EdDSA, Ed25519, Ed448, Curve25519 and Curve448 for X.509
draft-ietf-curdle-pkix-00

Abstract

This document specify algorithm identifiers and ASN.1 encoding
formats for EdDSA digital signatures, subject public keys, and a
"named curve" object identifier, used in the Internet X.509 Public
Key Infrastructure. Parameters for Ed25519, Ed25519ph, Ed448,
Ed448ph, Curve25519 and Curve448 are defined.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 10, 2016.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
1. Introduction

In [RFC7748], the elliptic curves Curve25519 and Curve448 are described. They are designed with performance and security in mind. The curves may be used for Diffie-Hellman and Digital Signature operations. In [I-D.irtf-cfrg-eddsa] the elliptic curve signature system EdDSA is described and the recommended choice of curves Ed25519/Ed448 are chosen. For each curve, two modes are defined, the PureEdDSA mode without pre-hashing (Ed25519 and Ed448), and the HashEdDSA mode with pre-hashing (Ed25519ph and Ed448ph).

This RFC defines ASN.1 object identifiers for EdDSA for use in the Internet X.509 PKI [RFC5280], and parameters for Ed25519, Ed25519ph, Ed448 and Ed448ph. This document serves a similar role as [RFC3279] does for RSA (and more), [RFC4055] for RSA-OAEP/PSS, and [RFC5758] for SHA2-based (EC)DSA. This document also specify ASN.1 "named curve" object identifiers for Curve25519 and Curve448, similar to what is done in [RFC5639]. This allows the curves to be used and referenced in PKIX standards and software, in particular enabling re-use of existing constructs already defined for ECDSA/ECDH but for the new curves. Similar to [RFC5639], this document does not describe the cryptographic algorithms to be used with the specified parameters nor their application in other standards.
2. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Curve25519 and Curve448 Named Curve Identifier

Certificates conforming to [RFC5280] may convey a public key for any public key algorithm. The certificate indicates the algorithm through an algorithm identifier. This algorithm identifier is an OID and optionally associated parameters. Section 2.3.5 of [RFC3279] describe ECDSA/ECDH public keys, specifying the id-ecPublicKey OID. This OID has the associated EcpkParameters parameters structure, which contains the namedCurve CHOICE. Here we introduce two new OIDs for use in the namedCurve field.

```plaintext
id-Curve25519   OBJECT IDENTIFIER ::= { 1.3.101.110 }
id-Curve448     OBJECT IDENTIFIER ::= { 1.3.101.111 }
id-Curve25519ph OBJECT IDENTIFIER ::= { 1.3.101.112 }
id-Curve448ph   OBJECT IDENTIFIER ::= { 1.3.101.113 }
```

The OID id-Curve25519 refers to Curve25519. The OID id-Curve448 refers to Curve448. Both curves are described in [RFC7748]. The OIDs id-Curve25519ph and id-Curve448ph refers to Curve25519 and Curve448 when used with pre-hashing as Ed25519ph and Ed448ph described in [I-D.irtf-cfrg-eddsa].

The public key value encoded into the ECPPoint value is the raw binary values described in [RFC7748].

4. Subject Public Key Information Fields

In the X.509 certificate, the subjectPublicKeyInfo field has the SubjectPublicKeyInfo type, which has the following ASN.1 syntax:

```plaintext
SubjectPublicKeyInfo ::= SEQUENCE {
  algorithm         AlgorithmIdentifier,
  subjectPublicKey  BIT STRING
}
```

The fields in SubjectPublicKeyInfo have the following meanings:

- algorithm is the algorithm identifier and parameters for the public key (see below).
- subjectPublicKey is the EdDSA public key.
The AlgorithmIdentifier type, which is included for convenience, is defined as follows:

```
AlgorithmIdentifier ::= SEQUENCE {
    algorithm   OBJECT IDENTIFIER,
    parameters  ANY DEFINED BY algorithm OPTIONAL
}
```

The fields in AlgorithmIdentifier have the following meanings:

- algorithm identifies the cryptographic algorithm with an object identifier. This is the EdDSA OID defined below.
- parameters, which are optional, are the associated parameters for the algorithm identifier in the algorithm field.

5. EdDSA Public Keys

Certificates conforming to [RFC5280] may convey a public key for any public key algorithm. The certificate indicates the algorithm through an algorithm identifier. This algorithm identifier is an OID and optionally associated parameters.

This section identify the OID and parameters for the EdDSA algorithm. Conforming CAs MUST use the identified OIDs when issuing certificates containing EdDSA public keys. Conforming applications supporting EdDSA MUST, at a minimum, recognize the OID identified in this section.

The id-EdDSAPublicKey OID is used for identifying EdDSA public keys.

```
id-EdDSAPublicKey OBJECT IDENTIFIER ::= { 1 3 101 100 }
```

The id-EdDSAPublicKey OID is intended to be used in the algorithm field of a value of type AlgorithmIdentifier.

EdDSA public keys use the parameter field to specify the particular instantiation of EdDSA parameters. The parameters field have the ASN.1 type EdDSAParameters as follows.

```
EdDSAParameters ::= ENUMERATED { ed25519 (1),
                              ed25519ph (2)
                              ed448 (3)
                              ed448ph (4) }
```

The EdDSAParameters enumeration may be extended in the future.
The "ed25519" and "ed448" values correspond to the PureEdDSA variants, and the "ed25519ph" and "ed448ph" values correspond to the HashEdDSA variants, as discussed in [I-D.irtf-cfrg-eddsa].

The raw binary EdDSA public key is encoded directly in the subjectPublicKey BIT STRING object. Note that unlike some other schemes, there is no additional OCTET STRING encoding step.

6. Key Usage Bits

The intended application for the key MAY be indicated in the keyUsage certificate extension.

If the keyUsage extension is present in an end-entity certificate that conveys an EdDSA public key with the id-EdDSAPublicKey object identifier, then the keyUsage extension MUST contain one or both of the following values:

 nonRepudiation; and
digitalSignature.

If the keyUsage extension is present in a certification authority certificate that conveys an EdDSA public key with the id-EdDSAPublicKey object identifier, then the keyUsage extension MUST contain one or more of the following values:

 nonRepudiation;
digitalSignature;
keyCertSign; and
cRLSign.

7. EdDSA Signatures

Certificates and CRLs conforming to [RFC5280] may be signed with any public key signature algorithm. The certificate or CRL indicates the algorithm through an algorithm identifier which appears in the signatureAlgorithm field within the Certificate or CertificateList. This algorithm identifier is an OID and has optionally associated parameters. For illustration the Certificate structure is reproduced here:

```
Certificate ::= SEQUENCE {
tbsCertificate             TBSCertificate,
signatureAlgorithm        AlgorithmIdentifier,
signatureValue             BIT STRING }
```

Recall the definition of the AlgorithmIdentifier type:
This document identifies an AlgorithmIdentifier OID for EdDSA signatures. No parameters are defined. The EdDSA parameters follow from the public-key parameters.

The data to be signed is prepared for EdDSA. Then, a private key operation is performed to generate the signature value. This value is the opaque value ENC(R) || ENC(S) described in section 3.3 of [I-D.irtf-cfrg-eddsa]. This signature value is then ASN.1 encoded as a BIT STRING and included in the Certificate or CertificateList in the signatureValue field.

The id-EdDSASignature OID is used for identifying EdDSA signatures.

```
AlgorithmIdentifier ::= SEQUENCE {
    algorithm OBJECT IDENTIFIER,
    parameters ANY DEFINED BY algorithm OPTIONAL
}
```

The id-EdDSASignature OID is intended to be used in the algorithm field of a value of type AlgorithmIdentifier. The parameters field MUST be absent. To further clarify how to encode the parameters field, due to historical misunderstandings in this area, it MUST NOT have an ASN.1 type NULL.

8. Private Key Format

In Elliptic Curve Private Key Structure [RFC5915] it is described how to encode elliptic curve private keys. Unfortunately, that format is specific to how traditional elliptic curve cryptography works, so in order to re-use the format some details have to be modified for EdDSA, Curve25519, and Curve448. In particular, [RFC5915] assumes that EC private keys are unsigned integers, but for EdDSA, Curve25519, and Curve448 private keys are opaque binary byte sequences.

For illustration, the ASN.1 structure ECPrivateKey as defined by [RFC5915] is repeated here.

```
ECPrivateKey ::= SEQUENCE {
    version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
    privateKey OCTET STRING,
    parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
    publicKey [1] BIT STRING OPTIONAL
}
```

To encode an EdDSA, Curve25519 or Curve448 private key, the "privateKey" field will hold the raw binary private key rather than
any I2OSP-converted data as described by [RFC5915]. The ECParameters field "parameters" will hold one of the NamedCurve OIDs described earlier in this document. If present, the "publicKey" field will hold the raw public key. Note that these requirements normatively updates [RFC5915] on how these fields are interpreted, for the OIDs defined in this document.

9. Human Readable Algorithm Names

For the purpose of consistent cross-implementation naming this section establish human readable names for the algorithms specified in this document. Implementations SHOULD use these names when referring to the algorithms. If there is a strong reason to deviate from these names -- for example, if the implementation has a different naming convention and wants to maintain internal consistency -- it is encouraged to deviate as little as possible from the names given here.

Use the string "EdDSA" when referring to a public key or signature when the parameter set is not known or relevant.

When the EdDSAParameters value is known, use a more specific string. For the ed25519(1) value use the string "Ed25519". For the ed25519ph(2) value use the string "Ed25519ph". For ed448(3) use "Ed448". For ed448ph(4) use "Ed448ph".

10. ASN.1 Module

For reference purposes, the ASN.1 syntax is presented as an ASN.1 module here.
11. Examples

This section contains illustrations of EdDSA public keys and certificates, illustrating parameter choices.

11.1. Example Ed25519ph Public Key

An example of an Ed25519ph public key:

```
Public Key Information:
    Public Key Algorithm: EdDSA
    Algorithm Security Level: High
    Parameters: Ed25519ph

Public Key Usage:

    Public Key ID: 9b1f5eeded043385e4f7bc623c5975b90bc8bb3b

-----BEGIN PUBLIC KEY-----
MC0wCAYDK2VkCgECAyEAGb9ECWmEzf6FQbrBZ9w71shQhqowtrbLDFw4rXAxZuE=
-----END PUBLIC KEY-----
```

11.2. Example Ed25519ph Certificate

An example of a PKIX certificate using Ed25519ph would be:

```
X.509 Certificate Information:
```
Version: 3
Serial Number (hex): 5601474a2a8dc326
Issuer: CN=Test Ed25519ph certificate
Validity:
 Not Before: Tue Sep 22 12:19:24 UTC 2015
 Not After: Fri Dec 31 23:59:59 UTC 9999
Subject: CN=Test Ed25519ph certificate
Algorithm Security Level: High
Extensions:
 Basic Constraints (critical):
 Certificate Authority (CA): FALSE
 Key Usage (critical):
 Digital signature.
 Subject Key Identifier (not critical):
 9b1f5eeded043385e4f7bc623c5975b90bc8bb3b
Signature Algorithm: Ed25519ph
Signature:

Other Information:
SHA1 fingerprint:
 a3b75d83a56e127d0728ed8563233cada943757e
SHA256 fingerprint:
 cab1d7df29bdf82270d2192997c81f1b333d37e6707e88068fbe9dd747da3a
Public Key ID:
 9b1f5eeded043385e4f7bc623c5975b90bc8bb3b
Public key’s random art:
 +---[Ed25519ph]---+
 | . |
 | o .. |
 | o= |
 | . += |
 | S o .+oo |
 | o .+oo |
 | o ...*.o |
 | o Eo .oo |
 | ooo ..o |
 +-----------------+

-----BEGIN CERTIFICATE-----
MIIBUTCCAQKgAwIBAgIIVgFHSiSgNwyYwBqYEK2VkJATAgMSgwJyDVQQDEExUZXN0
IEVkJU1MTktU0hBNTExMjUzLDExMTAnBgYDVQQLEx9UZXN0IEVkJU1MTktU0hBNTEx
IEstress SSLv3 cipher suite FFDH128_41.

Josefsson Expires October 10, 2016 [Page 9]
11.3. Example Ed25519ph Private Key

An example of an Ed25519ph private key:

Public Key Info:
 Public Key Algorithm: EdDSA
 Key Security Level: High

parameters: Ed25519ph

Public key’s random art:
 +---[Ed25519ph]---+
 | . |
 | o ..|
 | o.=|
 | . . +=|
 | S o .+oo|
 | o o.++o |
 | o ...*o. |
 | o Ec.oo |
 | ooo ..o |
 +-----------------+

-----BEGIN EDDSA PRIVATE KEY-----
MCUKAQEEINTuvt5E1hK1bbY8fdp+K06/nwoy/HU++CXqI9EdVhC
-----END EDDSA PRIVATE KEY-----

12. Acknowledgements

Text and/or inspiration were drawn from [RFC5280], [RFC3279], [RFC4055], [RFC5480], and [RFC5639].
Several people suggested the utility of specifying NamedCurve OIDs for encoding Curve25519/Curve448 public keys into PKIX certificates. The editor of this document cannot take credit for this idea.

The following people discussed the document and provided feedback: Klaus Hartke, Ilari Liusvaara, Erwann Abalea, Rick Andrews, Rob Stradling, James Manger, Nikos Mavrogiannopoulos, Russ Housley, Jim Schaad.

A big thank you to Symantec for kindly donating the OIDs used in this draft.

13. IANA Considerations

None.

14. Security Considerations

The security considerations of [RFC5280], [RFC7748], and [I-D.irtf-cfrg-eddsa] apply accordingly.

A common misconception may be that a Ed25519 public key can be used to create Ed25519ph signatures, or vice versa. This leads to cross-key attacks, and is not permitted.

15. References

15.1. Normative References

15.2. Informative References

Author’s Address

Simon Josefsson
SJD AB

Email: simon@josefsson.org