Domain Suffix Option for DHCPv6
<draft-ietf-dhc-dhcpv6-opt-dnsdomain-00.txt>

September 26, 2005

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on June 26, 2006.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This document specifies a new DHCPv6 (DHCP for IPv6) option which is passed from a DHCPv6 server to a DHCPv6 client to specify the domain suffix name used to perform domain name update.
1. Introduction

This document describes a new option for DHCPv6 [RFC3315] that provides a mechanism for the transfer of a domain suffix name. Using this option, an IPv6 device, which works as a DHCPv6 client, can configure the domain suffix name automatically.

For example, a service provider could use this option to transfer a domain suffix name to a Customer Premise Equipment (CPE) device acting as a router between the subscriber’s internal network and the service provider’s core network.

The configured domain suffix name is intended to be used by the IPv6 device to perform DNS update for the hosts inside its local network. The DNS update can be realized by several methods, e.g. the DHCPv6 Client FQDN Option [FQDNv6] provides a mechanism to exchange client’s FQDN information during a stateful DHCPv6 session, and [RADNS] defines a DNS update mechanism for IPv6 stateless configuration.

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

This document should be read in conjunction with the DHCPv6 specification, [RFC3315]. Definitions for terms and acronyms used in this document are defined in [RFC3315] and [RFC3633].

2. Domain Suffix Option

The domain suffix option is used to carry a domain suffix to the DHCPv6 client, which will be used to construct and update the domain name for the hosts in local network.

The format of the domain suffix option is:

```
+-----------+-----------+-----------+-----------+
|  Type     |  Length   | Domain suffix |
|-----------+-----------+---------------|
|           |           |                |
+-----------+-----------+---------------+-----------+
```

Type: 16-bits identifier of the type of option (TBD).
Length: Length of the "domain suffix" field in octets.

Domain suffix: The specification of a domain suffix.

The domain suffix in the 'domain suffix' MUST include only one item, and MUST be encoded as specified in section "Representation and use of domain names" of [RFC3315].

2.1 Usage

In stateful DHCPv6 [RFC3315], the DHCPv6 server MAY place a domain suffix option in the options field of IA_PD option [RFC3363] in an outgoing DHCPv6 message. The DHCPv6 server MUST NOT place a domain suffix option in any other portion of a stateful DHCPv6 message.

In stateless DHCPv6 [RFC3736], the DHCPv6 server MAY place a domain suffix option in the main option buffer of any DHCPv6 message sent to a client.

A DHCPv6 server may provide different values for the domain suffix option to different clients. This is useful to avoid domain name conflict in large-scale network. The mechanism for choosing which suffix to assign to which client is a matter of implementation and administrative policy, and is therefore not specified in this document.

3. Example

```
+-------+       +  CPE  +-+       +-------+       +  CPE  +-+
| Node +--+    +-------+ |       |  CPE +--+       | Node +--+    +-------+ |
+-------+ |       |       +-------+ |       |       +-------+ |
+-------+ |       |       +-------+ |       |       +-------+ |
| Node ++++ +-------+ |                   |       +-------+ |
+-------+ |       |                       |                   |       +-------+ "

:       +-------+ |  +------------------+  | ISP Core

+-----+  CPE +++-|Aggregation device|--|          |
      |       +-------+    +------------------+  |  Network | |
      |       |       +-------+    +------------------+  |          |
| Node ++++ +-------+    +------------------+  |          |
|       +-------+    +------------------+  |          |

\____________  __________/ \_________________  ________________/
| Subscriber network        ISP network |
```

Yan, et. al. [Page 3]
The above figure shows a typical usage of the domain suffix option. In this model, ISP has the ISP level domain name suffix (e.g. example.com). CPE in subscriber network may include a DNS server for name resolution for local hosts.

The CPE in the subscriber network, which acts as a requesting router, initiates a DHCPv6 session with the ISP’s aggregation device, acting as a delegation route. During the DHCP session, an IPv6 prefix, along with the corresponding domain suffix name (i.e. example.com) will be transferred to the CPE.

The domain suffix name can then be used to construct the domain name for the hosts in subscriber network, using mechanisms defined in [FQDNv6] or [RADNS].

To avoid frequent domain name conflicts, aggregation device might allocate different domain suffix name for the CPEs. An example way can be selection based on an external authority such as a RADIUS server, in which a unique domain suffix name prefix, called "home name", is negotiated between user and ISP when subscribing. For example, "user1.example.com" and "user2.example.com".

4. Security Considerations

Security considerations in DHCP are described in section 23, "Security Considerations" of [RFC3315].

A rogue DHCP server can issue bogus domain suffix to a client. This may cause wrong domain name update.

A malicious client may be able to mount a denial of service attack by repeated DHCP requests for domain suffix, thus exhausts the DHCP server’s resource.

Currently, it is difficult for DHCP servers to develop much confidence in the identities of its clients, given the absence of entity authentication from the DHCP protocol itself. To guard against attack, DHCP Authentication as described in section 21 of [RFC3315] can be used.

5. IANA Considerations

IANA is requested to assign a DHCPv6 option code for the Domain Suffix Option.
6. Acknowledgements

The authors thank Ralph Droms, Ted Lemon, Bernie Volz, Tatuya Jinmei, Joe Quanaim and Stefaan De Cnodder for valuable discussions and comments.

7. References

7.1 Normative References

7.2 Informative References

Authors’ Addresses

Renxiang Yan
Yinglan Jiang
Luoning Gui
Research & Innovation Center
Alcatel Shanghai Bell Co., Ltd.
388#, NingQiao Road, Pudong Jinqiao,
Shanghai 201206 P.R. China
Phone: +86 (21) 5854-1240, ext. 7169

Email: renxiang.yan@alcatel-sbell.com.cn
 Yinglan.jiang@alcatel-sbell.com.cn
 Luoning.gui@alcatel-sbell.com.cn

Xiaodong Duan
Research & Development Center
China Mobile Communications Corporation
53A, Xibianmennei Ave., Xuanwu District,
Beijing, 100053 P.R. China
Phone: +86 (10) 6600-6688, ext. 3062

Email: duanxiaodong@chinamobile.com
Full Copyright Statement

Copyright (C) The Internet Society (2005).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.