIndex = 1,
 mplsTunnelPathOptionIndex = 1,
 mplsTunnelHopIndex = 2,
 mplsTunnelHopAddrType = ipV4 (1),
 mplsTunnelHopIpv4Addr = 192.0.2.2,
 mplsTunnelHopIpv4PrefixLen = 9,
 mplsTunnelHopType = loose (2),
 mplsTunnelHopRowStatus = createAndGo (4)
}

Now an associated entry in the gmplsTunnelHopTable is created to
provide additional GMPLS hop configuration indicating that the first
hop is an unnumbered link using explicit forward and reverse labels.
An entry in the gmplsLabelTable is created first to include the explicit label.

In gmplsLabelTable:
{
 gmplsLabelInterface = 2,
 gmplsLabelIndex = 1,
 gmplsLabelSubindex = 0,
 gmplsLabelType = gmplsFreeformLabel(3),
 gmplsLabelFreeform = 0xFEDCBA9876543210
 gmplsLabelRowStatus = createAndGo(4)
}

In gmplsTunnelHopTable(1,1,1):
{
 gmplsTunnelHopLabelStatuses = forwardPresent(0)
 + reversePresent(1),
 gmplsTunnelHopExplicitForwardLabelPtr = gmplsLabelTable (2, 1, 0)
 gmplsTunnelHopExplicitReverseLabelPtr = gmplsLabelTable (2, 1, 0)
}

The first hop is now activated:

In mplsTunnelHopTable(1,1,1):
{
 mplsTunnelHopRowStatus = active (1)
}

No gmplsTunnelHopEntry is created for the second hop as it contains no special GMPLS features.

Finally the mplsTunnelEntry is activated:

In mplsTunnelTable(1,1,192.0.2.1,192.0.2.2)
{
 mplsTunnelRowStatus = active(1)
}
8. GMPLS Traffic Engineering MIB Module

This MIB module makes references to the following documents:
[RCF2205], [RFC2578], [RFC2579], [RFC2580], [RFC3209], [RFC3411],
[RFC3471], [RFC3473], [RFC3477], [RFC3812], [RFC4001], and
[RFC4202].

GMPLS-TE-STD-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Unsigned32, Counter32, Counter64, zeroDotZero, Gauge32
 FROM SNMPv2-SMI -- RFC2578
 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF -- RFC2580
 TruthValue, TimeStamp, RowPointer
 FROM SNMPv2-TC -- RFC2579
 InetAddress, InetAddressType
 FROM INET-ADDRESS-MIB -- RFC4001
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB -- RFC3411
 mplsTunnelIndex, mplsTunnelInstance, mplsTunnelIngressLSRId,
 mplsTunnelEgressLSRId, mplsTunnelHopListIndex,
 mplsTunnelHopPathOptionIndex, mplsTunnelHopIndex,
 mplsTunnelARHopListIndex, mplsTunnelARHopIndex,
 mplsTunnelCHopListIndex, mplsTunnelCHopIndex,
 mplsTunnelEntry,
 mplsTunnelAdminStatus, mplsTunnelOperStatus,
 mplsTunnelGroup, mplsTunnelScalarGroup
 FROM MPLS-TE-STD-MIB -- RFC3812
 IANAGmplsLSPEncodingTypeTC, IANAGmplsSwitchingTypeTC,
 IANAGmplsGeneralizedPidTC, IANAGmplsAdminStatusInformationTC
 FROM IANA-GMPLS-TC-MIB
 mplsStdMIB
 FROM MPLS-TC-STD-MIB -- RFC3811
;

gmplsTeStdMIB MODULE-IDENTITY
 LAST-UPDATED "200609060001Z" -- 06 September 2006 00:00:01 GMT
 ORGANIZATION "IETF Common Control And Measurement Plane (CCAMP) Working Group"
 CONTACT-INFO
 "Thomas D. Nadeau
 Cisco Systems, Inc.
 Email: tnadeau@cisco.com
 Adrian Farrel
 Old Dog Consulting
 Email: adrian@olddog.co.uk"
This MIB module contains managed object definitions for GMPLS Traffic Engineering (TE) as defined in:

gmplsTunnelsConfigured OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of GMPLS tunnels configured on this device. A GMPLS tunnel is considered configured if an entry for the tunnel exists in the gmplsTunnelTable and the associated mplsTunnelRowStatus is active(1)."
 ::= { gmplsTeScalars 1 }

Nadeau and Farrel Expires March 2007 [Page 12]
gmplsTunnelsActive OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of GMPLS tunnels active on this device. A GMPLS
tunnel is considered active if there is an entry in the
gmplsTunnelTable and the associated mplsTunnelOperStatus for the
tunnel is up(1)."
 ::= { gmplsTeScalars 2 }

gmplsTunnelTable OBJECT-TYPE
SYNTAX SEQUENCE OF GmplsTunnelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The gmplsTunnelTable sparsely extends the mplsTunnelTable of
MPLS-TE-STD-MIB. It allows GMPLS tunnels to be created between
an LSR and a remote endpoint, and existing tunnels to be
reconfigured or removed.

Note that only point-to-point tunnel segments are supported,
although multi-point-to-point and point-to-multi-point
connections are supported by an LSR acting as a cross-connect.
Each tunnel can thus have one out-segment originating at this
LSR and/or one in-segment terminating at this LSR.

The row status of an entry in this table is controlled by
mplsTunnelRowStatus in the corresponding entry in
mplsTunnelTable. When the corresponding mplsTunnelRowStatus has
value active(1) a row in this table may not be created or
modified.

The exception to this rule is the
gmplsTunnelAdminStatusInformation object, which can be modified
whilst the tunnel is active."
REFERENCE
 "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)
 Management Information Base (MIB), RFC 3812."
 ::= { gmplsTeObjects 1 }

gmplsTunnelEntry OBJECT-TYPE
SYNTAX GmplsTunnelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An entry in this table in association with the corresponding
entry in the mplsTunnelTable represents a GMPLS tunnel."
An entry can be created by a network administrator via SNMP SET commands, or in response to signaling protocol events.

INDEX {
 mplsTunnelIndex,
 mplsTunnelInstance,
 mplsTunnelIngressLSRId,
 mplsTunnelEgressLSRId
} ::= { gmplsTunnelTable 1 }

GmplsTunnelEntry ::= SEQUENCE {
 mplsTunnelUnnumIf TruthValue,
 mplsTunnelAttributes BITS,
 mplsTunnelLSPEncoding IANAGmplsLSPEncodingTypeTC,
 mplsTunnelSwitchingType IANAGmplsSwitchingTypeTC,
 mplsTunnelLinkProtection BITS,
 mplsTunnelGPid IANAGmplsGeneralizedPidTC,
 mplsTunnelSecondary TruthValue,
 mplsTunnelDirection INTEGER,
 mplsTunnelPathComp INTEGER,
 mplsTunnelUpstreamNotifyRecipientType InetAddressType,
 mplsTunnelUpstreamNotifyRecipient InetAddress,
 mplsTunnelSendResvNotifyRecipientType InetAddressType,
 mplsTunnelSendResvNotifyRecipient InetAddress,
 mplsTunnelDownstreamNotifyRecipientType InetAddressType,
 mplsTunnelDownstreamNotifyRecipient InetAddress,
 mplsTunnelSendPathNotifyRecipientType InetAddressType,
 mplsTunnelSendPathNotifyRecipient InetAddress,
 mplsTunnelAdminStatusFlags IANAGmplsAdminStatusInformationTC,
 mplsTunnelExtraParamsPtr RowPointer
}

gmplsTunnelUnnumIf OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Denotes whether or not this tunnel corresponds to an unnumbered interface represented by an entry in the interfaces group table (the ifTable) with ifType set to mpls (166).

This object is only used if mplsTunnelIsIf is set to ‘true’.

If both this object and the mplsTunnelIsIf object are set to ‘true’, the originating LSR adds an LSP_TUNNEL_INTERFACE_ID object to the outgoing Path message.

This object contains information that is only used by the terminating LSR."
REFERENCE
"1. Signalling Unnumbered Links in RSVP-TE, RFC 3477."
DEFVAL { false }
::= { gmplsTunnelEntry 1 }

gmplsTunnelAttributes OBJECT-TYPE
SYNTAX BITS {
 labelRecordingDesired (0)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This bitmask indicates optional parameters for this tunnel. These bits should be taken in addition to those defined in mplsTunnelSessionAttributes in order to determine the full set of options to be signaled (for example SESSION_ATTRIBUTES flags in RSVP-TE). The following describes these bitfields:

labelRecordingDesired
This flag is set to indicate that label information should be included when doing a route record. This bit is not valid unless the recordRoute bit is set."

REFERENCE
"1. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, sections 4.4.3, 4.7.1 and 4.7.2."
DEFVAL { { } }
::= { gmplsTunnelEntry 2 }

gmplsTunnelLSPEncoding OBJECT-TYPE
SYNTAX IANAGmplsLSPEncodingTypeTC
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object indicates the encoding of the LSP being requested. A value of 'tunnelLspNotGmpls' indicates that GMPLS signaling is not in use. Some objects in this MIB module may be of use for MPLS signaling extensions that do not use GMPLS signaling. By setting this object to 'tunnelLspNotGmpls', an application may indicate that only those objects meaningful in MPLS should be examined.

The values to use are defined in the textual convention IANAGmplsLSPEncodingTypeTC found in the IANA-GMPLS-TC-MIB module."
DEFVAL { tunnelLspNotGmpls }
::= { gmplsTunnelEntry 3 }
gmplsTunnelSwitchingType OBJECT-TYPE
SYNTAX IANAGmplsSwitchingTypeTC
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Indicates the type of switching that should be performed on a particular link. This field is needed for links that advertise more than one type of switching capability.

The values to use are defined in the textual convention IANAGmplsSwitchingTypeTC found in the IANA-GMPLS-TC-MIB module.

This object is only meaningful if gmplsTunnelLSPEncoding is not set to ‘tunnelLspNotGmpls’.
DEFVAL { unknown }
::= { gmplsTunnelEntry 4 }

gmplsTunnelLinkProtection OBJECT-TYPE
SYNTAX BITS {
 extraTraffic(0),
 unprotected(1),
 shared (2),
 dedicatedOneToOne (3),
 dedicatedOnePlusOne(4),
 enhanced(5)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This bitmask indicates the level of link protection required. A value of zero (no bits set) indicates that any protection may be used. The following describes these bitfields:

extraTraffic
This flag is set to indicate that the LSP should use links that are protecting other (primary) traffic. Such LSPs may be preempted when the links carrying the (primary) traffic being protected fail.

unprotected
This flag is set to indicate that the LSP should not use any link layer protection.

shared
This flag is set to indicate that a shared link layer protection scheme, such as 1:N protection, should be used to support the LSP."
dedicatedOneToOne
This flag is set to indicate that a dedicated link layer protection scheme, i.e., 1:1 protection, should be used to support the LSP.

dedicatedOnePlusOne
This flag is set to indicate that a dedicated link layer protection scheme, i.e., 1+1 protection, should be used to support the LSP.

enhanced
This flag is set to indicate that a protection scheme that is more reliable than Dedicated 1+1 should be used, e.g., 4 fiber BLSR/MS-SPRING.

This object is only meaningful if gmplsTunnelLSPEncoding is not set to ‘tunnelLspNotGmpls’.

REFERENCE
"1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 7.1."
DEFVAL { { } }
 ::= { gmplsTunnelEntry 5 }

gmplsTunnelGPed OBJECT-TYPE
SYNTAX IANAGmplsGeneralizedPidTC
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object indicates the payload carried by the LSP. It is only required when GMPLS will be used for this LSP.

The values to use are defined in the textual convention IANAGmplsGeneralizedPidTC found in the IANA-GMPLS-TC-MIB module.

This object is only meaningful if gmplsTunnelLSPEncoding is not set to ‘tunnelLspNotGmpls’.
DEFVAL { unknown }
 ::= { gmplsTunnelEntry 6 }

gmplsTunnelSecondary OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Indicates that the requested LSP is a secondary LSP.

This object is only meaningful if gmplsTunnelLSPEncoding is not set to ‘tunnelLspNotGmpls’."
REFERENCE
"1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling
Functional Description, RFC 3471, section 7.1."

::= { gmplsTunnelEntry 7 }

gmplsTunnelDirection OBJECT-TYPE
SYNTAX INTEGER {
 forward (0),
 bidirectional (1)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Whether this tunnel carries forward data only (is
unidirectional) or is bidirectional.

Values of this object other than 'forward' are meaningful
only if gmplsTunnelLSPEncoding is not set to
'tunnelLspNotGmpls'."

::= { gmplsTunnelEntry 8 }

gmplsTunnelPathComp OBJECT-TYPE
SYNTAX INTEGER {
 dynamicFull(1), -- CSPF fully computed
 explicit(2), -- fully specified path
 dynamicPartial(3) -- CSPF partially computed
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This value instructs the source node on how to perform path
computation on the explicit route specified by the associated
entries in the gmplsTunnelHopTable.

dynamicFull
 The user specifies at least the source and
destination of the path and expects that the CSPF
 will calculate the remainder of the path.

explicit
 The user specifies the entire path for the tunnel to
take. This path may contain strict or loose hops.
 Evaluation of the explicit route will be performed
 hop by hop through the network."
The user specifies at least the source and destination of the path and expects that the CSPF will calculate the remainder of the path. The path computed by CSPF is allowed to be only partially computed allowing the remainder of the path to be filled in across the network.

When an entry is present in gmplsTunnelTable for a tunnel, gmplsTunnelPathComp MUST be used and any corresponding mplsTunnelHopEntryPathComp object in the mplsTunnelHopTable MUST be ignored and SHOULD not be set.

mplsTunnelHopTable and mplsTunnelHopEntryPathComp are part of MPLS-TE-STD-MIB.

This object should be ignored if value of gmplsTunnelLSPEncoding is ‘tunnelLspNotGmpls’.

REFERENCE

"1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812."

DEFVAL { dynamicFull }

::= { gmplsTunnelEntry 9 }

gmplsTunnelUpstreamNotifyRecipientType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to aid in interpretation of gmplsTunnelUpstreamNotifyRecipient."
DEFVAL { unknown }
::= { gmplsTunnelEntry 10 }

gmplsTunnelUpstreamNotifyRecipient OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Indicates the address of the upstream recipient for Notify messages relating to this tunnel and issued by this LSR. This information is typically received from an upstream LSR in a Path message.

This object is only valid when signaling a tunnel using RSVP.

It is also not valid at the head end of a tunnel since there are no upstream LSRs to which to send a Notify message."
This object is interpreted in the context of the value of gmplsTunnelUpstreamNotifyRecipient. If this object is set to 0, the value of gmplsTunnelUpstreamNotifyRecipient MUST be set to unknown(0).

REFERENCE

"1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 4.2."

DEFVAL { '00000000'H } -- 0.0.0.0

::= { gmplsTunnelEntry 11 }

gmplsTunnelSendResvNotifyRecipientType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to aid in interpretation of gmplsTunnelSendResvNotifyRecipient."
DEFVAL { unknown }
::= { gmplsTunnelEntry 12 }

gmplsTunnelSendResvNotifyRecipient OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Indicates to an upstream LSR the address to which it should send downstream Notify messages relating to this tunnel.

This object is only valid when signaling a tunnel using RSVP.

It is also not valid at the head end of the tunnel since no Resv messages are sent from that LSR for this tunnel.

If set to 0, no Notify Request object will be included in the outgoing Resv messages.

This object is interpreted in the context of the value of gmplsTunnelSendResvNotifyRecipientType. If this object is set to 0, the value of gmplsTunnelSendResvNotifyRecipientType MUST be set to unknown(0)."

REFERENCE

"1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 4.2."

DEFVAL { '00000000'H } -- 0.0.0.0

::= { gmplsTunnelEntry 13 }
gmplsTunnelDownstreamNotifyRecipientType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to aid in interpretation of
gmplsTunnelDownstreamNotifyRecipient."
DEFVAL { unknown }
::= { gmplsTunnelEntry 14 }

gmplsTunnelDownstreamNotifyRecipient OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Indicates the address of the downstream recipient for Notify
messages relating to this tunnel and issued by this LSR. This
information is typically received from an upstream LSR in a Resv
message. This object is only valid when signaling a tunnel using
RSVP.

It is also not valid at the tail end of a tunnel since there are
no downstream LSRs to which to send a Notify message.
This object is interpreted in the context of the value of
gmplsTunnelDownstreamNotifyRecipient. If this object is set to
0, the value of gmplsTunnelDownstreamNotifyRecipient MUST be set
to unknown(0)."
REFERENCE
"1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
section 4.2."
DEFVAL { '00000000'H } -- 0.0.0.0
::= { gmplsTunnelEntry 15 }

gmplsTunnelSendPathNotifyRecipientType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to aid in interpretation of
gmplsTunnelSendPathNotifyRecipient."
DEFVAL { unknown }
::= { gmplsTunnelEntry 16 }

gmplsTunnelSendPathNotifyRecipient OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Indicates to a downstream LSR the address to which it should send upstream Notify messages relating to this tunnel.

This object is only valid when signaling a tunnel using RSVP.

It is also not valid at the tail end of the tunnel since no Path messages are sent from that LSR for this tunnel.

If set to 0, no Notify Request object will be included in the outgoing Path messages.

This object is interpreted in the context of the value of gmplsTunnelSendPathNotifyRecipientType. If this object is set to 0, the value of gmplsTunnelSendPathNotifyRecipientType MUST be set to unknown(0).

REFERENCE
"1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 4.2."

DEFVAL { '00000000'H } -- 0.0.0.0
::= { gmplsTunnelEntry 17 }

gmplsTunnelAdminStatusFlags OBJECT-TYPE
SYNTAX IANAGmplsAdminStatusInformationTC
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Determines the setting of the Admin Status flags in the Admin Status object or TLV, as described in RFC 3471. Setting this field to a non-zero value will result in the inclusion of the admin status object on signaling messages.

The values to use are defined in the textual convention IANAGmplsAdminStatusInformationTC found in the IANA-GMPLS-TC-MIB module.

This value of this object can be modified when the corresponding mplsTunnelRowStatus and mplsTunnelAdminStatus is active(1). By doing so, a new signaling message will be triggered including the requested Admin Status object or TLV."

REFERENCE
"1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 8."

DEFVAL { { } }
::= { gmplsTunnelEntry 18 }
gmplsTunnelExtraParamsPtr OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-create
STATUS current
DESCRIPTION "Some Tunnels will run over transports that can usefully support
technology-specific additional parameters (for example, SONET
resource usage). Such parameters can be supplied in an external
table and referenced from here.

A value of zeroDotzero in this attribute indicates that there
is no such additional information."
DEFVAL { zeroDotZero }
::= { gmplsTunnelEntry 19 }

gmplsTunnelHopTable OBJECT-TYPE
SYNTAX SEQUENCE OF GmplsTunnelHopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The gmplsTunnelHopTable sparsely extends the mplsTunnelHopTable
of MPLS-TE-STD-MIB. It is used to indicate the explicit labels
to be used in an explicit path for a GMPLS tunnel defined in
mplsTunnelTable and gmplsTunnelTable, when it is established
using signaling. It does not insert new hops, but does define
new values for hops defined in mplsTunnelHopTable.

Each row in this table is indexed by the same indexes as
mplsTunnelHopTable. It is acceptable for some rows in
mplsTunnelHopTable to have corresponding entries in this table
and some to have no corresponding entry in this table.

The storage type for this entry is given by the value
of mplsTunnelHopStorageType in the corresponding entry in the
mplsTunnelHopTable.

The row status of an entry in this table is controlled by
mplsTunnelHopRowStatus in the corresponding entry in
mplsTunnelHopTable. That is, it is not permitted to create a row
in this table, nor to modify an existing row, when the
corresponding mplsTunnelHopRowStatus has value active(1)."
REFERENCE
"1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE)
Management Information Base (MIB), RFC 3812.
"
::= { gmplsTeObjects 2 }
gmplsTunnelHopEntry OBJECT-TYPE
SYNTAX GmplsTunnelHopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in this table represents additions to a tunnel hop
defined in mplsTunnelHopEntry. At an ingress to a tunnel an
entry in this table is created by a network administrator for an
ERLSP to be set up by a signaling protocol. At transit and
egress nodes an entry in this table may be used to represent the
explicit path instructions received using the signaling
protocol."
INDEX {
mplsTunnelHopListIndex,
mplsTunnelHopPathOptionIndex,
mplsTunnelHopIndex
}
 ::= { gmplsTunnelHopTable 1 }

GmplsTunnelHopEntry ::= SEQUENCE {
gmplsTunnelHopLabelStatuses BITS,
gmplsTunnelHopExplicitForwardLabel Unsigned32,
gmplsTunnelHopExplicitForwardLabelPtr RowPointer,
gmplsTunnelHopExplicitReverseLabel Unsigned32,
gmplsTunnelHopExplicitReverseLabelPtr RowPointer
}

gmplsTunnelHopLabelStatuses OBJECT-TYPE
SYNTAX BITS {
 forwardPresent (0),
 reversePresent (1)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This bitmask indicates the presence of labels indicated by the
gmplsTunnelHopExplicitForwardLabel or
gmplsTunnelHopExplicitForwardLabelPtr, and
gmplsTunnelHopExplicitReverseLabel or
gmplsTunnelHopExplicitReverseLabel objects.

For the Present bits, a set bit indicates that a label is
present for this hop in the route. This allows zero to be a
valid label value."
DEFVAL { { } }
 ::= { gmplsTunnelHopEntry 1 }
gmplsTunnelHopExplicitForwardLabel OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If gmplsTunnelHopLabelStatuses object indicates that a forward
label is present and gmplsTunnelHopExplicitForwardLabelPtr
contains the value zeroDotZero, then the label to use on this
hop is represented by the value of this object."
 ::= { gmplsTunnelHopEntry 2 }

gmplsTunnelHopExplicitForwardLabelPtr OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If the gmplsTunnelHopLabelStatuses object indicates that a
forward label is present, this object contains a pointer to a
row in another MIB table (such as the gmplsLabelTable of
GMPLS-LABEL-STD-MIB) that contains the label to use on this hop
in the forward direction.

If the gmplsTunnelHopLabelStatuses object indicates that a
forward label is present and this object contains the value
zeroDotZero, then the label to use on this hop is found in the
gmplsTunnelHopExplicitForwardLabel object."
DEFVAL { zeroDotZero }
 ::= { gmplsTunnelHopEntry 3 }

gmplsTunnelHopExplicitReverseLabel OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If the gmplsTunnelHopLabelStatuses object indicates that a
reverse label is present and
gmplsTunnelHopExplicitReverseLabelPtr contains the value
zeroDotZero, then the label to use on this this hop is found in
this object encoded as a 32-bit integer."
 ::= { gmplsTunnelHopEntry 4 }

gmplsTunnelHopExplicitReverseLabelPtr OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If the gmplsTunnelHopLabelStatuses object indicates that a
reverse label is present, this object contains a pointer to a
row in another MIB table (such as the gmplsLabelTable of the
GMPLS-LABEL-STD-MIB) that contains the label to use on this hop
If the gmplsTunnelHopLabelStatuses object indicates that a reverse label is present and this object contains the value zeroDotZero, then the label to use on this hop is found in the gmplsTunnelHopExplicitReverseLabel object.

```
DEFVAL { zeroDotZero }
::= { gmplsTunnelHopEntry 5 }
```

gmplsTunnelARHopTable OBJECT-TYPE
SYNTAX SEQUENCE OF GmplsTunnelARHopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The gmplsTunnelARHopTable sparsely extends the mplsTunnelARHopTable of MPLS-TE-STD-MIB. It is used to indicate the labels currently in use for a GMPLS tunnel defined in mplsTunnelTable and gmplsTunnelTable, as reported by the signaling protocol. It does not insert new hops, but does define new values for hops defined in mplsTunnelARHopTable.

Each row in this table is indexed by the same indexes as mplsTunnelARHopTable. It is acceptable for some rows in mplsTunnelARHopTable to have corresponding entries in this table and some to have no corresponding entry in this table.

Note that since the information necessary to build entries within this table is not provided by some signaling protocols and might not be returned in all cases of other signaling protocols, implementation of this table and mplsTunnelARHopTable is optional. Furthermore, since the information in this table is actually provided by the signaling protocol after the path has been set-up, the entries in this table are provided only for observation, and hence, all variables in this table are accessible exclusively as read-only."

REFERENCE
"1. Extensions to RSVP for LSP Tunnels, RFC 3209.

::= { gmplsTeObjects 3 }

gmplsTunnelARHopEntry OBJECT-TYPE
SYNTAX GmplsTunnelARHopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in this table represents additions to a tunnel hop visible in mplsTunnelARHopEntry. An entry is created by the
signaling protocol for a signaled ERLSP set up by the signaling protocol.

At any node on the LSP (ingress, transit or egress), this table and mplsTunnelARHopTable (if the tables are supported and if the signaling protocol is recording actual route information) contain the actual route of the whole tunnel. If the signaling protocol is not recording the actual route, this table MAY report the information from the gmplsTunnelHopTable or the gmplsTunnelCHopTable.

Note that the recording of actual labels is distinct from the recording of the actual route in some signaling protocols. This feature is enabled using the gmplsTunnelAttributes object.

INDEX {
 mplsTunnelARHopListIndex,
 mplsTunnelARHopIndex
}
 ::= { gmplsTunnelARHopTable 1 }

GmplsTunnelARHopEntry ::= SEQUENCE {
 gmplsTunnelARHopLabelStatuses BITS,
 gmplsTunnelARHopExplicitForwardLabel Unsigned32,
 gmplsTunnelARHopExplicitForwardLabelPtr RowPointer,
 gmplsTunnelARHopExplicitReverseLabel Unsigned32,
 gmplsTunnelARHopExplicitReverseLabelPtr RowPointer,
 gmplsTunnelARHopProtection BITS
}

gmplsTunnelARHopLabelStatuses OBJECT-TYPE
SYNTAX BITS {
 forwardPresent (0),
 reversePresent (1),
 forwardGlobal (2),
 reverseGlobal (3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This bitmask indicates the presence and status of labels indicated by the gmplsTunnelARHopExplicitForwardLabel or gmplsTunnelARHopExplicitForwardLabelPtr, and gmplsTunnelARHopExplicitReverseLabel or gmplsTunnelARHopExplicitReverseLabelPtr objects.

For the Present bits, a set bit indicates that a label is present for this hop in the route. For the Global bits, a set bit indicates that the label comes from the Global Label Space.

A clear bit indicates that this is a Per-Interface label. A
Global bit only has meaning if the corresponding Present bit is set.

::= { gmplsTunnelARHopEntry 1 }

gmplsTunnelARHopExplicitForwardLabel OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the gmplsTunnelARHopLabelStatuses object indicates that a forward label is present and
gmplsTunnelARHopExplicitForwardLabelPtr contains the value zeroDotZero, then the label in use on this hop is found in this object encoded within a 32-bit integer."

::= { gmplsTunnelARHopEntry 2 }

gmplsTunnelARHopExplicitForwardLabelPtr OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the gmplsTunnelARHopLabelStatuses object indicates that a forward label is present, this object contains a pointer to a row in another MIB table (such as the gmplsLabelTable of the GMPLS-LABEL-STD-MIB) that contains the label in use on this hop in the forward direction.

If the gmplsTunnelARHopLabelStatuses object indicates that a forward label is present and this object contains the value zeroDotZero, then the label in use on this hop is found in the gmplsTunnelARHopExplicitForwardLabel object."

::= { gmplsTunnelARHopEntry 3 }

gmplsTunnelARHopExplicitReverseLabel OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the gmplsTunnelARHopLabelStatuses object indicates that a reverse label is present and
gmplsTunnelARHopExplicitReverseLabelPtr contains the value zeroDotZero, then the label in use on this hop is found in this object encoded as a 32-bit integer."

::= { gmplsTunnelARHopEntry 4 }
gmplsTunnelARHopExplicitReverseLabelPtr OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the gmplsTunnelARHopLabelStatuses object indicates that a reverse label is present, this object contains a pointer to a row in another MIB table (such as the gmplsLabelTable of the GMPLS-LABEL-STD-MIB) that contains the label in use on this hop in the reverse direction.

If the gmplsTunnelARHopLabelStatuses object indicates that a reverse label is present and this object contains the value zeroDotZero, then the label in use on this hop is found in the gmplsTunnelARHopExplicitReverseLabel object."
::= { gmplsTunnelARHopEntry 5 }

gmplsTunnelARHopProtection OBJECT-TYPE
SYNTAX BITS {
 localAvailable (0),
 localInUse (1)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Availability and usage of protection on the reported link.

localAvailable
This flag is set to indicate that the link downstream of this node is protected via a local repair mechanism.

localInUse
This flag is set to indicate that a local repair mechanism is in use to maintain this tunnel (usually in the face of an outage of the link it was previously routed over)."
REFERENCE
"1. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, section 4.4.1."
::= { gmplsTunnelARHopEntry 6 }

gmplsTunnelChopTable OBJECT-TYPE
SYNTAX SEQUENCE OF GmplsTunnelChopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The gmplsTunnelChopTable sparsely extends the mplsTunnelChopTable of MPLS-TE-STD-MIB. It is used to indicate additional information about the hops of a GMPLS tunnel defined in mplsTunnelTable and gmplsTunnelTable, as computed by a constraint-based routing protocol, based on the
mplsTunnelHopTable and the gmplsTunnelHopTable.

Each row in this table is indexed by the same indexes as mplsTunnelCHopTable. It is acceptable for some rows in mplsTunnelCHopTable to have corresponding entries in this table and some to have no corresponding entry in this table.

Please note that since the information necessary to build entries within this table may not be supported by some LSRs, implementation of this table is optional.

Furthermore, since the information in this table is actually provided by a path computation component after the path has been computed, the entries in this table are provided only for observation, and hence, all objects in this table are accessible exclusively as read-only.

REFERENCE

2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473."

::= { gmplsTeObjects 4 }

gmplsTunnelCHopEntry OBJECT-TYPE
SYNTAX GmplsTunnelCHopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in this table represents additions to a computed tunnel hop visible in mplsTunnelCHopEntry. An entry is created by a path computation component based on the hops specified in the corresponding mplsTunnelHopTable and gmplsTunnelHopTable.

At a transit LSR this table (if the table is supported) MAY contain the path computed by path computation engine on (or on behalf of) the transit LSR."

INDEX {
 mplsTunnelCHopListIndex,
 mplsTunnelCHopIndex
}
::= { gmplsTunnelCHopTable 1 }

GmplsTunnelCHopEntry ::= SEQUENCE {
 gmplsTunnelCHopLabelStatuses BITS,
 gmplsTunnelCHopExplicitForwardLabel Unsigned32,
 gmplsTunnelCHopExplicitForwardLabelPtr RowPointer,
 gmplsTunnelCHopExplicitReverseLabel Unsigned32,
 gmplsTunnelCHopExplicitReverseLabelPtr RowPointer
}
gmplsTunnelCHopLabelStatuses OBJECT-TYPE
SYNTAX BITS {
 forwardPresent (0),
 reversePresent (1)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This bitmask indicates the presence of labels indicated by the
gmplsTunnelCHopExplicitForwardLabel or
gmplsTunnelCHopExplicitForwardLabelPtr and
gmplsTunnelCHopExplicitReverseLabel or
gmplsTunnelCHopExplicitReverseLabelPtr objects.
A set bit indicates that a label is present for this hop in the
route thus allowing zero to be a valid label value."
::= { gmplsTunnelCHopEntry 1 }

gmplsTunnelCHopExplicitForwardLabel OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the gmplsTunnelCHopLabelStatuses object indicates that a
forward label is present and
gmplsTunnelCHopExplicitForwardLabelPtr contains the value
zeroDotZero, then the label to use on this hop is found in this
object encoded within a 32-bit integer."
::= { gmplsTunnelCHopEntry 2 }

gmplsTunnelCHopExplicitForwardLabelPtr OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the gmplsTunnelCHopLabelStatuses object indicates that a
forward label is present, this object contains a pointer to a
row in another MIB table (such as the gmplsLabelTable of the
GMPLS-LABEL-STD-MIB) that contains the label to use on this hop
in the forward direction.

If the gmplsTunnelCHopLabelStatuses object indicates that a
forward label is present and this object contains the value
zeroDotZero, then the label to use on this hop is found in the
gmplsTunnelCHopExplicitForwardLabel object."
::= { gmplsTunnelCHopEntry 3 }
gmplsTunnelChopExplicitReverseLabel OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the gmplsTunnelChopLabelStatuses object indicates that a reverse label is present and
gmplsTunnelChopExplicitReverseLabelPtr contains the value zeroDotZero, then the label to use on this hop is found in this object encoded as a 32-bit integer."
::= { gmplsTunnelChopEntry 4 }

gmplsTunnelChopExplicitReverseLabelPtr OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If the gmplsTunnelChopLabelStatuses object indicates that a reverse label is present, this object contains a pointer to a row in another MIB table (such as the gmplsLabelTable of the GMPLS-LABEL-STD-MIB) that contains the label to use on this hop in the reverse direction.

If the gmplsTunnelChopLabelStatuses object indicates that a reverse label is present and this object contains the value zeroDotZero, then the label to use on this hop is found in the gmplsTunnelChopExplicitReverseLabel object."
::= { gmplsTunnelChopEntry 5 }

gmplsTunnelReversePerfTable OBJECT-TYPE
SYNTAX SEQUENCE OF GmplsTunnelReversePerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table augments the gmplsTunnelTable to provides per-tunnel packet performance information for the reverse direction of a bidirectional tunnel. It can be seen as supplementing the mplsTunnelPerfTable which augments the mplsTunnelTable.

For links that do not transport packets, these packet counters cannot be maintained. For such links, attempts to read the objects in this table will return noSuchInstance.

A tunnel can be known to be bidirectional by inspecting the gmplsTunnelDirection object."
REFERENCE
"1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812."
::= { gmplsTeObjects 5 }
gmplsTunnelReversePerfEntry OBJECT-TYPE
SYNTAX GmplsTunnelReversePerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in this table is created by the LSR for every
bidirectional GMPLS tunnel where packets are visible to the
LSR."
AUGMENTS { gmplsTunnelEntry }
::= { gmplsTunnelReversePerfTable 1 }

GmplsTunnelReversePerfEntry ::= SEQUENCE {
 gmplsTunnelReversePerfPackets Counter32,
 gmplsTunnelReversePerfHCPackets Counter64,
 gmplsTunnelReversePerfErrors Counter32,
 gmplsTunnelReversePerfBytes Counter32,
 gmplsTunnelReversePerfHCBYtes Counter64
}

gmplsTunnelReversePerfPackets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of packets forwarded on the tunnel in the reverse
direction if it is bidirectional.

This object should represents the 32-bit value of the least
significant part of the 64-bit value if both
gmplsTunnelReversePerfHCPackets and this object are returned.

For links that do not transport packets, this packet counter
cannot be maintained. For such links, this value will return a
noSuchInstance."
::= { gmplsTunnelReversePerfEntry 1 }

gmplsTunnelReversePerfHCPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"High capacity counter for number of packets forwarded on the
tunnel in the reverse direction if it is bidirectional.

For links that do not transport packets, this packet counter
cannot be maintained. For such links, this value will return a
noSuchInstance."
::= { gmplsTunnelReversePerfEntry 2 }
gmplsTunnelReversePerfErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of errored packets received on the tunnel in the reverse direction if it is bidirectional. For links that do not transport packets, this packet counter cannot be maintained. For such links, this value will return a noSuchInstance."
::= { gmplsTunnelReversePerfEntry 3 }

gmplsTunnelReversePerfBytes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of bytes forwarded on the tunnel in the reverse direction if it is bidirectional.

This object should represents the 32-bit value of the least significant part of the 64-bit value if both gmplsTunnelReversePerfHCBytes and this object are returned.

For links that do not transport packets, this packet counter cannot be maintained. For such links, this value will return a noSuchInstance."
::= { gmplsTunnelReversePerfEntry 4 }

gmplsTunnelReversePerfHCBytes OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"High capacity counter for number of bytes forwarded on the tunnel in the reverse direction if it is bidirectional.

For links that do not transport packets, this packet counter cannot be maintained. For such links, this value will return a noSuchInstance."
::= { gmplsTunnelReversePerfEntry 5 }

gmplsTunnelErrorTable OBJECT-TYPE
SYNTAX SEQUENCE OF GmplsTunnelErrorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table augments the mplsTunnelTable.

This table provides per-tunnel information about errors. Errors
may be detected locally or reported through the signaling protocol. Error reporting is not exclusive to GMPLS and this table may be applied in MPLS systems.

Entries in this table are not persistent over system resets or re-initializations of the management system.

REFERENCE
"1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812."

::= { gmplsTeObjects 6 }

gmplsTunnelErrorEntry OBJECT-TYPE
SYNTAX GmplsTunnelErrorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in this table is created by the LSR for every tunnel where error information is visible to the LSR.

Note that systems which read the objects in this table one at a time should read gmplsTunnelErrorLastTime prior to the first object and after reading the last object of this table to ensure that no additional errors occurred."

AUGMENTS { mplsTunnelEntry }
::= { gmplsTunnelErrorTable 1 }

GmplsTunnelErrorEntry ::= SEQUENCE {
 gmplsTunnelErrorLastErrorType INTEGER,
 gmplsTunnelErrorLastTime TimeStamp,
 gmplsTunnelErrorReporterType InetAddressType,
 gmplsTunnelErrorReporter InetAddress,
 gmplsTunnelErrorCode Unsigned32,
 gmplsTunnelErrorSubcode Unsigned32,
 gmplsTunnelErrorTLVs OCTET STRING,
 gmplsTunnelErrorHelpString SnmpAdminString
}

gmplsTunnelErrorLastErrorType OBJECT-TYPE
SYNTAX INTEGER {
 noError (0),
 unknown (1),
 protocol (2),
 pathComputation (3),
 localConfiguration (4),
 localResources (5),
 localOther (6)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

A value of noError (0) shows that there is no error associated with this tunnel and means that the other objects in this table entry have no meaning.

A value of unknown (1) shows that there is an error but that no additional information about the cause is known. The error may have been received in a signaled message or generated locally.

A value of protocol (2) or pathComputation (3) indicates the cause of an error and identifies an error that has been received through signaling or will itself be signaled.

A value of localConfiguration (4), localResources (5) or localOther (6) identifies an error which has been detected by the local node, but which will not be reported through signaling."

::= { gmplsTunnelErrorEntry 1 }

gmplsTunnelErrorLastTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The time at which the last error occurred. This is presented as the value of SysUpTime when the error occurred or was reported to this node.

If gmplsTunnelErrorLastErrorType has the value noError (0), then this object is ignored.

Note that entries in this table are not persistent over system resets or re-initializations of the management system."

::= { gmplsTunnelErrorEntry 2 }

gmplsTunnelErrorReporterType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The address type of the error reported.

This object is used to aid in interpretation of gmplsTunnelErrorReporter."

::= { gmplsTunnelErrorEntry 3 }
gmplsTunnelErrorReporter OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The address of the node reporting the last error, or the address
 of the resource (such as an interface) associated with the
 error.

 If gmplsTunnelErrorLastErrorType has the value noError (0), then
 this object is ignored.

 If gmplsTunnelErrorLastErrorType has the value unknown (1),
 localConfiguration (4), localResources (5), or localOther (6)
 this object MAY contain a zero value.

 This object should be interpreted in the context of the value of
 the object gmplsTunnelErrorReporterType."
 REFERENCE
 "1. Textual Conventions for Internet Network Addresses, RFC 4001,
 section 4, Usage Hints."
 ::= { gmplsTunnelErrorEntry 4 }

gmplsTunnelErrorCode OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The primary error code associated with the last error.

 The interpretation of this error code depends on the value of
 gmplsTunnelErrorLastErrorType. If the value of
 gmplsTunnelErrorLastErrorType is noError (0) the value of this
 object should be 0 and should be ignored. If the value of
 gmplsTunnelErrorLastErrorType is protocol (2) the error should
 be interpreted in the context of the signaling protocol
 identified by the mplsTunnelSignallingProto object."
 REFERENCE
 Specification, RFC 2205, section B.
 2. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209,
 section 7.3.
 3. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
 section 13.1."
 ::= { gmplsTunnelErrorEntry 5 }
gmplsTunnelErrorSubcode OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The secondary error code associated with the last error and the
protocol used to signal this tunnel. This value is interpreted
in the context of the value of gmplsTunnelErrorCode.
If the value of gmplsTunnelErrorLastErrorType is noError (0) the
value of this object should be 0 and should be ignored."
REFERENCE
Specification, RFC 2205, section B.
2. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209,
section 7.3.
3. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
section 13.1."
::= { gmplsTunnelErrorEntry 6 }

gmplsTunnelErrorTLVs OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..65535))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The sequence of interface identifier TLVs reported with the
error by the protocol code. The interpretation of the TLVs and
the encoding within the protocol are described in the
references. A value of zero in the first octet indicates that no
TLVs are present."
REFERENCE
"1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473,
section 8.2."
::= { gmplsTunnelErrorEntry 7 }

gmplsTunnelErrorHelpString OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A textual string containing information about the last error,
recovery actions and support advice. If there is no help string
this object contains a zero length string.
If the value of gmplsTunnelErrorLastErrorType is noError (0)
this object should contain a zero length string, but may contain
a help string indicating that there is no error."
::= { gmplsTunnelErrorEntry 8 }
gmplsTunnelDown NOTIFICATION-TYPE
OBJECTS {
 mplsTunnelAdminStatus,
 mplsTunnelOperStatus,
 gmplsTunnelErrorLastErrorType,
 gmplsTunnelErrorReporterType,
 gmplsTunnelErrorReporter,
 gmplsTunnelErrorCode,
 gmplsTunnelErrorSubcode
}
STATUS current
DESCRIPTION
"This notification is generated when a mplsTunnelOperStatus
object for a tunnel in the gmplsTunnelTable is about to enter
the down state from some other state (but not from the
notPresent state). This other state is indicated by the
included value of mplsTunnelOperStatus.

The objects in this notification provide additional error
information that indicates the reason why the tunnel has
transitioned down.

Note that an implementation MUST only issue one of
mplsTunnelDown and gmplsTunnelDown for any single event on a
single tunnel. If the tunnel has an entry in gmplsTunnelTable
an implementation SHOULD use gmplsTunnelDown for all tunnel
down events and SHOULD NOT use mplsTunnelDown.

This notification is subject to the control of the
mplsTunnelNotificationEnable. When that object is set to
false(2) then the notification must not be issued.

Further, this notification is also subject to
mplsTunnelNotificationMaxRate. That object indicates the
maximum number of notifications issued per second. If events
occur more rapidly, the implementation may simply fail to emit
some notifications during that period, or may queue them until
an appropriate time. The notification rate applies to the sum
of all notifications in the MPLS-TE-STD-MIB and
GMPLS-TE-STD-MIB modules applied across the whole of the
reporting device.

mplsTunnelOperStatus, mplsTunnelAdminStatus, mplsTunnelDown,
mplsTunnelNotificationEnable, and mplsTunnelNotificationMaxRate
objects are found in MPLS-TE-STD-MIB."
REFERENCE
"1. Multiprotocol Label Switching (MPLS) Traffic Engineering
(TE) Management Information Base (MIB), RFC 3812."
::= { gmplsTeNotifications 1 }

gmplsTeGroups
OBJECT IDENTIFIER ::= { gmplsTeConformance 1 }

gmplsTeCompliances
OBJECT IDENTIFIER ::= { gmplsTeConformance 2 }

-- Compliance requirement for fully compliant implementations.

gmplsTeModuleFullCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"Compliance statement for agents that provide full support for
GMPLS-TE-STD-MIB. Such devices can then be monitored and also
be configured using this MIB module.

The mandatory group has to be implemented by all LSRs that
originate, terminate or act as transit for TE-LSPs/tunnels.
In addition, depending on the type of tunnels supported, other
groups become mandatory as explained below."

MODULE MPLS-TE-STD-MIB -- The MPLS-TE-STD-MIB, RFC3812

MANDATORY-GROUPS {
 mplsTunnelGroup,
 mplsTunnelScalarGroup
}

MODULE -- this module

MANDATORY-GROUPS {
 gmplsTunnelGroup,
 gmplsTunnelScalarGroup
}

GROUP gmplsTunnelSignaledGroup
DESCRIPTION
"This group is mandatory for devices which support signaled
tunnel set up, in addition to gmplsTunnelGroup. The following
constraints apply:
 mplsTunnelSignallingProto should be at least read-only
 returning a value of ldp(2), or rsvp(3)."

GROUP gmplsTunnelOptionalGroup
DESCRIPTION
"Objects in this group are optional."
GROUP gmplsTeNotificationGroup
DESCRIPTION
"This group is mandatory for those implementations which can
implement the notifications contained in this group."

::= { gmplsTeCompliances 1 }

-- Compliance requirement for read-only compliant implementations.

gmplsTeModuleReadOnlyCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"Compliance requirement for implementations that only provide
read-only support for GMPLS-TE-STD-MIB. Such devices can then be
monitored but cannot be configured using this MIB module."

MODULE -- this module

-- The mandatory group has to be implemented by all LSRs that
-- originate, terminate or act as transit for TE-LSPs/tunnels.
-- In addition, depending on the type of tunnels supported, other
-- groups become mandatory as explained below.

MANDATORY-GROUPS {
 gmplsTunnelGroup,
 gmplsTunnelScalarGroup
}

GROUP gmplsTunnelSignaledGroup
DESCRIPTION
"This group is mandatory for devices which support signaled
tunnel set up, in addition to gmplsTunnelGroup. The following
constraints apply:
 mplsTunnelSignallingProto should be at least read-only
 returning a value of ldp(2), or rsvp(3)."

GROUP gmplsTunnelOptionalGroup
DESCRIPTION
"Objects in this group are optional."

GROUP gmplsTeNotificationGroup
DESCRIPTION
"This group is mandatory for those implementations which can
implement the notifications contained in this group."

OBJECT gmplsTunnelUnnumIf
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT gmplsTunnelAttributes
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT gmplsTunnelLSPEncoding
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT gmplsTunnelSwitchingType
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT gmplsTunnelLinkProtection
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT gmplsTunnelGPid
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT gmplsTunnelSecondary
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT gmplsTunnelDirection
 MIN-ACCESS read-only
 DESCRIPTION "Only forward (0) is required."

OBJECT gmplsTunnelPathComp
 MIN-ACCESS read-only
 DESCRIPTION "Only explicit (2) is required."

OBJECT gmplsTunnelUpstreamNotifyRecipientType
 SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 MIN-ACCESS read-only
 DESCRIPTION "Only unknown(0), ipv4(1) and ipv6(2) support is required."
OBJECT gmplsTunnelUpstreamNotifyRecipient
SYNTAX InetAddress (SIZE(0|4|16))
MIN-ACCESS read-only
DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1) and ipv6(2) sizes."

OBJECT gmplsTunnelSendResvNotifyRecipientType
SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
MIN-ACCESS read-only
DESCRIPTION "Only unknown(0), ipv4(1) and ipv6(2) support is required."

OBJECT gmplsTunnelSendResvNotifyRecipient
SYNTAX InetAddress (SIZE(0|4|16))
MIN-ACCESS read-only
DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1) and ipv6(2) sizes."

OBJECT gmplsTunnelDownstreamNotifyRecipientType
SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
MIN-ACCESS read-only
DESCRIPTION "Only unknown(0), ipv4(1) and ipv6(2) support is required."

OBJECT gmplsTunnelDownstreamNotifyRecipient
SYNTAX InetAddress (SIZE(0|4|16))
MIN-ACCESS read-only
DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1) and ipv6(2) sizes."

OBJECT gmplsTunnelSendPathNotifyRecipientType
SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
MIN-ACCESS read-only
DESCRIPTION "Only unknown(0), ipv4(1) and ipv6(2) support is required."

OBJECT gmplsTunnelSendPathNotifyRecipient
SYNTAX InetAddress (SIZE(0|4|16))
MIN-ACCESS read-only
DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1) and ipv6(2) sizes."

OBJECT gmplsTunnelSendPathNotifyRecipient
SYNTAX InetAddress (SIZE(0|4|16))
MIN-ACCESS read-only
DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1) and ipv6(2) sizes."

OBJECT gmplsTunnelAdminStatusFlags
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT gmplsTunnelExtraParamsPtr
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

-- gmplsTunnelHopLabelStatuses has max access read-only

OBJECT gmplsTunnelHopExplicitForwardLabel
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT gmplsTunnelHopExplicitForwardLabelPtr
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT gmplsTunnelHopExplicitReverseLabel
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

OBJECT gmplsTunnelHopExplicitReverseLabelPtr
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required."

-- gmplsTunnelARHopTable
-- all objects have max access read-only

-- gmplsTunnelCHopTable
-- all objects have max access read-only

-- gmplsTunnelReversePerfTable
-- all objects have max access read-only

-- gmplsTunnelErrorTable
-- all objects have max access read-only

OBJECT gmplsTunnelErrorReporterType
SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
DESCRIPTION "Only unknown(0), ipv4(1) and ipv6(2) support is required."

OBJECT gmplsTunnelErrorReporter
SYNTAX InetAddress (SIZE(0|4|16))
DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1) and ipv6(2)."
::= { gmplsTeCompliances 2 }
draft-ietf-ccamp-gmpls-te-mib-16.txt

September 2006

gmplsTunnelGroup OBJECT-GROUP
OBJECTS {
 gmplsTunnelDirection,
 gmplsTunnelReversePerfPackets,
 gmplsTunnelReversePerfHCpackets,
 gmplsTunnelReversePerfErrors,
 gmplsTunnelReversePerfBytes,
 gmplsTunnelReversePerfHCBYtes,
 gmplsTunnelErrorLastErrorType,
 gmplsTunnelErrorLastTime,
 gmplsTunnelErrorReporterType,
 gmplsTunnelErrorReporter,
 gmplsTunnelErrorCode,
 gmplsTunnelErrorSubcode,
 gmplsTunnelErrorTLVs,
 gmplsTunnelErrorHelpString,
 gmplsTunnelUnnumIf
}

STATUS current

DESCRIPTION
"Necessary, but not sufficient, set of objects to implement
tunnels. In addition, depending on the type of the tunnels
supported (for example, manually configured or signaled,
persistent or non-persistent, etc.), the
gmplsTunnelSignaledGroup group is mandatory."

::= { gmplsTeGroups 1 }

gmplsTunnelSignaledGroup OBJECT-GROUP
OBJECTS {
 gmplsTunnelAttributes,
 gmplsTunnelLSPEncoding,
 gmplsTunnelSwitchingType,
 gmplsTunnelLinkProtection,
 gmplsTunnelGPid,
 gmplsTunnelSecondary,
 gmplsTunnelPathComp,
 gmplsTunnelUpstreamNotifyRecipientType,
 gmplsTunnelUpstreamNotifyRecipient,
 gmplsTunnelSendResvNotifyRecipientType,
 gmplsTunnelSendResvNotifyRecipient,
 gmplsTunnelDownstreamNotifyRecipientType,
 gmplsTunnelDownstreamNotifyRecipient,
 gmplsTunnelSendPathNotifyRecipientType,
 gmplsTunnelSendPathNotifyRecipient,
 gmplsTunnelAdminStatusFlags,
 gmplsTunnelHopLabelStatuses,
 gmplsTunnelHopExplicitForwardLabel,
 gmplsTunnelHopExplicitForwardLabelPtr,
 gmplsTunnelHopExplicitReverseLabel,
gmplsTunnelHopExplicitReverseLabelPtr
}

STATUS current
DESCRIPTION
 "Objects needed to implement signaled tunnels."
::= { gmplsTeGroups 2 }

gmplsTunnelScalarGroup OBJECT-GROUP
 OBJECTS {
 gmplsTunnelsConfigured,
 gmplsTunnelsActive
 }
 STATUS current
 DESCRIPTION
 "Scalar objects needed to implement MPLS tunnels."
::= { gmplsTeGroups 3 }

gmplsTunnelOptionalGroup OBJECT-GROUP
 OBJECTS {
 gmplsTunnelExtraParamsPtr,
 gmplsTunnelARHopLabelStatuses,
 gmplsTunnelARHopExplicitForwardLabel,
 gmplsTunnelARHopExplicitForwardLabelPtr,
 gmplsTunnelARHopExplicitReverseLabel,
 gmplsTunnelARHopExplicitReverseLabelPtr,
 gmplsTunnelARHopProtection,
 gmplsTunnelCHopLabelStatuses,
 gmplsTunnelCHopExplicitForwardLabel,
 gmplsTunnelCHopExplicitForwardLabelPtr,
 gmplsTunnelCHopExplicitReverseLabel,
 gmplsTunnelCHopExplicitReverseLabelPtr
 }
 STATUS current
 DESCRIPTION
 "The objects in this group are optional."
::= { gmplsTeGroups 4 }

gmplsTeNotificationGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
 gmplsTunnelDown
 }
 STATUS current
 DESCRIPTION
 "Set of notifications implemented in this module. None is mandatory."
::= { gmplsTeGroups 5 }

END
9. Security Considerations

It is clear that the MIB modules described in this document in association with the MPLS-TE-STD-MIB [RFC3812] are potentially useful for monitoring of MPLS and GMPLS tunnels. These MIB modules can also be used for configuration of certain objects, and anything that can be configured can be incorrectly configured, with potentially disastrous results.

There are a number of management objects defined in these MIB modules with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These are the tables and objects and their sensitivity/vulnerability:

- the gmplsTunnelTable and gmplsTunnelHopTable collectively contain objects to provision GMPLS tunnels interfaces at their ingress LSRs. Unauthorized write access to objects in these tables, could result in disruption of traffic on the network. This is especially true if a tunnel has already been established.

Some of the readable objects in these MIB modules (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:

- the gmplsTunnelTable, gmplsTunnelHopTable, gmplsTunnelARHopTable, gmplsTunnelCHopTable, gmplsTunnelReversePerfTable, and the gmplsTunnelErrorTable collectively show the tunnel network topology and status. If an Administrator does not want to reveal this information, then these tables should be considered sensitive/vulnerable.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in these MIB modules.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).
Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module, is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

10. Acknowledgments

This document is a product of the CCAMP Working Group.

This document extends [RFC3812]. The authors would like to express their gratitude to all those who worked on that earlier MIB document. Thanks also to Tony Zinicola and Jeremy Crossen for their valuable contributions during an early implementation, and to Lars Eggert, Baktha Muralidharan, Tom Petch, Dan Romascanu, Dave Thaler and Bert Wijnen for their review comments.

Special thanks to Joan Cucchiara and Len Nieman for their help with compilation issues.

Joan Cucchiara provided a helpful and very thorough MIB Doctor review.

11. IANA Considerations

IANA is requested to root MIB objects in the MIB modules contained in this document according to the sections below.

11.1. IANA Considerations for GMPLS-TE-STD-MIB

IANA is requested to root MIB objects in the GMPLS-TE-STD-MIB module contained in this document under the mplsStdMIB subtree.

Upon approval of this document, the IANA will make the following assignments in the "NETWORK MANAGEMENT PARAMETERS" registry located at http://www.iana.org/assignments/smi-numbers in table:

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Name</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD+3</td>
<td>GMPLS-LSR-STD-MIB</td>
<td>[RFC-ccamp-gmpls-lsr-mib]</td>
</tr>
</tbody>
</table>

In the future, GMPLS related standards track MIB modules should be rooted under the mplsStdMIB (sic) subtree. IANA has been requested to
manage that namespace in the SMI Numbers registry [RFC3811]. New assignments can only be made via a Standards Action as specified in [RFC2434].

11.2. Dependence on IANA MIB Modules

Three MIB objects in the GMPLS-LSR-STD-MIB module defined in this document (gmplsTunnelLSPEncoding, gmplsTunnelSwitchingType, and gmplsTunnelGPid) use textual conventions imported from the IANA-GMPLS-TC-MIB module. The purpose of defining these textual conventions in a separate MIB module is to allow additional values to be defined without having to issue a new version of this document. The Internet Assigned Numbers Authority (IANA) is responsible for the assignment of all Internet numbers; it will administer the values associated with these textual conventions.

The rules for additions or changes to the IANA-GMPLS-TC-MIB are outlined in the DESCRIPTION clause associated with its MODULE-IDENTITY statement.

The current versions of the IANA-GMPLS-TC-MIB can be accessed from the IANA home page at: "http://www.iana.org/".

11.2.1. IANA-GMPLS-TC-MIB Definition

This is a temporary section intended to supply the base definition of an IANA MIB module. The normal procedure is that this MIB module is moved into the direct control of IANA, at which time this section should be deleted from this document.

IANA is requested to assign an OID to the IANA-GMPLS-TC-MIB module specified in this document as { mib-2 ZZZ }.
IANA-GMPLS-TC-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, mib-2 FROM SNMPv2-SMI -- RFC2578
 TEXTUAL-CONVENTION FROM SNMPv2-TC; -- RFC2579

ianaGmpls MODULE-IDENTITY
 LAST-UPDATED "200609060000Z" -- 06 September 2006 00:00:01 GMT
 ORGANIZATION "IANA"
 CONTACT-INFO
 "Internet Assigned Numbers Authority
 Postal: USC/Information Sciences Institute
 4676 Admiralty Way, Marina del Rey, CA 90292
 Tel: +1 310 822 1511
 E-Mail: iana@isi.edu"

 DESCRIPTION
 "Copyright (C) The Internet Society (2006). The initial version
 of this MIB module was published in RFC WWW. For full legal
 notices see the RFC itself. Supplementary information
 may be available on:
 http://www.ietf.org/copyrights/ianamib.html"

 -- RFC Editor. Please replace WWW above with the correct RFC number
 -- Your actions may vary depending on how IANA chooses to handle
 -- this IANA MIB.
 -- Please remove this note.

 REVISION
 "200609060000Z" -- 06 September 2006 00:00:01 GMT

 DESCRIPTION
 "Initial version issued as part of RFC WWW."

 ::= { mib-2 ZZZ }

 -- RFC Editor. Please replace WWW above with the correct RFC number
 -- Your actions may vary depending on how IANA chooses to handle
 -- this IANA MIB.
 -- Please remove this note.

 -- RFC Editor. Please replace ZZZ above with the OID assigned by IANA
 -- Please remove this note.

IANAGmplsLSPEncodingTypeTC ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "This type is used to represent and control
 the LSP encoding type of an LSP signaled by a GMPLS
 signaling protocol."
This textual convention is strongly tied to the LSP Encoding Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the LSP Encoding Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the values in the LSP Encoding Types sub-registry.

The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.)

Requests for new values should be made to IANA via email (iana@isi.edu)."

REFERENCE
"1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1."

-- RFC Editor. Please update this reference to the RFC before publication and remove this note

SYNTAX INTEGER {
 tunnelLspNotGmpls (0), -- GMPLS is not in use
 tunnelLspPacket (1), -- Packet
 tunnelLspEthernet (2), -- Ethernet
 tunnelLspAnsiEtsiPdh (3), -- PDH
 -- the value 4 is deprecated
 tunnelLspSdhSonet (5), -- SDH or SONET
 -- the value 6 is deprecated
 tunnelLspDigitalWrapper (7), -- Digital Wrapper
 tunnelLspLambda (8), -- Lambda
 tunnelLspFiber (9), -- Fiber
 -- the value 10 is deprecated
 tunnelLspFiberChannel (11), -- Fiber Channel
 tunnelDigitalPath (12), -- Digital Path
 tunnelOpticalChannel (13) -- Optical Channel
}

IANAGmplsSwitchingTypeTC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This type is used to represent and control the LSP switching type of an LSP signaled by a GMPLS signaling protocol."
This textual convention is strongly tied to the Switching Types sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Switching Types sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely within the purview of IANA and do not necessarily match the values in the values in the Switching Types sub-registry.

The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.)

Requests for new values should be made to IANA via email (iana@isi.edu).

REFERENCE

SYNTAX
INTEGER {
 unknown (0), -- none of the following, or not known
 psc1 (1), -- Packet-Switch-Capable 1
 psc2 (2), -- Packet-Switch-Capable 2
 psc3 (3), -- Packet-Switch-Capable 3
 psc4 (4), -- Packet-Switch-Capable 4
 l2sc (51), -- Layer-2-Switch-Capable
 tdm (100), -- Time-Division-Multiplex
 lsc (150), -- Lambda-Switch-Capable
 fsc (200) -- Fiber-Switch-Capable
}

IANAGmplsGeneralizedPidTC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This data type is used to represent and control the LSP Generalized Protocol Identifier (G-PID) of an LSP signaled by a GMPLS signaling protocol.

This textual convention is strongly tied to the Generalized PIDs (G-PID) sub-registry of the GMPLS Signaling Parameters registry managed by IANA. Values should be assigned by IANA in step with the Generalized PIDs (G-PID) sub-registry and using the same registry management rules. However, the actual values used in this textual convention are solely
within the purview of IANA and do not necessarily match the values in the values in the Generalized PIDs (G-PID) sub-registry.

The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.)

Requests for new values should be made to IANA via email (iana@isi.edu).

REFERENCE
"1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 3.1.1."

SYNTAX INTEGER {
 unknown(0), -- unknown or none of the following
 -- the values 1, 2, 3 and 4 are reserved in RFC 3471
 asynchE4(5),
 asynchDS3T3(6),
 asynchE3(7),
 bitsynchE3(8),
 bytesynchE3(9),
 asynchDS2T2(10),
 bitsynchDS2T2(11),
 reservedByRFC3471first(12),
 asynchE1(13),
 bytesynchE1(14),
 bytesynch31ByDS0(15),
 asynchDS1T1(16),
 bitsynchDS1T1(17),
 bytesynchDS1T1(18),
 vc1vc12(19),
 reservedByRFC3471second(20),
 reservedByRFC3471third(21),
 ds1SFAsynch(22),
 ds1ESFAsynch(23),
 ds3M23Asynch(24),
 ds3CBitParityAsynch(25),
 vtLovc(26),
 stsSpeHovc(27),
 posNoScramble16BitCrc(28),
 posNoScramble32BitCrc(29),
 posScramble16BitCrc(30),
posScramble32BitCrc(31), atm(32), ethernet(33), sdhSonet(34),
digitalwrapper(36), lambda(37), ansiEtsiPdh (38),
lapsSdh (40), fddi (41), dqdb (42),
fiberChannel3 (43), hdlc (44), ethernetV2DixOnly (45),
ethernet802dot3Only (46), g709ODUj (47),
g709OTUk (48), g709CBRorCBRa (49),
g709CBRb (50), g709BSOT (51), g709BSNT (52),
gfpIPorPPP (53), gfpEthernetMAC (54), gfpEthernetPHY (55),
g709ESCON (56), g709FICON (57), g709FiberChannel (58)
}

IANAGmplsAdminStatusInformationTC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This data type determines the setting of the
Admin Status flags in the Admin Status object or TLV, as
described in RFC 3471. Setting this object to a non-zero
value will result in the inclusion of the Admin Status
object or TLV on signaling messages.

This textual convention is strongly tied to the Admin
Status Flags sub-registry of the GMPLS Signaling Parameters
registry managed by IANA. Values should be assigned by IANA
in step with the Admin Status Flags sub-registry and using
the same registry management rules. However, the actual
values used in this textual convention are solely within
the purview of IANA and do not necessarily match the values
in the values in the Admin Status Flags sub-registry."
-- RFC Editor / IANA note
-- At the time of writing, the referenced Admin Status Flags
-- sub-registry has not been created.
-- It is not requested in RFC 3471 (the base reference for this protocol
-- element). But it is requested in two I-Ds that are ahead of this MIB
-- module in the IETF process
-- draft-ietf-ccamp-gmpls-te-mib-16.txt
-- draft-ietf-ccamp-gmpls-te-mib-16.txt
-- Note, however, that at this stage no request is made to IANA for the
-- definition of values in the textual convention to match any of the
-- Admin Status bits except those defined in RFC 3471. IANA is free to
-- define additional values but these will not be used by this MIB
-- module (although future MIB modules will doubtless use them).
-- RFC Editor. Please update the previous paragraph to use the correct
-- name for the new sub-registry as defined by IANA, and delete this
-- note.

The definition of this textual convention with the
addition of newly assigned values is published
periodically by the IANA, in either the Assigned
Numbers RFC, or some derivative of it specific to
Internet Network Management number assignments. (The
latest arrangements can be obtained by contacting the
IANA.)

Requests for new values should be made to IANA via
e-mail (iana@isi.edu)."

REFERENCE
"1. Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Functional Description, RFC 3471, section 8."
SYNTAX BITS {
 reflect (0), -- Reflect bit (RFC 3471)
 reserved1 (1), -- reserved
 reserved2 (2), -- reserved
 reserved3 (3), -- reserved
 reserved4 (4), -- reserved
 reserved5 (5), -- reserved
 reserved6 (6), -- reserved
 reserved7 (7), -- reserved
 reserved8 (8), -- reserved
 reserved9 (9), -- reserved
 reserved10 (10), -- reserved
 reserved11 (11), -- reserved
 reserved12 (12), -- reserved
 reserved13 (13), -- reserved
 reserved14 (14), -- reserved
 reserved15 (15), -- reserved
 reserved16 (16), -- reserved
12. References

12.1. Normative References

12.2. Informative References

13. Contact Information

Thomas D. Nadeau
Cisco Systems, Inc.
1414 Massachusetts Ave.
Boxborough, MA 01719
Email: tnadeau@cisco.com

Cheenu Srinivasan
Bloomberg L.P.
731 Lexington Ave.
New York, NY 10022
Phone: +1-212-617-3682
Email: cheenu@bloomberg.net

Adrian Farrel
Old Dog Consulting
Phone: +44-(0)-1978-860944
Email: adrian@olddog.co.uk

Tim Hall
Data Connection Ltd.
100 Church Street
Enfield, Middlesex
EN2 6BQ, UK
Phone: +44 20 8366 1177
Email: tim.hall@dataconnection.com

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

15. Full Copyright Statement

Copyright (C) The Internet Society (2006). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.