Abstract

Resource and service discovery are complimentary. Resource discovery provides fine-grained detail about the content of a server, while service discovery can provide a scalable method to locate servers in large networks. This document defines a method for mapping between CoRE Link Format attributes and DNS-Based Service Discovery fields to facilitate the use of either method to locate RESTful service interfaces (APIs) in heterogeneous HTTP/CoAP environments.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 25, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents
1. Introduction

The Constrained RESTful Environments (CoRE) working group aims at realizing the REST architecture in a suitable form for the most constrained devices (e.g. 8-bit microcontrollers with limited RAM and ROM) and networks (e.g. 6LoWPAN). CoRE is aimed at machine-to-machine (M2M) applications such as smart energy and building automation. The main deliverable of CoRE is the Constrained Application Protocol (CoAP) specification [RFC7252].

Automated discovery of resources hosted by a constrained server is critical in M2M applications where human intervention is minimal and...
static interfaces result in brittleness. CoRE Resource Discovery is intended to support fine-grained discovery of hosted resources, their attributes, and possibly other resource relations [RFC6690].

In contrast to resource discovery, service discovery generally refers to a coarser-grained resolution of an endpoint's IP address, port number, and protocol. This definition may be extended to include multi-function devices, where the result of the discovery process may include a path to a resource representing a RESTful service interface and possibly a reference to a description of the interface such as a JSON Hyper-Schema document [I-D.handrews-json-schema-hyperschema] per function.

Resource and service discovery are complimentary in the case of large networks, where the latter can facilitate scaling. This document defines a mapping between CoRE Link Format attributes and DNS-Based Service Discovery (DNS-SD) [RFC6763] fields that permits discovery of CoAP services by either method. It also addresses the CoRE charter goal to interoperate with DNS-SD.

The actual publishing of DNS services on the basis of the contents of the Resource Directory is the subject of [I-D.sctl-service-registration].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. The term "byte" is used in its now conventional sense as a synonym for "octet".

This specification requires readers to be familiar with all the terms and concepts that are discussed in [RFC6690] and [RFC8288]. Readers should also be familiar with the terms and concepts discussed in [RFC7252]. To describe the REST interfaces defined in this specification, the URI Template format is used [RFC6570].

This specification also incorporates the terminology of [I-D.ietf-core-resource-directory].

1.2. CoRE Resource Discovery

[RFC8288] defines a Web Link (link) as a typed connection between two resources, comprised of:

- a link context,
A link can be viewed as a statement of the form "link context has a link relation type resource at link target, which (optionally) has target attributes", where link target (and context) is typically a Universal Resource Identifier (URI) [RFC3986].

For example, "https://www.example.com/" has a "canonical" resource at "https://example.com", which has a "type" of "text/html".

The main function of Resource Discovery is to return links to the resources hosted by a server, complemented by attributes about those resources and additional link relations. In CoRE this collection of links and attributes is itself a resource (as opposed to HTTP headers delivered with a specific resource).

[RFC6690] specifies a link format for use in CoRE Resource Discovery by extending the HTTP Link Header Format [RFC8288] to describe these link descriptions. The CoRE Link Format is carried as a payload and is serialized according to one of several Internet media types. CoRE Resource Discovery is accomplished by sending a GET request to the well-known URI "/.well-known/core", which is defined as a default entry-point for requesting the collection of links to resources hosted by a server.

Resource Discovery can be performed either via unicast or multicast. When a server’s IP address is already known, either a priori or resolved via the Domain Name System (DNS) [RFC1034][RFC1035], unicast discovery is performed in order to locate a URI for the resource of interest. This is performed using a GET to /well-known/core on the server, which returns the links. A client would then match the appropriate Resource Type, Interface Description, and possible Content-Type [RFC2045] for its application. These attributes may also be included in the query string in order to filter the number of links returned in a response.

1.3. CoRE Resource Directories

In many M2M scenarios, direct discovery of resources is not practical due to sleeping nodes, limited bandwidth, or networks where multicast traffic is inefficient. These problems can be solved by deploying a network element called a Resource Directory (RD), which hosts descriptions of resources held on other servers (referred to as "end-points") and allows lookups to be performed for those resources. An
endpoint is a web server associated with a specific IP address and port; thus a physical device may host one or more endpoints. Endpoints may also act as clients.

The Resource Directory implements a set of REST interfaces for endpoints to register and maintain collections of links, called resource directory registrations. [I-D.ietf-core-resource-directory] specifies the web interfaces that an RD supports for endpoints to discover the RD and to register, maintain, lookup and remove resource descriptions; for the RD to validate entries; and for clients to lookup resources from the RD.

1.4. DNS-Based Service Discovery

DNS-Based Service Discovery (DNS-SD) defines a conventional method of naming and configuring DNS PTR, SRV, and TXT resource records to facilitate discovery of services (such as CoAP servers in a subdomain) using the existing DNS infrastructure. This section gives a brief overview of DNS-SD; for a detailed specification see [RFC6763].

DNS-SD Service Names are limited to 255 bytes and are of the form:

Service Name = <Instance>.<ServiceType>.<Domain>

The Service Name identifies a SRV/TXT resource record (RR) pair. The SRV RR specifies the host and port of an endpoint. The TXT RR provides additional information in the form of key/value pairs. DNS-Based Service Discovery is accomplished by sending a DNS request for PTR records with the name <ServiceType>.<Domain>, which will return a list of zero or more Service Names.

The <Domain> part of the Service Name is identical to the global (DNS subdomain) part of the authority in URIs that identify the resources on an individual server or group of servers.

The <ServiceType> part is composed of at least two labels. The first label of the pair is the application protocol name [RFC6335] preceded by an underscore character. For example, an organization such as the Open Connectivity Foundation [OCF] that specifies resources might register the application protocol name "_oic", which all servers that advertise OCF resources would use as part of their ServiceType. The second label indicates the transport and is typically "_udp" for CoAP services. In cases where narrowing the scope of the search may be useful, these labels may be optionally preceded by a subtype name followed by the "_sub" label. An example of this more specific <ServiceType> is "light._sub._oic._udp".
The default <Instance> part of the Service Name SHOULD be set to a
default value at the factory and MAY be modified during the
commissioning process. It MUST uniquely identify an instance of
<ServiceType> within a <Domain>. Taken together, these three
elements comprise a unique name for an SRV/TXT record pair within the
DNS subdomain.

The granularity of a Service Name MAY be that of a host or group, or
it might represent a particular resource within a CoAP server. The
SRV record contains the host name (AAAA record name) and port of the
endpoint while protocol is part of the Service Name. In the case
where a Service Name identifies a particular resource, the path part
of the URI must be carried in a corresponding TXT record.

A DNS TXT record is in practice limited to a few hundred bytes in
length, which is indicated in the resource record header in the DNS
response message [RFC6763]. The data consists of one or more strings
comprising a key/value pair. By convention, the first pair is
txtver=<number> (to support different versions of a service
description). An example string is:

```
| 0x08 | t | x | t | v | e | r |
```

| = | 1 |

2. Mapping from web resources DNS services

These sections describe how each of the three parts of the Service
Name can be mapped to link attributes.

2.1. Domain mapping

TBD: A method must be specified to determine in which DNS zone the
CoAP service should be registered. See, for example, Section 11 in
[RFC6763] and Section 2 in [I-D.sctl-service-registration]

2.2. ServiceType mapping

ServiceTypes are registered by IANA [st]. They identify services
can be specified by IETF or any other Standards Development
Organization (SDO). The IANA resource type registry [rt] is based on
the resource type (rt= attribute) [RFC6690] which identifies endpoint
functionality specified by IETF or any other SDO.

It is expected that an endpoint providing a given ServiceType
represents a collection of resources each with its own Resource Type.
The Resource Type of the collection MUST be mapped directly to the
ServiceType. A registry is required to specify the mapping between Resource Types and ServiceTypes.

2.3. Instance mapping

The Instance name may be freely chosen by the manufacturer and inserted in the device. During installation the pre-configured Instance name can be pre- or post-fixed with a string to make the (Instance, ServiceType) pair unique within the domain. For manual discovery it is useful when the Instance name is a human readable string containing the manufacturer name or the device type.

IoT devices are not necessarily equipped with an Instance name for DNS-SD. To make the (Instance, ServiceType) pair unique, it is sufficient to use another unique identifier stored in the device such as the Public key or UUID of the device. When a human readable name is required, the interface description (if= attribute) [RFC6690] may provide for example, a URN that can be made unique by pre- or post-fixing it with a string as is currently done for the Instance name devices conforming to DNS-SD specification.

When the device selects the Instance name, the device, registering with the RD, MUST provide an Instance name in its link. When a third party device, the Commissioning Tool (CT) [I-D.ietf-core-resource-directory], selects the Instance name, it specifies the Instance name when registering the device with the Resource Directory.

3. New Link-Format Attributes

When using the CoRE Link Format to describe resources being discovered by or posted to a resource directory service, additional information about those resources is useful. This specification defines the following new attributes for use in the CoRE Link Format [RFC6690]:

\[
\text{link-extension} = ("exp") \\
\text{link-extension} = ("ins" "=" (ptoken | quoted-string)) \\
\text{; The token or string is max 63 bytes}
\]

3.1. Export attribute "exp"

The Export "exp" attribute is used as a flag to indicate that a link description MAY be exported from a resource directory to external directories.

The CoRE Link Format is used for many purposes between CoAP endpoints. Some are useful mainly locally; for example checking the
observability of a resource before accessing it, determining the size of a resource, or traversing dynamic resource structures. However, other links are very useful to be exported to other directories, for example the entry point resource to a functional service. This attribute MAY be used as a query parameter in the RD Lookup Function Set defined in Section 7 of [I-D.ietf-core-resource-directory].

3.2. Resource Instance attribute "ins"

The Resource Instance "ins" attribute is an identifier for this resource, which makes it possible to distinguish it from other similar resources. This attribute is equivalent in use to the <Instance> portion of a DNS-SD record (see Section 1.4), and SHOULD be unique across resources with the same Resource Type attribute in the domain in which it is used. A Resource Instance SHOULD be a descriptive string like "Ceiling Light, Room 3", but MAY be a short ID like "AF39", a unique UUID, or fingerprint of a public key. This attribute is used by a Resource Directory to distinguish between multiple instances of the same resource type within the directory.

This attribute MUST NOT be more than 63 bytes in length. The resource identifier attribute MUST NOT appear more than once in a link description. This attribute MAY be used as a query parameter in the RD Lookup Function Set defined in Section 7 of [I-D.ietf-core-resource-directory].

4. Mapping CoRE Link Attributes to DNS-SD Record Fields

4.1. Mapping Resource Instance attribute "ins" to <Instance>

The Resource Instance "ins" attribute maps to the <Instance> part of a DNS-SD Service Name. It is stored directly in the DNS as a single DNS label of canonical precomposed UTF-8 [RFC3629] "Net-Unicode" (Unicode Normalization Form C) [RFC5198] text. However, if the "ins" attribute is chosen to match the DNS host name of a service, it SHOULD use the syntax defined in Section 3.5 of [RFC1034] and Section 2.1 of [RFC1123].

The <Instance> part of the name of a service being offered on the network SHOULD be configurable by the user setting up the service, so that he or she may give it an informative name. However, the device or service SHOULD NOT require the user to configure a name before it can be used. A sensible choice of default name can allow the device or service to be accessed in many cases without any manual configuration at all (see Appendix D of [RFC6763]).

DNS labels are limited to 63 bytes in length and the entire Service Name may not exceed 255 bytes.
4.2. Mapping Resource Type attribute "rt" to <ServiceType>

The <ServiceType> part of a DNS-SD Service Name is derived from the "rt" attribute and SHOULD conform to the reg-rel-type production of the Link Format defined in Section 2 of [RFC6690].

In practice, the ServiceType should unambiguously identify interoperable devices. It is up to individual SDOs to specify how to map between their registered Resource Type (rt=) values and ServiceType values. Two approaches are possible; either a hierarchical approach as in Section 1.4 above, or a flat identifier. Both approaches are shown below for illustration, but in practice only ONE would be specified.

In either case, the resulting application protocol name MUST be composed of at least a single Net-Unicode text string, without underscore '_' or or period '.' and limited to 15 bytes in length (see Section 5.1 of [RFC6335]). This string is mapped to the DNS-SD <ServiceType> by prepending an underscore and appending a period followed by the "_udp" label. For example, rt="oic.d.light" might be mapped into "_oic-d-light._udp".

The application protocol name may be optionally followed by a period and a service subtype name consisting of a Net-Unicode text string, without underscore or period and limited to 63 bytes. This string is mapped to the DNS-SD <ServiceType> by appending a period followed by the "_sub" label and then appending a period followed by the service type label pair derived as in the previous paragraph. For example, rt="oic.d.light" might be mapped into "light._sub._oic._udp".

The resulting string is used to form labels for DNS-SD records which are stored directly in the DNS.

4.3. TXT Record key=value strings

A number of [RFC6763] key/value pairs are derived from link-format information, to be exported in the DNS-SD as key=value strings in a TXT record (See Section 6.3 of [RFC6763]).

The resource <URI> is exported as key/value pair "path=<URI>".

The Interface Description "if" attribute is exported as key/value pair "if=<Interface Description>".

The DNS TXT record can be further populated by importing any other resource description attributes as they share the same key=value format specified in Section 6 of [RFC6763].
4.4. Exporting resource links into DNS-SD

Assuming the ability to query a Resource Directory or multicast a GET (?exp) over the local link, CoAP resource discovery may be used to populate the DNS-SD database in an automated fashion. CoAP resource descriptions (links) can be exported to DNS-SD for exposure to service discovery by using the Resource Instance attribute as the basis for a unique Service Name, composed with the Resource Type as the <ServiceType>, and registered in the correct <Domain>. The agent responsible for exporting records to the DNS zone file SHOULD be authenticated to the DNS server. The following example, using the example lookup location /rd-lookup, shows an agent discovering a resource to be exported:

Req: GET /rd-lookup/res?exp

Res: 2.05 Content
<coap://[FDFD::1234]:5683/light/1>; exp;rt="oic.d.light";ins="Spot";
 d="office";ep="node1"

The agent subsequently registers the following DNS-SD RRs, assuming a zone name "example.com" prefixed with "office":

_oic._udp.office.example.com IN PTR
Spot._oic._udp.office.example.com
light._sub._oic._udp.example.com IN PTR
Spot._oic._udp.office.example.com
Spot._oic._udp.office.example.com
Spot._oic._udp.office.example.com IN TXT
txtver=1;path=/light/1
Spot._oic._udp.office.example.com IN SRV 0 0 5683
node1.office.example.com.
node1.office.example.com. IN AAAA FDFD::1234

In the above figure the Service Name is chosen as Spot._oic._udp.office.example.com without the light._sub service prefix. An alternative Service Name would be: Spot.light._sub._oic._udp.office.example.com.

5. IANA considerations

5.1. Mapping Resource Type into ServiceType

TBD

6. Security considerations

TBD
7. References

7.1. Normative References

7.2. Informative References

[I-D.handrews-json-schema-hyperschema]

[I-D.ietf-core-resource-directory]

[I-D.sctl-service-registration]

[OCF]

[rt]

Appendix A. Acknowledgments

This document was split out from [I-D.ietf-core-resource-directory]. Zach Shelby was a co-author of the original version of this draft.

Authors’ Addresses

Kerry Lynn
Oracle + Dyn
150 Dow Street, Tower Two
Manchester, NH 03101
USA

Phone: +1 978-460-4253
Email: kerlyn@ieee.org

Peter van der Stok
Consultant

Phone: +31 492474673 (Netherlands), +33 966015248 (France)
Email: consultancy@vanderstok.org
URI: www.vanderstok.org

Michael Koster
SmartThings
665 Clyde Avenue
Mountain View, CA 94043
USA

Phone: +1 707-502-5136
Email: Michael.Koster@smartthings.com

Christian Amsuess
Energy Harvesting Solutions
Hollandstr. 12/4
1020
Austria

Phone: +43 664-9790639
Email: c.amsuess@energyharvesting.at