Abstract

The delivery of content over HTTPS involving multiple CDNs raises credential management issues. This document proposes extensions in CDNI Control and Metadata interfaces to setup HTTPS delegation from an Upstream CDN (uCDN) to a Downstream CDN (dCDN).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 30, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction 2
2. Terminology 3
3. Known delegation methods 3
4. Extending the CDNI metadata model 3
 4.1. Extension to PathMetadata object 3
 4.2. Delegation methods 5
 4.2.1. AcmeStarDelegationMethod object ... 5
 4.2.2. SubcertsDelegationMethod object ... 6
5. Metadata Simple Data Type Descriptions 7
 5.1. Periodicity 7
6. IANA considerations 7
 6.1. CDNI MI AcmeStarDelegationMethod Payload Type 7
 6.2. CDNI MI SubCertsDelegationMethod Payload Type 8
7. Security considerations 8
8. References 8
 8.1. Normative References 8
 8.2. Informative References 8
8. References 8
Authors’ Addresses 9

1. Introduction

Content delivery over HTTPS using one or more CDNs along the path requires credential management. This specifically applies when an entity delegates delivery of encrypted content to another trusted entity.

Several delegation methods are currently proposed within different IETF working groups. They specify different methods for provisioning HTTPS delivery credentials.

This document extends the CDNI Metadata interface to setup HTTPS delegation between an upstream CDN (uCDN) and downstream CDN (dCDN). Furthermore, it includes a proposal of IANA registry to enable adding of new methods.

Section 2 is about terminology used in this document. Section 3 presents delegation methods specified at the IETF. Section 4 addresses the extension for handling HTTPS delegation in CDNI. Section 5 describes simple data types. Section 6 addresses IANA registry for delegation methods. Section 7 covers the security issues.
2. Terminology

This document uses terminology from CDNI framework documents such as: CDNI framework document [RFC7336], CDNI requirements [RFC7337] and CDNI interface specifications documents: CDNI Metadata interface [RFC8006] and CDNI Control interface / Triggers [RFC8007].

3. Known delegation methods

There are currently two Internet drafts within the TLS and ACME working groups adopted to handle delegation of HTTPS delivery between entities.

This Internet Draft (I-D) proposes standardizing HTTPS delegation between the entities using CDNI interfaces.

This document considers the following two I-Ds that supports HTTPS delegation:

- Sub-certificates [I-D.ietf-tls-subcerts]

- Support for Short-term, Automatically-Renewed (STAR) certificates in Automated Certificate Management Environment (ACME) [I-D.ietf-acme-star]

4. Extending the CDNI metadata model

This section defines a CDNI extension to the current Metadata interface model that allows bootstrapping delegation methods between a uCDN and a delegate dCDN.

4.1. Extension to PathMetadata object

This extension reuses PathMetadata object, as defined in [RFC8006], by adding new "Delegation methods" objects as specified in the following sections.

This allows to explicitly indicate support for the given method. Therefore, the presence (or lack thereof) of an AcmeStarDelegationMethod, SubcertsDelegationMethod, and/or further delegation methods, imply support (or lack thereof) for the given method.

Example:

The PathMatch object can reference a path-metadata that points at the delegation information. Delegation metadata are added to PathMetadata object.
PathMatch:
{
 "path-pattern": {
 "pattern": "/movies/*",
 "case-sensitive": true
 },
 "path-metadata": {
 "type": "MI.PathMetadata",
 "href": "https://metadata.ucdn.example/video.example.com/movies"
 }
}

Below shows the PathMetadata Object related to /movie/*
(located at https://metadata.ucdn.example/video.example.com/movies)

PathMetadata:
{
 "metadata": [
 {
 "generic-metadata-type": "MI.TimeWindowACL",
 "generic-metadata-value": {
 "times": [{
 "windows": [{
 "start": "1213948800",
 "end": "1478047392"
 }]
 },
 "action": "allow",
 },
 "generic-metadata-type": "MI.AcmeStarDelegationMethod",
 "generic-metadata-value": {
 "star-proxy": "10.2.2.2",
 "acme-server": "10.2.3.3",
 "credentials-location-uri": "www.ucdn.com/credentials",
 "periodicity": 36000
 }
 }
]
}

The existence of the "MI.AcmeStarDelegationMethod" object in a
PathMetadata Object shall enable the use of one of the
AcmeStarDelegation Methods, chosen by the delegate. The delegation
method will be activated for the set of Path defined in the
PathMatch. See Section 4.2 for more details about delegation methods
metadata specification.
4.2. Delegation methods

This section defines the delegation methods objects metadata. Those metadata allows bootstrapping a secured delegation by providing the dCDN with the needed parameters to set it up.

4.2.1. AcmeStarDelegationMethod object

This section defines the AcmeStarDelegationMethod object which describes metadata related to the use of Acme STAR API presented in [I-D.ietf-acme-star]

As expressed in [I-D.ietf-acme-star], when an origin has set a delegation to a specific domain (i.e. dCDN), the dCDN should present to the end-user client, a short-term certificate bound to the master certificate.

Property: star-proxy

Description: Used to advertise the STAR Proxy to the dCDN. Endpoint type defined in RFC8006, Section 4.3.3.

Type: Endpoint

Mandatory-to-Specify: Yes

Property: acme-server

Description: used to advertise the ACME server to the dCDN. Endpoint type is defined in RFC8006, Section 4.3.3.

Type: Endpoint

Mandatory-to-Specify: Yes

Property: credentials-location-uri

Description: expresses the location of the credentials to be fetched by the dCDN. Link type is as defined in RFC8006, Section 4.3.1.

Type: Link

Mandatory-to-Specify: Yes

Property: periodicity
Description: expresses the credentials renewal periodicity. See Section 5.1.

Type: Periodicity

Mandatory-to-Specify: Yes

4.2.2. SubcertsDelegationMethod object

This section defines the SubcertsDelegationMethod object which describes metadata related to the use of Subcerts as presented in [I-D.ietf-tls-subcerts]

As expressed in [I-D.ietf-tls-subcerts], when an origin has set a delegation to a specific domain (i.e. dCDN), the dCDN should present the Origin or uCDN certificate or "delegated_credential" during the TLS handshake [RFC8446] to the end-user client application, instead of its own certificate.

Property: credentials-delegating-entity

- Description: Endpoint ID (IP) of the delegating Entity (uCDN).
 Endpoint type is defined in RFC8006, Section 4.3.3.

 Type: Endpoint

 Mandatory-to-Specify: Yes

Property: credential-recipient-entity

- Description: Endpoint ID (IP) of the delegated entity (dCDN).
 Endpoint type is defined in RFC8006, Section 4.3.3.

 Type: Endpoint

 Mandatory-to-Specify: Yes

Property: credentials-location-uri

- Description: expresses the location of the credentials to be fetched by the dCDN. Link type is as defined in RFC8006, Section 4.3.1.

 Type: Link

 Mandatory-to-Specify: Yes

Property: periodicity
5. Metadata Simple Data Type Descriptions

This section describes the simple data types that are used for properties for objects in this document.

5.1. Periodicity

A time value expressed in seconds to indicate a periodicity.

Type: Integer

6. IANA considerations

This document requests the registration of the following entries under the "CDNI Payload Types" registry hosted by IANA regarding "CDNI delegation":

<table>
<thead>
<tr>
<th>Payload Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI.AcmeStarDelegationMethod</td>
<td>RFCthis</td>
</tr>
<tr>
<td>MI.SubCertDelegationMethod</td>
<td>RFCthis</td>
</tr>
</tbody>
</table>

[RFC Editor: Please replace RFCthis with the published RFC number for this document.]

6.1. CDNI MI AcmeStarDelegationMethod Payload Type

Purpose: The purpose of this Payload Type is to distinguish AcmeStarDelegationMethod MI objects (and any associated capability advertisement)

Interface: MI/FCI

Encoding: see Section 4.2.1
6.2. CDNI MI SubCertsDelegationMethod Payload Type

Purpose: The purpose of this Payload Type is to distinguish SubcertsDelegationMethod MI objects (and any associated capability advertisement)

Interface: MI/FCI

Encoding: see Section 4.2.2

7. Security considerations

Extensions proposed here do not alter nor change Security Considerations as outlined in the CDNI Metadata and Footprint and Capabilities RFCs [RFC8006].

8. References

8.1. Normative References

[I-D.ietf-acme-star]

[I-D.ietf-tls-subcerts]

8.2. Informative References

Authors’ Addresses

Frederic Fieau (editor)
Orange
40-48, avenue de la Republique
Chatillon 92320
France

Email: frederic.fieau@orange.com

Emile Stephan
Orange
2, avenue Pierre Marzin
Lannion 22300
France

Email: emile.stephan@orange.com

Sanjay Mishra
Verizon
13100 Columbia Pike
Silver Spring MD 20904
USA

Email: sanjay.mishra@verizon.com