A YANG Data Model for Microwave Radio Link

draft-ietf-ccamp-mw-yang-13

Abstract

This document defines a YANG data model for control and management of
the radio link interfaces, and their connectivity to packet
(typically Ethernet) interfaces in a microwave/millimeter wave node.
The data nodes for management of the interface protection
functionality is broken out into a separate and generic YANG data
model in order to make it available also for other interface types.

RFC Ed. Note

// RFC Ed.: replace all XXXX throughout the document with actual RFC
numbers and remove this note

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on June 1, 2019.
1. Introduction

This document defines a YANG data model for management and control of the radio link interface(s) and the relationship to packet (typically Ethernet) and/or TDM interfaces in a microwave/millimeter wave node. ETSI EN 302 217 series defines the characteristics and requirements of microwave/millimeter wave equipment and antennas. Especially ETSI EN 302 217-2 [EN302217-2] specifies the essential parameters for the systems operating from 1.4GHz to 86GHz. The data model includes
configuration and state data according to the new Network Management Datastore Architecture [RFC8342].

The design of the data model follows the framework for management and control of microwave and millimeter wave interface parameters defined in [RFC8432]. This framework identifies the need and the scope of the YANG data model, the use cases and requirements that the model needs to support. Moreover, it provides a detailed gap analysis to identify the missing parameters and functionalities of the existing and established models to support the specified use cases and requirements, and based on that recommends how the gaps should be filled with the development of the new model. According to the conclusion of the gap analysis, the structure of the data model is based on the structure defined in [I-D.ahlberg-ccamp-microwave-radio-link] and it augments [RFC8343] to align with the same structure for management of the packet interfaces. More specifically, the model will include interface layering to manage the capacity provided by a radio link terminal for the associated Ethernet and TDM interfaces, using the principles for interface layering described in [RFC8343] as a basis.

The data nodes for management of the interface protection functionality is broken out into a separate and generic YANG data module in order to make it available also for other interface types.

The designed YANG data model uses established microwave equipment and radio standards, such as ETSI EN 302 217-2, and the IETF: Radio Link Model [I-D.ahlberg-ccamp-microwave-radio-link] and the ONF: Microwave Modeling [ONF-model] as the basis for the definition of the detailed leafs/parameters, and proposes new ones to cover identified gaps which are analyzed in [RFC8432].

1.1. Terminology and Definitions

The following terms are used in this document:

Carrier Termination (CT) is an interface for the capacity provided over the air by a single carrier. It is typically defined by its transmitting and receiving frequencies.

Radio Link Terminal (RLT) is an interface providing packet capacity and/or TDM capacity to the associated Ethernet and/or TDM interfaces in a node and used for setting up a transport service over a microwave/millimeter wave link.

The following acronyms are used in this document:

ACM Adaptive Coding Modulation
1.2. Tree Structure

A simplified graphical representation of the data model is used in chapter 3.1 of this document. The meaning of the symbols in these diagrams is defined in [RFC8340].

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP
3. Microwave Radio Link YANG Data Model

3.1. YANG Tree

module: ietf-microwave-radio-link
 +--rw radio-link-protection-groups
 | +--rw protection-group* [name]
 | | +--rw name string
 | | +--rw protection-architecture-type? identityref
 | | +--rw members* if:interface-ref
 | | +--rw operation-type? enumeration
 | | +--rw working-entity* if:interface-ref
 | | +--rw revertive-wait-to-restore? uint16
 | | +--rw hold-off-timer? uint16
 | | +--ro status?
 | | +---x manual-switch-working
 | | +---x manual-switch-protection
 | | +---x forced-switch
 | | +---x lockout-of-protection
 | | +---x freeze
 | | +---x exercise
 | | +---x clear
 | +--rw xpic-pairs {xpic}?
 | | +--rw xpic-pair* [name]
 | | +--rw name string
 | | +--rw enabled? boolean
 | | +--rw members* if:interface-ref
 | +--rw mimo-groups {mimo}?
 | | +--rw mimo-group* [name]
 | | +--rw name string
 | | +--rw enabled? boolean
 | | +--rw members* if:interface-ref
 augment /if:interfaces/if:interface:
 +--rw id? string
 +--rw mode identityref
 +--rw carrier-terminations* if:interface-ref
 +--rw rlp-groups* |
 -> /radio-link-protection-groups/protection-group/name
 +--rw xpic-pairs* -> /xpic-pairs/xpic-pair/name |
 {xpic}?
 +--rw mimo-groups* -> /mimo-groups/mimo-group/name |
 {mimo}?
 +--rw tdm-connections* [tdm-type] {tdm}?
 +--rw tdm-type identityref
+--rw tdm-connections uint16
augment /if:interfaces/if:interface:
 +--rw carrier-id? string
 +--rw tx-enabled? boolean
 +--ro tx-oper-status? enumeration
 +--rw tx-frequency uint32
 +--rw (freq-or-distance)
 | +--:(rx-frequency)
 | +--rw rx-frequency? uint32
 | +--:(duplex-distance)
 | +--rw duplex-distance? int32
 +--ro actual-rx-frequency? uint32
 +--ro actual-duplex-distance? uint32
 +--rw channel-separation uint32
 +--rw polarization? enumeration
 +--rw (power-mode)
 | +--:(rtpc)
 | | +--rw rtpc
 | | +--rw maximum-nominal-power power
 | +--:(atpc)
 | +--rw atpc
 | | +--rw maximum-nominal-power power
 | | +--rw atpc-lower-threshold power
 | | +--rw atpc-upper-threshold power
 +--ro actual-transmitted-level? power
 +--ro actual-received-level? power
 +--rw (coding-modulation-mode)
 | +--:(single)
 | | +--rw single
 | | +--rw selected-cm identityref
 | +--:(adaptive)
 | +--rw adaptive
 | | +--rw selected-min-acm identityref
 | | +--rw selected-max-acm identityref
 +--ro actual-tx-cm? identityref
 +--ro actual-sni? decimal64
 +--ro actual-xpi? decimal64 {xpic}?
 +--rw ct-performance-thresholds
 | +--rw received-level-alarm-threshold? power
 | +--rw transmitted-level-alarm-threshold? power
 | +--rw ber-alarm-threshold? enumeration
 +--rw if-loop? enumeration
 +--rw rf-loop? enumeration
 +--ro capabilities
 | +--ro min-tx-frequency? uint32
 | +--ro max-tx-frequency? uint32
 | +--ro min-rx-frequency? uint32
 | +--ro max-rx-frequency? uint32
3.2. Explanation of the Microwave Data Model

The leafs in the Interface Management Module augmented by Radio Link Terminal (RLT) and Carrier Termination (CT) are not always applicable.

"/interfaces/interface/enabled" is not applicable for RLT. Enable and disable of an interface is done in the constituent CTs.

4. Microwave Radio Link YANG Module

This module imports typedefs and modules from [RFC6991], [RFC8343] and [RFC7224], and it references [TR102311], [EN302217-1], [EN301129], and [G.826].
reference "RFC 6991";
}

import iana-if-type {
 prefix ianaift;
}

import ietf-interfaces {
 prefix if;
 reference "RFC 8343";
}

import ietf-interface-protection {
 prefix ifprot;
 reference "RFC XXXX";
}

import ietf-microwave-types {
 prefix mw-types;
 reference "RFC XXXX";
}

organization
 "Internet Engineering Task Force (IETF) CCAMP WG";

contact
 "WG List: <mailto:ccamp@ietf.org>

ID-draft editors:
 // RFC Ed.: replace ID-draft editors with Editors and remove
 // this note
 Jonas Ahlberg (jonas.ahlberg@ericsson.com);
 Min Ye (amy.yemin@huawei.com);
 Xi Li (Xi.Li@neclab.eu);
 Daniela Spreafico (daniela.spreafico@nokia.com)
 Marko Vaupotic (Marko.Vaupotic@avitnet.com)";

description
 "This is a module for the entities in
 a generic microwave system.

Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
revision 2018-11-28 {
 description "Initial revision.";
 reference "RFC XXXX: A YANG Data Model for Microwave Radio Link";
}

/*
 * Features
 */

feature xpic {
 description
 "Indicates that the device supports XPIC.";
 reference "ETSI TR 102 311";
}

feature mimo {
 description
 "Indicates that the device supports MIMO.";
 reference "ETSI TR 102 311";
}

feature tdm {
 description
 "Indicates that the device supports TDM.";
}

/*
 * Typedefs
 */

typedef power {
 type decimal64 {
 fraction-digits 1;
 }
 description
 "Type used for power values, selected and measured.";
}

/*
 * Radio Link Terminal (RLT)
augment "/if:interfaces/if:interface" {
 when "derived-from-or-self(if:type," + "'ianaift:radio-link-terminal')";
 description
 "Addition of data nodes for radio link terminal to
 the standard Interface data model, for interfaces of
 the type ‘radio-link-terminal’.";
 leaf id {
 type string;
 description
 "Descriptive identity of the radio link terminal used by
 far-end RLT to check that it’s connected to the correct
 near-end RLT. Does not need to be configured if this check
 is not used.";
 }
 leaf mode {
 type identityref {
 base mw-types:rlt-mode;
 }
 mandatory true;
 description
 "A description of the mode in which the radio link
 terminal is configured. The format is X plus Y.
 X represent the number of bonded carrier terminations.
 Y represent the number of protecting carrier
 terminations.";
 }
 leaf-list carrier-terminations {
 type if:interface-ref;
 must "derived-from-or-self(/if:interfaces/if:interface" + "'[if:name = current()]" + "/if:type, 'ianaift:carrier-termination')" {
 description
 "The type of interface must be
 'carrier-termination'.";
 }
 min-elements 1;
 description
 "A list of references to carrier terminations
 included in the radio link terminal.";
 }
 leaf-list rlp-groups {

type leafref {
 path "/mrl:radio-link-protection-groups/"
 + "mrl:protection-group/mrl:name";
}

description
"A list of references to the carrier termination
groups configured for radio link protection in this
radio link terminal.";
}

leaf-list xpic-pairs {
 if-feature xpic;
 type leafref {
 path "/mrl:xpic-pairs/mrl:xpic-pair/mrl:name";
 }

description
"A list of references to the XPIC pairs used in this
radio link terminal. One pair can be used by two
terminals.";
 reference "ETSI TR 102 311";
}

leaf-list mimo-groups {
 if-feature mimo;
 type leafref {
 path "/mrl:mimo-groups/mrl:mimo-group/mrl:name";
 }

description
"A reference to the MIMO group used in this
radio link terminal. One group can be used by more
than one terminal.";
 reference "ETSI TR 102 311";
}

list tdm-connections {
 if-feature tdm;
 key "tdm-type";

description
"A list stating the number of active TDM connections
of a specified tdm-type that is configured to be
supported by the RLT.";

leaf tdm-type {
 type identityref {
 base mw-types:tdm-type;
 }

description
"The type of TDM connection, which also indicates
the supported capacity.
}
leaf tdm-connections {
 type uint16;
 mandatory true;
 description
 "Number of connections of the specified type.";
}

/*
 * Carrier Termination
 */
augment "/if:interfaces/if:interface" {
 when "derived-from-or-self(if:type,"
 + "'ianaift:carrier-termination')";
 description
 "Addition of data nodes for carrier termination to
 the standard Interface data model, for interfaces
 of the type ‘carrier-termination’."
}
leaf carrier-id {
 type string;
 default "A";
 description
 "ID of the carrier. (e.g. A, B, C or D)
 Used in XPIC & MIMO configurations to check that
 the carrier termination is connected to the correct
 far-end carrier termination. Should be the same
 carrier ID on both sides of the hop.
 Left as default value when MIMO and XPIC are not in use.";
}
leaf tx-enabled {
 type boolean;
 default "false";
 description
 "Disables (false) or enables (true) the transmitter.
 Only applicable when the interface is enabled
 (interface:enabled = true) otherwise it’s always
 disabled.";
}
leaf tx-oper-status {
 type enumeration
enum "off" {
 description "Transmitter is off.";
}
enum "on" {
 description "Transmitter is on.";
}
enum "standby" {
 description "Transmitter is in standby.";
}
config false;
description
 "Shows the operative status of the transmitter.";
}

leaf tx-frequency {
 type uint32;
 units "kHz";
 mandatory true;
 description
 "Selected transmitter frequency.";
}
choice freq-or-distance {
 leaf rx-frequency {
 type uint32;
 units "kHz";
 description
 "Selected receiver frequency.";
 }
 leaf duplex-distance {
 type int32;
 units "kHz";
 description
 "Distance between transmitter and receiver frequencies.";
 }
 mandatory true;
description
 "A choice to configure rx-frequency directly or by computing
 it as duplex-distance subtracted from tx-frequency.";
}
leaf actual-rx-frequency {
 type uint32;
 units "kHz";
 config false;
 description
 "Computed receiver frequency.";
leaf actual-duplex-distance {
 type uint32;
 units "kHz";
 config false;
 description
 "Computed distance between Tx & Rx frequencies.";
}

leaf channel-separation {
 type uint32;
 units "kHz";
 mandatory true;
 description
 "The amount of bandwidth allocated to a carrier. The distance
 between adjacent channels in a radio frequency channels
 arrangement";
 reference "ETSI EN 302 217-1";
}

leaf polarization {
 type enumeration {
 enum "horizontal" {
 description "Horizontal polarization.";
 }
 enum "vertical" {
 description "Vertical polarization.";
 }
 enum "not-specified" {
 description "Polarization not specified.";
 }
 }
 default "not-specified";
 description
 "Polarization - A textual description for info only.";
}

choice power-mode {
 container rtpc {
 description
 "Remote Transmit Power Control (RTPC).";
 reference "ETSI EN 302 217-1";
 leaf maximum-nominal-power {
 type power {
 range "-99..99";
 }
 }
 }
}
units "dBm";
mandatory true;
description
"Selected output power.";
reference "ETSI EN 302 217-1";
}
)
}
container atpc {

description
"Automatic Transmit Power Control (ATPC).";
reference "ETSI EN 302 217-1";

leaf maximum-nominal-power {

type power {
 range "-99..99";
}
units "dBm";
mandatory true;
description
"Selected maximum output power. Minimum output power is the same as the system capability, available-min-output-power.";
reference "ETSI EN 302 217-1";
}

leaf atpc-lower-threshold {

type power {
 range "-99..-20";
}
units "dBm";
must "current() <= ../atpc-upper-threshold";
mandatory true;
description
"The lower threshold for the input power at far-end used in the ATPC mode.";
reference "ETSI EN 302 217-1";
}

leaf atpc-upper-threshold {

type power {
 range "-99..-20";
}
units "dBm";
mandatory true;
description
"The upper threshold for the input power at far-end used in the ATPC mode.";
reference "ETSI EN 302 217-1";
}
mandatory true;
description
"A choice of Remote Transmit Power Control (RTPC)
or Automatic Transmit Power Control (ATPC).";
}

leaf actual-transmitted-level {
 type power {
 range "-99..99";
 }
 units "dBm";
 config false;
 description
 "Actual transmitted power level (0.1 dBm resolution).";
 reference "ETSI EN 301 129";
}

leaf actual-received-level {
 type power {
 range "-99..-20";
 }
 units "dBm";
 config false;
 description
 "Actual received power level (0.1 dBm resolution).";
 reference "ETSI EN 301 129";
}

choice coding-modulation-mode {
 container single {
 description "A single modulation order only.";
 reference "ETSI EN 302 217-1";

 leaf selected-cm {
 type identityref {
 base mw-types:coding-modulation;
 }
 mandatory true;
 description
 "Selected the single coding/modulation.";
 }
 }

 container adaptive {
 description "Adaptive coding/modulation.";
 reference "ETSI EN 302 217-1";
 }
}
leaf selected-min-acm {
 type identityref {
 base mw-types:coding-modulation;
 }
 mandatory true;
 description
 "Selected minimum coding/modulation. Adaptive coding/modulation shall not go below this value.";
}

leaf selected-max-acm {
 type identityref {
 base mw-types:coding-modulation;
 }
 mandatory true;
 description
 "Selected maximum coding/modulation. Adaptive coding/modulation shall not go above this value.";
}

leaf actual-tx-cm {
 type identityref {
 base mw-types:coding-modulation;
 }
 config false;
 description
 "Actual coding/modulation in transmitting direction.";
}

leaf actual-snir {
 type decimal64 {
 fraction-digits 1;
 range "0..99";
 }
 units "dB";
 config false;
 description
 "Actual signal to noise plus interference ratio. (0.1 dB resolution).";
}
leaf actual-xpi {
 if-feature xpic;
 type decimal64 {
 fraction-digits 1;
 range "0..99";
 }
 units "dB";
 config false;
 description
 "The actual carrier to cross-polar interference. Only valid if XPIC is enabled. (0.1 dB resolution).";
 reference "ETSI TR 102 311";
}

container ct-performance-thresholds {
 description
 "Specification of thresholds for when alarms should be sent and cleared for various performance counters.";

 leaf received-level-alarm-threshold {
 type power {
 range "-99..-20";
 }
 units "dBm";
 default "-99";
 description
 "An alarm is sent when the received power level is below the specified threshold.";
 reference "ETSI EN 301 129";
 }

 leaf transmitted-level-alarm-threshold {
 type power {
 range "-99..99";
 }
 units "dBm";
 default "-99";
 description
 "An alarm is sent when the transmitted power level is below the specified threshold.";
 reference "ETSI EN 301 129";
 }

 leaf ber-alarm-threshold {
 type enumeration {
 enum "1e-9" {
 description "Threshold at 1e-9 (10^-9).";
 }
 }
 }
enum "1e-8" {
 description "Threshold at 1e-8 (10^-8).";
}
enum "1e-7" {
 description "Threshold at 1e-7 (10^-7).";
}
enum "1e-6" {
 description "Threshold at 1e-6 (10^-6).";
}
enum "1e-5" {
 description "Threshold at 1e-5 (10^-5).";
}
enum "1e-4" {
 description "Threshold at 1e-4 (10^-4).";
}
enum "1e-3" {
 description "Threshold at 1e-3 (10^-3).";
}
enum "1e-2" {
 description "Threshold at 1e-2 (10^-2).";
}
enum "1e-1" {
 description "Threshold at 1e-1 (10^-1).";
}
}
default "1e-6";
description
 "Specification of at which BER an alarm should
 be raised.";
reference "ETSI EN 302 217-1";
}
}

leaf if-loop {
 type enumeration {
 enum disabled {
 description "Disables the IF Loop.";
 }
 enum client {
 description
 "Loops the signal back to the client side.";
 }
 enum radio {
 description
 "Loops the signal back to the radio side.";
 }
 }
 default "disabled";
}
leaf rf-loop {
 type enumeration {
 enum disabled {
 description "Disables the RF Loop.";
 }
 enum client {
 description "Loops the signal back to the client side.";
 }
 enum radio {
 description "Loops the signal back to the radio side.";
 }
 }
 default "disabled";
 description "Enable (client/radio) or disable (disabled) the IF loop, which loops the signal back to the client side or the radio side.";
}

container capabilities {
 config false;
 description "Capabilities of the installed equipment and some selected configurations.";

 leaf min-tx-frequency {
 type uint32;
 units "kHz";
 description "Minimum Tx frequency possible to use.";
 }

 leaf max-tx-frequency {
 type uint32;
 units "kHz";
 description "Maximum Tx frequency possible to use.";
 }

 leaf min-rx-frequency {

leaf minimum-power {
 type power;
 units "dBm";
 description "The minimum output power supported.";
 reference "ETSI EN 302 217-1";
}

leaf maximum-available-power {
 type power;
 units "dBm";
 description "The maximum output power supported.";
 reference "ETSI EN 302 217-1";
}

leaf available-min-acm {
 type identityref {
 base mw-types:coding-modulation;
 }
 description "Minimum coding-modulation possible to use.";
}

leaf available-max-acm {
 type identityref {
 base mw-types:coding-modulation;
 }
 description "Maximum coding-modulation possible to use.";
}

container error-performance-statistics {
 config false;
}
description
"ITU-T G.826 error performance statistics relevant for a microwave/millimeter wave carrier."

leaf bbe {
 type yang:counter32;
 units "number of block errors";
 description
 "Number of Background Block Errors (BBE). A BBE is an errored block not occurring as part of an SES. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time' in ietf-interfaces.";
 reference "ITU-T G.826";
}

leaf es {
 type yang:counter32;
 units "seconds";
 description
 "Number of Errored Seconds (ES). An ES is a one-second period with one or more errored blocks or at least one defect. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time' in ietf-interfaces.";
 reference "ITU-T G.826";
}

leaf ses {
 type yang:counter32;
 units "seconds";
 description
 "Number of Severely Errored Seconds (SES). SES is a one-second period which contains equal or more than 30% errored blocks or at least one defect. SES is a subset of ES. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time' in ietf-interfaces.";
 reference "ITU-T G.826";
}

leaf uas {
 type yang:counter32;
}
units "seconds";
description
"Number of Unavailable Seconds (UAS), that is, the
total time that the node has been unavailable.
Discontinuities in the value of this counter can occur
at re-initialization of the management system and at
other times as indicated by the value of
'discontinuity-time' in ietf-interfaces.";
reference "ITU-T G.826";
}
}

container radio-performance-statistics {
config false;
description
"ETSI EN 301 129 radio physical interface statistics relevant
for a carrier termination.";

leaf min-rltm {
 type power {
 range "-99..-20";
 }
 units "dBm";
description
"Minimum received power level.
Discontinuities in the value of this counter can occur
at re-initialization of the management system and at
other times as indicated by the value of
'discontinuity-time' in ietf-interfaces.";
reference "ETSI EN 301 129";
}

leaf max-rltm {
 type power {
 range "-99..-20";
 }
 units "dBm";
description
"Maximum received power level.
Discontinuities in the value of this counter can occur
at re-initialization of the management system and at
other times as indicated by the value of
'discontinuity-time' in ietf-interfaces.";
reference "ETSI EN 301 129";
}

leaf min-tltm {
 type power {

range "-99..99";
} units "dBm";

description
"Minimum transmitted power level.
Discontinuities in the value of this counter can occur
at re-initialization of the management system and at
other times as indicated by the value of
'discontinuity-time' in ietf-interfaces."
reference "ETSI EN 301 129";
}

leaf max-tltm {
 type power {
 range "-99..99";
 }
 units "dBm";
 description
 "Maximum transmitted power level.
Discontinuities in the value of this counter can occur
at re-initialization of the management system and at
other times as indicated by the value of
'discontinuity-time' in ietf-interfaces."
reference "ETSI EN 301 129";
}

*/
* Radio Link Protection Groups
*/

container radio-link-protection-groups {
 description
 "Configuration of radio link protected groups (1+1) of
carrier terminations in a radio link. More than one
protected group per radio-link-terminal is allowed.";

 uses ifprot:protection-groups {

 refine protection-group/members {
 must "derived-from-or-self(/if/interfaces/if:interface"
 + "[if:name = current()]"
 + "/if:type, 'ianaift:carrier-termination')" {
 description
 "The type of a protection member must be
 'carrier-termination'.";
 }
 }
}
refine protection-group/working-entity {
 must "derived-from-or-self(/if:interfaces/if:interface"
 + "[if:name = current()]"
 + "/if:type, 'ianaift:carrier-termination')" {
 description
 "The type of a working-entity must be 'carrier-termination'.";
 }
}

/* XPIC & MIMO groups - Configuration data nodes */

container xpic-pairs {
 if-feature xpic;
 description
 "Configuration of carrier termination pairs for operation in XPIC mode.";
 reference "ETSI TR 102 311";

 list xpic-pair {
 key "name";
 description
 "List of carrier termination pairs in XPIC mode.";

 leaf name {
 type string;
 description
 "Name used for identification of the XPIC pair.";
 }

 leaf enabled {
 type boolean;
 default "false";
 description
 "Enable(true)/disable(false) XPIC";
 }

 leaf-list members {
 type if:interface-ref;
 must "derived-from-or-self(/if:interfaces/if:interface"
 + "[if:name = current()]"
 + "/if:type, 'ianaift:carrier-termination')" {
 description
 "The list of members is used to configure carrier termination pairs in XPIC mode.
 Each member represents an interface participating in the XPIC pair.
 "
 }
 }
 }
}

description
"The type of a member must be ‘carrier-termination’.";
}
min-elements 2;
max-elements 2;
description
"Association to XPIC pairs used in the radio link
terminal.";
}
}
}

container mimo-groups {
 if-feature mimo;
 description
 "Configuration of carrier terminations
 for operation in MIMO mode.";
 reference "ETSI TR 102 311";

 list mimo-group {
 key "name";
 description
 "List of carrier terminations in MIMO mode.";

 leaf name {
 type string;
 description
 "Name used for identification of the MIMO group.";
 }

 leaf enabled {
 type boolean;
 default "false";
 description
 "Enable(true)/disable(false) MIMO";
 }

 leaf-list members {
 type if:interface-ref;
 must "derived-from-or-self(/if:interfaces/if:interface"
 + "[if:name = current()]"
 + "/if:type, 'ianaift:carrier-termination')" {
 description
 "The type of a member must be ‘carrier-termination’.";
 }

 min-elements 2;
 description
 "
5. Interface Protection YANG Module

The data nodes for management of the interface protection functionality is broken out from the Microwave Radio Link Module into a separate and generic YANG data module in order to make it available also for other interface types.

This module imports modules from [RFC8343], and it references [G.808.1].

<CODE BEGINS> file "ietf-interface-protection@2018-11-28.yang"

module ietf-interface-protection {
 yang-version 1.1;
 prefix ifprot;

 import ietf-interfaces {
 prefix if;
 reference "RFC8343";
 }

 organization
 "Internet Engineering Task Force (IETF) CCAMP WG";
 contact
 "WG List: <mailto:ccamp@ietf.org>

 ID-draft editors:
 Jonas Ahlberg (jonas.ahlberg@ericsson.com);
 Min Ye (amy.yemin@huawei.com);
 Xi Li (Xi.Li@neclab.eu);
 Daniela Spreafico (daniela.spreafico@nokia.com)
 Marko Vaupotic (Marko.Vaupotic@aviatnet.com)";

 description
 "This is a module for the entities in
 a generic interface protection mechanism."
revision 2018-11-28 {
 description "Initial revision."
 reference "RFC XXXX: A YANG Data Model for Microwave Radio Link"
}

/*
 * Protection architecture type identities
 */

identity protection-architecture-type {
 description "protection architecture type"
 reference "ITU-T G.808.1"
}

identity one-plus-one-type {
 base protection-architecture-type;
 description
 "1+1, One interface protects another one interface."
 reference "ITU-T G.808.1"
}

identity one-to-n-type {
 base protection-architecture-type;
 description
 "1:N, One interface protects n other interfaces."
 reference "ITU-T G.808.1"
}
* Protection states identities
*/

identity protection-states {
 description
 "Identities describing the status of the protection, in a group of interfaces configured in a protection mode.";
}

identity unprotected {
 base protection-states;
 description "Not protected";
}

identity protected {
 base protection-states;
 description "Protected";
}

identity unable-to-protect {
 base protection-states;
 description "Unable to protect";
}

/*
* Protection Groups
*/

grouping protection-groups {
 description
 "Configuration of protected groups (1+1) of interfaces providing protection for each other. More than one protected group per higher-layer-interface is allowed.";

 list protection-group {
 key "name";
 description
 "List of protected groups of interfaces in a higher-layer-interface.";

 leaf name {
 type string;
 description
 "Name used for identification of the protection group";
 }

 leaf protection-architecture-type {

type identityref {
 base protection-architecture-type;
} default "ifprot:one-plus-one-type";
description "The type of protection architecture used, e.g. one
 interface protecting one or several other interfaces."
 reference "ITU-T G.808.1";
}

leaf-list members {
 type if:interface-ref;
 min-elements 2;
description "Association to a group of interfaces configured for
 protection and used by a higher-layer-interface.";
}

leaf operation-type {
 type enumeration {
 enum "non-revertive" {
 description "In non revertive operation, the traffic does not
 return to the working interface if the switch requests
 are terminated.";
 reference "ITU-T G.808.1";
 }
 enum "revertive" {
 description "In revertive operation, the traffic always
 returns to (or remains on) the working interface
 if the switch requests are terminated.";
 reference "ITU-T G.808.1";
 }
 }
 default "non-revertive";
description "The type of protection operation, i.e. revertive
 or non-revertive operation.";
}

leaf-list working-entity {
 when "./operation-type = 'revertive'";
 type if:interface-ref;
 min-elements 1;
description "The interfaces over which the traffic normally should
 be transported over when there is no need to use the
leaf revertive-wait-to-restore {
 when "../operation-type = 'revertive'";
 type uint16;
 units "seconds";
 default "0";
 description
 "The time to wait before switching back to the working
 interface if operation-type is revertive."
 reference "ITU-T G.808.1";
}

leaf hold-off-timer {
 type uint16;
 units "milliseconds";
 default "0";
 description
 "Time interval after the detection of a fault and its
 confirmation as a condition requiring the protection
 switching procedure."
 reference "ITU-T G.808.1";
}

leaf status {
 type identityref {
 base protection-states;
 }
 config false;
 description
 "Status of the protection, in a group of interfaces
 configured in a protection mode."
 reference "ITU-T G.808.1";
}

action manual-switch-working {
 description
 "A switch action initiated by an operator command.
 It switches normal traffic signal to the working
 transport entity."
 reference "ITU-T G.808.1";
}

action manual-switch-protection {
 description
 "A switch action initiated by an operator command.
 It switches normal traffic signal to the protection
transport entity."
 reference "ITU-T G.808.1";
}

action forced-switch {
 description
 "A switch action initiated by an operator command. It switches normal traffic signal to the protection transport entity and forces it to remain on that entity even when criteria for switching back to the original entity are fulfilled.";
 reference "ITU-T G.808.1";
}

action lockout-of-protection {
 description
 "A switch action temporarily disables access to the protection transport entity for all signals.";
 reference "ITU-T G.808.1";
}

action freeze {
 description
 "A switch action temporarily prevents any switch action to be taken and, as such, freezes the current state. Until the freeze is cleared, additional near-end external commands are rejected and fault condition changes and received APS messages are ignored.";
 reference "ITU-T G.808.1";
}

action exercise {
 description
 "A switch action to test if the APS communication is operating correctly. It is lower priority than any 'real' switch request.";
 reference "ITU-T G.808.1";
}

action clear {
 description
 "An action clears all switch commands.";
 reference "ITU-T G.808.1";
}
}
6. Microwave Types YANG Module

This module defines a collection of common data types using the YANG data modeling language. These common types are designed to be imported by other modules defined in the microwave area.

<CODE BEGINS> file "ietf-microwave-types@2018-11-28.yang"

module ietf-microwave-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-microwave-types";
 prefix mw-types;

 organization
 "Internet Engineering Task Force (IETF) CCAMP WG";
 contact
 "WG List: <mailto:ccamp@ietf.org>"

 ID-draft editors:
 Jonas Ahlberg (jonas.ahlberg@ericsson.com);
 Min Ye (amy.yemin@huawei.com);
 Xi Li (Xi.Li@neclab.eu);
 Daniela Spreafico (daniela.spreafico@nokia.com)
 Marko Vaupotic (Marko.Vaupotic@aviatnet.com)

 description
 "This module contains a collection of YANG data types
considered generally useful for microwave interfaces.

Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.

Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.";

revision 2018-11-28 {
 description "Initial revision.";
 reference "RFC XXXX: A YANG Data Model for Microwave Radio Link";
}

/*
 * Radio-link-terminal mode identities
 */

identity rlt-mode {
 description "A description of the mode in which the radio link terminal is configured. The format is X plus Y. X represent the number of bonded carrier terminations. Y represent the number of protecting carrier terminations.";
}

identity one-plus-zero {
 base rlt-mode;
 description "1 carrier termination only.";
}

identity one-plus-one {
 base rlt-mode;
 description "1 carrier termination and 1 protecting carrier termination.";
}

identity two-plus-zero {
 base rlt-mode;
 description "2 bonded carrier terminations.";
}

/*
 * Coding and modulation identities
 */

identity coding-modulation {
 description "The coding and modulation schemes.";
}

identity half-bpsk {
 base coding-modulation;
}
description
 "Half BPSK coding and modulation scheme.";
 }

identity half-bpsk-strong {
 base half-bpsk;
 description
 "Half BPSK strong coding and modulation scheme.";
}

identity half-bpsk-light {
 base half-bpsk;
 description
 "Half BPSK light coding and modulation scheme.";
}

identity bpsk {
 base coding-modulation;
 description
 "BPSK coding and modulation scheme.";
}

identity bpsk-strong {
 base bpsk;
 description
 "BPSK strong coding and modulation scheme.";
}

identity bpsk-light {
 base bpsk;
 description
 "BPSK light coding and modulation scheme.";
}

identity qpsk {
 base coding-modulation;
 description
 "QPSK coding and modulation scheme.";
}

identity qam-4 {
 base coding-modulation;
 description
 "4 QAM coding and modulation scheme.";
}

identity qam-4-strong {
 base qam-4;
}
description
 "4 QAM strong coding and modulation scheme.";
}

identity qam-4-light {
 base qam-4;
 description
 "4 QAM light coding and modulation scheme.";
}

identity qam-16 {
 base coding-modulation;
 description
 "16 QAM coding and modulation scheme.";
}

identity qam-16-strong {
 base qam-16;
 description
 "16 QAM strong coding and modulation scheme.";
}

identity qam-16-light {
 base qam-16;
 description
 "16 QAM light coding and modulation scheme.";
}

identity qam-32 {
 base coding-modulation;
 description
 "32 QAM coding and modulation scheme.";
}

identity qam-32-strong {
 base qam-32;
 description
 "32 QAM strong coding and modulation scheme.";
}

identity qam-32-light {
 base qam-32;
 description
 "32 QAM light coding and modulation scheme.";
}

identity qam-64 {
 base coding-modulation;
description
 "64 QAM coding and modulation scheme."
}

identity qam-64-strong {
 base qam-64;
 description
 "64 QAM strong coding and modulation scheme."
}

identity qam-64-light {
 base qam-64;
 description
 "64 QAM light coding and modulation scheme."
}

identity qam-128 {
 base coding-modulation;
 description
 "128 QAM coding and modulation scheme."
}

identity qam-128-strong {
 base qam-128;
 description
 "128 QAM strong coding and modulation scheme."
}

identity qam-128-light {
 base qam-128;
 description
 "128 QAM light coding and modulation scheme."
}

identity qam-256 {
 base coding-modulation;
 description
 "256 QAM coding and modulation scheme."
}

identity qam-256-strong {
 base qam-256;
 description
 "256 QAM strong coding and modulation scheme."
}

identity qam-256-light {
 base qam-256;
description
 "256 QAM light coding and modulation scheme.";
}

identity qam-512 {
 base coding-modulation;
 description
 "512 QAM coding and modulation scheme.";
}

identity qam-512-strong {
 base qam-512;
 description
 "512 QAM strong coding and modulation scheme.";
}

identity qam-512-light {
 base qam-512;
 description
 "512 QAM light coding and modulation scheme.";
}

identity qam-1024 {
 base coding-modulation;
 description
 "1024 QAM coding and modulation scheme.";
}

identity qam-1024-strong {
 base qam-1024;
 description
 "1024 QAM strong coding and modulation scheme.";
}

identity qam-1024-light {
 base qam-1024;
 description
 "1024 QAM light coding and modulation scheme.";
}

identity qam-2048 {
 base coding-modulation;
 description
 "2048 QAM coding and modulation scheme.";
}

identity qam-2048-strong {
 base qam-2048;
description
 "2048 QAM strong coding and modulation scheme.";
}

identity qam-2048-light {
 base qam-2048;
 description
 "2048 QAM light coding and modulation scheme.";
}

identity qam-4096 {
 base coding-modulation;
 description
 "4096 QAM coding and modulation scheme.";
}

identity qam-4096-strong {
 base qam-4096;
 description
 "4096 QAM strong coding and modulation scheme.";
}

identity qam-4096-light {
 base qam-4096;
 description
 "4096 QAM light coding and modulation scheme.";
}

identity tdm-type {
 description
 "A description of the type of TDM connection, also indicating the supported capacity of the connection.";
}

identity E1 {
 base tdm-type;
 description
 "E1 connection, 2.048 Mbit/s.";
}

identity STM-1 {
 base tdm-type;
 description

7. Security Considerations

The YANG modules specified in this document define schemas for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in these YANG modules that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

Interfaces of type radio-link-terminal:

```
/if/interfaces/if:interface/mode,
/if/interfaces/if:interface/carrier-terminations,
/if/interfaces/if:interface/rlp-groups,
/if/interfaces/if:interface/xpic-pairs,
/if/interfaces/if:interface/mimo-groups, and
/if/interfaces/if:interface/tdm-connections:
```

These data nodes represent the configuration of the radio-link-terminal and they need to match the configuration of the radio-link-terminal on the other side of the radio link. Unauthorized access to these data nodes could interrupt the ability to forward traffic.

Interfaces of type carrier-termination:
/if:interfaces/if:interface/carrier-id,
/if:interfaces/if:interface/tx-enabled,
/if:interfaces/if:interface/tx-frequency,
/if:interfaces/if:interface/rx-frequency,
/if:interfaces/if:interface/duplex-distance,
/if:interfaces/if:interface/channel-separation,
/if:interfaces/if:interface/rtpc/maximum-nominal-power,
/if:interfaces/if:interface/atpc/maximum-nominal-power,
/if:interfaces/if:interface/atpc/lower-threshold,
/if:interfaces/if:interface/atpc/upper-threshold,
/if:interfaces/if:interface/single/selected-cm,
/if:interfaces/if:interface/adaptive/selected-min-acm,
/if:interfaces/if:interface/adaptive/selected-max-acm,
/if:interfaces/if:interface/if-loop, and
/if:interfaces/if:interface/rf-loop:

These data nodes represent the configuration of the carrier-termination and they need to match the configuration of the carrier-termination on the other side of the carrier. Unauthorized access to these data nodes could interrupt the ability to forward traffic.

Radio link protection:

/radio-link-protection-groups/protection-group:

This data node represents the configuration of the protection of carrier terminations. Unauthorized access to this data node could interrupt the ability to forward traffic or remove the ability to perform a necessary protection switch.

XPIC:

/xpic-pairs:

This data node represents the XPIC configuration of a pair carriers. Unauthorized access to this data node could interrupt the ability to forward traffic.

MIMO:

/mimo-groups:
This data node represents the MIMO configuration of multiple carriers. Unauthorized access to this data node could interrupt the ability to forward traffic.

The security considerations of [RFC8343] also apply to this document.

8. IANA Considerations

It is proposed that IANA should assign new URIs from the "IETF XML Registry" [RFC3688] as follows:

Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.

Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.

Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.

It is proposed that IANA should record YANG module names in the "YANG Module Names" registry [RFC6020] as follows:

Name: ietf-microwave-radio-link
Maintained by IANA?: N
Prefix: mrl
Reference: RFC XXXX

Name: ietf-interface-protection
Maintained by IANA?: N
Prefix: ifprot
Reference: RFC XXXX

Name: ietf-microwave-types
Maintained by IANA?: N
Prefix: mw-types
Reference: RFC XXXX
It is proposed that IANA should register a new IANAifType TBD1 for the interface type radio-link-terminal and a new IANAifType TBD2 for the interface type carrier-termination at [IFTYPE-IANA-REGISTRY].

9. References

9.1. Normative References

[IFTYPE-IANA-REGISTRY]
"Internet Assigned Numbers Authority, "ifType Definitions"",
<http://www.iana.org/assignments/smi-numbers>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,

DOI 10.17487/RFC6020, October 2010,

and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241,
DOI 10.17487/RFC6241, June 2011,

[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242,
DOI 10.17487/RFC6242, June 2011,

RFC 6991, DOI 10.17487/RFC6991, July 2013,

[RFC7224] Bjorklund, M., "IANA Interface Type YANG Module",
RFC 7224, DOI 10.17487/RFC7224, May 2014,

RFC 8040, DOI 10.17487/RFC8040, January 2017,
9.2. Informative References

[EN301129]
"Transmission and Multiplexing (TM); Digital Radio Relay Systems (DRRS); Synchronous Digital Hierarchy (SDH); System performance monitoring parameters of SDH DRRS", EN 301 129 V1.1.2, May 1995.

[EN302217-1]
"Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas; Part 1: Overview, common characteristics and system-dependent requirements", EN 302 217-1 V3.0.5, June 2016.

[EN302217-2]

[G.808.1]
"SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS; Digital networks ; General aspects Generic protection switching ; Linear trail and subnetwork protection", ITU-T Rec. G.808.1, May 2014.
Appendix A. Example: 1+0 and 2+0 configuration instances

This section gives simple examples of 1+0 and 2+0 instance using the YANG module defined in this draft. The examples are not intended as a complete module for 1+0 and 2+0 configuration.
A.1. 1+0 instance

Figure A-1 shows a 1+0 example. The following instance shows the 1+0 configuration of Near End node.

```
"interface": [
    {
        "name": "RLT-A",
        "description": "Radio Link Terminal A",
        "type": "radio-link-terminal",
        "id": "RLT-A",
        "mode": "one-plus-zero",
        "carrier-terminations": [
            "RLT-A:CT-1"
        ],
        "tdm-connections": [
            "tdm-type": "E1",
            "tdm-connections": "4"
        ]
    },
    {
        "name": "RLT-A:CT-1",
        "description": "Carrier Termination 1",
        "type": "carrier-termination",
        "carrier-id": "A"
    }
],
```
"tx-enabled": true,
"tx-frequency": 10728000,
"duplex-distance": 644000,
"channel-separation": 28,
"polarization": not-specified,
"rtpc": {
 "maximum-nominal-power": 20
},
"single": {
 "selected-cm": "qam-512"
}
}

A.2. 2+0 instance

Figure A-2 shows a 2+0 example.

\-------- Radio Link \--------
 Near End Far End
\---------+----------+----------+
 \- Radio Link \- Terminal A \- Radio Link \- Terminal B \\--
\- Carrier A \-<-------->\- Carrier B \-<-------->\- Carrier A \\--
\- Termination 1 \-<-------->\- Termination 1 \-<-------->\- Termination 1 \\--
\- Carrier 2 \-<-------->\- Carrier 2 \-<-------->\- Carrier 2 \\--
\--------+----------+----------+
 \--- Microwave Node ---/ \--- Microwave Node ---/
The following instance shows the 2+0 configuration of Near End node.

"interface": [
 {
 "name": "RLT-A",
 "description": "Radio Link Terminal A",
 "type": "radio-link-terminal",
 "id": "RLT-A",
 "mode": "two-plus-zero",
 "carrier-terminations": [
 "RLT-A:CT-1",
 "RLT-A:CT-2"
],
 "tdm-connections": [
 "tdm-type": "E1",
 "tdm-connections": "4"
]
 },
 {
 "name": "RLT-A:CT-1",
 "description": "Carrier Termination 1",
 "type": "carrier-termination",
 "carrier-id": "A",
 "tx-enabled": true,
 "tx-frequency": 10728000,
 "duplex-distance": 644000,
 "channel-separation": 28,
 "polarization": "not-specified",
 "rtpc": {
 "maximum-nominal-power": 20
 },
 "single": {
 "selected-cm": "qam-512"
 }
 },
 {
 "name": "RLT-A:CT-2",
 "description": "Carrier Termination 2",
 "type": "carrier-termination",
 "carrier-id": "B",
 "tx-enabled": true,
 "tx-oper-status": "on",
 "tx-frequency": 10618000,
 "duplex-distance": 644000,
 "channel-separation": 28,
"polarization": not-specified,
"rtpc": {
 "maximum-nominal-power": 20
},
"single": {
 "selected-cm": "qam-512"
}
}

A.3. 2+0 XPIC instance

The following instance shows the XPIC configuration of Near End node.

"interface": [
 {
 "name": "RLT-A",
 "description": "Radio Link Terminal A",
 "type": "radio-link-terminal",
 "id": "RLT-A",
 "mode": "two-plus-zero",
 "carrier-terminations": [
 "RLT-A:CT-1",
 "RLT-A:CT-2"
],
 "xpic-pairs": [
 "RLT-A:CT-1",
 "RLT-A:CT-2"
],
 "tdm-connections": [
 "tdm-type": "E1",
 "tdm-connections": "4"
]
 },
 {
 "name": "RLT-A:CT-1",
 "description": "Carrier Termination 1",
 "type": "carrier-termination",
 "carrier-id": "A",
 "tx-enabled": true,
 "tx-frequency": 10728000,
 "duplex-distance": 644000,
 "channel-separation": 28,
 "polarization": not-specified,
 "rtpc": {

"maximum-nominal-power": 20,
},
"single": {
 "selected-cm": "qam-512"
}
},

{
 "name": "RLT-A:CT-2",
 "description": "Carrier Termination 2",
 "type": "carrier-termination",
 "carrier-id": "B",
 "tx-enabled": true,
 "tx-oper-status": on,
 "tx-frequency": 10618000,
 "duplex-distance": 644000,
 "channel-separation": 28,
 "polarization": not-specified,
 "rtpc": {
 "maximum-nominal-power": 20,
 },
 "single": {
 "selected-cm": "qam-512"
 }
}

Appendix B. Contributors

Koji Kawada
NEC Corporation
1753, Shimonumabe Nakahara-ku
Kawasaki, Kanagawa 211-8666
Japan

Email: k-kawada@ah.jp.nec.com

Carlos J. Bernardos
Universidad Carlos III de Madrid
Av. Universidad, 30
Leganes, Madrid 28911
Spain

Email: cjbc@it.uc3m.es
Authors’ Addresses

Jonas Ahlberg
Ericsson AB
Lindholmspiren 11
Goteborg 417 56
Sweden
Email: jonas.ahlberg@ericsson.com

Ye Min
Huawei Technologies
No.1899, Xiyuan Avenue
Chengdu 611731
P.R.China
Email: amy.yemin@huawei.com

Xi Li
NEC Laboratories Europe
Kurfursten-Anlage 36
Heidelberg 69115
Germany
Email: Xi.Li@neclab.eu

Daniela Spreafico
Nokia – IT
Via Energy Park, 14
Vimercato (MI) 20871
Italy
Email: daniela.spreafico@nokia.com

Marko Vaupotic
Aviat Networks
Motnica 9
Trzin-Ljubljana 1236
Slovenia
Email: Marko.Vaupotic@Aviatnet.com