Abstract

The Dynamic Host Configuration Protocol (DHCP) provides a framework for passing configuration information to hosts on a TCP/IP network. The multicast extensions to DHCP add additional capability of dynamic allocation of the multicast addresses and additional configuration options.

1. Introduction

The multicast extensions to DHCP (MDHCP) provide configuration parameters to the multicast applications. MDHCP is built on a client-server model, where designated DHCP server allocates multicast addresses and delivers parameters associated with the address to dynamically configured hosts. Throughout the remainder
of this document, the term "server" refers to a host providing multicast address(es) and parameters through DHCP, and the term "client" refers to a host requesting multicast address(es) and parameters from a DHCP server. MDHCP server is used at times, to indicate a DHCP server capable of handling MDHCP extensions to the DHCP protocol and the MDHCP client is used to indicate the MDHCP capable DHCP client. MDHCP is not a separate protocol, but is simply an extension to the DHCP protocol.

Like DHCP, MDHCP should be a mechanism rather than a policy. MDHCP must allow local system administrators control over configuration parameters where desired; e.g., local system administrators should be able to enforce local policies concerning allocation and access to local resources where desired.

The MDHCP client is not required to obtain IP address from a DHCP server in order to use MDHCP protocol.

The design goals specified in the DHCP RFC also apply to MDHCP.

1.1. Requirements

Throughout this document, the words that are used to define the significance of particular requirements are capitalized. These words are:

- "MUST"

 This word or the adjective "REQUIRED" means that the item is an absolute requirement of this specification.

- "MUST NOT"

 This phrase means that the item is an absolute prohibition of this specification.

- "SHOULD"

 This word or the adjective "RECOMMENDED" means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully weighed before choosing a different course.

- "SHOULD NOT"

 This phrase means that there may exist valid reasons in particular circumstances when the listed behavior is acceptable or even useful, but the full implications should
be understood and the case carefully weighed before implementing any behavior described with this label.

- "MAY"

This word or the adjective "OPTIONAL" means that this item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because it enhances the product, for example; another vendor may omit the same item.

1.2. Terminology

This document uses the following terms[1]:

- "DHCP client"

A DHCP client is an Internet host that obtains configuration parameters (e.g., network address) using DHCP protocol.

- "DHCP server"

A DHCP server is an Internet host that provides configuration parameters to DHCP clients.

- "MDHCP client"

A MDHCP client is a DHCP client that supports MDHCP extensions.

- "MDHCP server"

A MDHCP server is a DHCP server that supports MDHCP extensions.

1.3. Motivation and protocol requirements.

For multicast applications to be ubiquitous, there is a need to standardize on a protocol to allocate multicast addresses to an application. Following are the set of requirements on such a protocol.

Conflict Free Allocation: When two applications obtain a multicast address (using a common multicast address allocation protocol), both applications may be allocated identical addresses only if it can be guaranteed that no hosts will receive multicasts using same address from both the applications on the same network interface provided that the multicast scoping is implemented correctly.
Quick response: The application should not have to wait for a long time before it able to determine if it can use a multicast address. The response time should primarily be a function of network and system delays only and should not be in the order of several minutes.

Low network load: The multicast address allocation protocol is a control protocol. Therefore, it should impose minimal load on the network. Specifically, the address allocation protocol should not overload a modem line when used by a dial-in user.

Work with power managed systems: System may be in on, off or low power state between the address allocation and usage period.

Multicast address scopes: The protocol must be able to allocate both the administratively scoped and global addresses.

Efficient use of address space: The multicast address space is smaller then IP address space. Moreover, a host or application may require multiple addresses. Therefore, efficient use of address space is a design goal of multicast address allocation protocol.

1.4. MHDCP Protocol Summary

From the protocol standpoint, MDHCP is an extension of the DHCP. As in normal DHCP protocol, a MDHCP client requests multicast address(es) from the MDHCP server for a specified multicast scope. The MDHCP servers assigns multicast address(es) to the hosts to be used within the requested scope, and valid over a specific period. The DHCP server MUST provide TTL value of the address. The client, when using the assigned address should not use the TTL value larger than the one provided. The lease period is defined by the duration of the lease and the time at which the lease becomes effective. The DHCP server MUST NOT allocate the same address to different clients with overlapping lease period and scope. The protocol also allows client to request more than one address at a time.

Before requesting a multicast address, a client needs to obtain the list of multicast scopes available on the MDHCP server. The multicast scope-list is one of the MDHCP configuration parameters. The scope list may be obtained through the DHCP option described in [3], or may be obtained by some other means. Similarly, the MDHCP server address (multicast) may also be obtained by the option described in [3] or can be configured on the client.

The MDHCP server is not required to be co-located with a DHCP server. Therefore, in a typical deployment, there may be fewer MDHCP servers then the DHCP servers.

The MDHCP protocol uses M flag and a set of options defined below.
2. MDHCP messages and options.

The following options and flags are used by MDHCP extensions.

2.1. M flag

A new flag (M) is defined to differentiate the MDHCP messages from DHCP messages. All the messages (DHCPDISCOVER, DHCPOFFER etc.) use M flag defined below to indicate multicast address negotiations. The second bit of the flag field (bit 1) defines M (multicast) flag. The M bit must be set for all the message exchanges pertinent to the multicast address assignment. The client MUST obtain an IP address prior to requesting a multicast address. Therefore, B flag MUST not be set when M flag is set.

```
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|B|M|           MBZ             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

- **B**: BROADCAST flag
- **M**: Multicast address request flag.
- **MBZ**: MUST BE ZERO (reserved for future use)

2.2. Multicast Scope Option

This option is used by the client to indicate the multicast scope for the requested multicast address(es). It is also used to indicate the scope of the assigned address by the DHCP server. If this option is not specified, the DHCP server MAY allocate an address from a DEFAULT scope or reject the request.

```
| Code | Len | Scope Id |
+-------+-----+----------|
| 101   | 4   | i1 i2 i3 i4 |
```
The client may obtain the scope list through the option described in [3] or using some other means. The scope id is the numeric representation of the scope as described in [3]. The 'code' for this option is 101 and the length is 4.

2.3. Start time Option

The start time is used in a client request (DHCPDISCOVER or DHCPREQUEST) to allow the client to request the starting time for the use of the assigned address. This option allows client to request a multicast address for use at a future time.

<table>
<thead>
<tr>
<th>Code</th>
<th>Len</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>8</td>
<td>t1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t8</td>
</tr>
</tbody>
</table>

The time value is the decimal representation of Network Time Protocol (NTP) time values in seconds [5].

The 'code' for this option is 102 and the length is 8.

If IP Address Lease Time option specifies [2] the duration of the lease beginning at Start Time option value.

2.4. Multicast TTL Option

This option specifies the TTL value to be used with the multicast address. The TTL is specified as an octet with a value between 1 and 255. The implied value of this option is 255 when not included.

<table>
<thead>
<tr>
<th>Code</th>
<th>Len</th>
<th>Multicast TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>1</td>
<td>n</td>
</tr>
</tbody>
</table>
The 'code' for this option is 103 and the length is 1.

2.5. Number of Addresses Requested Option

This option specifies the number of addresses requested by the client. The client MAY obtain more than one address either by repeating the protocol for every address or by requesting all the addresses at the same time via this option. The server MAY use this option to indicate to the client the number of addresses it has allocated to the client. When the client is requesting only one address, this option need not be included.

<table>
<thead>
<tr>
<th>Code</th>
<th>Len</th>
<th>Number of Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>2</td>
<td>n</td>
</tr>
</tbody>
</table>

The 'code' for this option is 104 and the length is 2.

2.6. Client Port Option

In order to facilitate implementations outside the operating system kernel, and to allow two separate client implementations: one for DHCP and one for MDHCP, if this option is specified, the MDHCP server MUST use the source port number used in the DHCPDISCOVER, DHCPREQUEST, DHCPINFORM, and DHCPRELEASE as the destination port number in the response messages.

<table>
<thead>
<tr>
<th>Code</th>
<th>Len</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>1</td>
<td>n</td>
</tr>
</tbody>
</table>

The 'code' for this option is 105 and the length is 1.

2.7. List of Address Ranges Allocated

This option is used by the server to provide the list of all the address ranges allocated to the client when client requests more than one addresses. When a client requests only one address, the server uses the ÂyiaddrÂ field specify the allocated address. When a client
requests more than one address, additional address ranges are listed via this option.

<table>
<thead>
<tr>
<th>Code</th>
<th>Len</th>
<th>Address Range List</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>n</td>
<td>L1 L2 Ln</td>
</tr>
</tbody>
</table>

Where the Address Range List is of the following format.

StartAddress1 BlockSize1 StartAddress2 BlockSize2 ...

| S11 S12 S13 S14 B11 B12 S21 S22 S23 S24 B21 B22 |

The 'code' for this option is TBD and the minimum length is 6.

3. MDHP protocol

The client first needs to know the group multicast address of the MDHCP servers, and the multicast scope list. This address and the scope list may be obtained by requesting the options specified in [3] from DHCP servers via DHCPINFORM or from other repository of network configurations.

At this point, client has two ways of obtaining the multicast address(es) from the server.
exchange are summarized in Table 1 to 3. For details on rest of the fields, please refer DHCP RFC [1].

The client can later renew or release the multicast address by using DHCPREQUEST and DHCPRELEASE message exchanges as defined in the DHCP RFC [1].

At any time, if the MDHCP server is unable to satisfy the DHCPREQUEST message (e.g., the requested address has been allocated), the server MUST respond with a DHCPNAK message.

Note that all the messages in this exchange have their M flag set and B flag not set.

In the second method [see Figure 2] the client is requesting address(es) directly from a specific MDHCP server. When a client knows the IP address of the MDHCP server from which it can obtain a multicast address(es) from a give scope, it MAY skip the discover phase (i.e. DHCPDISCOVER and DHCPOFFER message exchange) and directly start with unicasting DHCPREQUEST message to the server. If this fails, the client SHOULD revert back to the first method.

The MDHCP client may need to be deployed on the client machines where DHCP client implementation is not capable of filtering out the MDHCP messages. In that case, the MDHCP client MUST use a port number different from ÂDHCP client port (68)Â. The MDHCP client MUST specify this port in the DHCPDISCOVER and DHCPREQUEST messages via ÂClient Port OptionÂ.

The MDHCP Client MUST provide client identifier option when sending messages for multicast address assignment. The client generates a unique key and uses that as a client identifier in the DHCPDISCOVER message. The client identifier is the key to distinguish the client request and to avoid duplicate address allocation.

Each client may be running several different multicast enabled applications, and each application may require separate multicast address(es). Client MUST use separate unique client identifier when requesting separate multicast address(es) for each request. A client implementation may choose to use hardware address, application instance and time of request to generate unique client identifiers.

The following tables [Table 1, Table 2] describes the fields and options that are relavent to MDHCP protocol but are different from the normal DHCP protocol [1]
DHCPDISCOVER or 0 DHCPREQUEST or 0

'yiaddr' Multicast address Multicast address
assigned to client assigned to client

'siaddr' Server’s IP address Server’s IP address 0
reachable from the reachable from the
client. client.

'chaddr' 'chaddr' from 'chaddr' from
client DHCPDISCOVER client DHCPREQUEST client DHCPREQUEST
message message message

'file' may contain options may contain options (unused)

'options' options

Option DHCPoffer DHCPACK DHCPNAK
------ --------- ------- -------
IP address lease time MUST MUST MUST NOT
Lease Start Time MUST MUST MUST NOT
Server identifier MUST MUST MUST
Multicast Scope MUST MUST MUST NOT

Table 1: Fields and options that are different in multicast DHCP server messages.
<table>
<thead>
<tr>
<th>Option</th>
<th>DHCPDISCOVER</th>
<th>DHCPREQUEST</th>
<th>DHCPRELEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>'flags'</td>
<td>Set 'M' Bit</td>
<td>set 'M' Bit</td>
<td>set 'M' bit</td>
</tr>
<tr>
<td></td>
<td>BROADCAST bit 0</td>
<td>BROADCAST bit 0</td>
<td>BROADCAST bit 0</td>
</tr>
<tr>
<td>'ciaddr'</td>
<td>0 or client’s network addr</td>
<td>0 or client’s network addr</td>
<td>0</td>
</tr>
<tr>
<td>'chaddr'</td>
<td>ignored</td>
<td>ignored</td>
<td>ignored</td>
</tr>
<tr>
<td>'options'</td>
<td>options</td>
<td>options</td>
<td>(unused)</td>
</tr>
</tbody>
</table>

Table 2: Fields and options that are different in multicast DHCP client messages
<table>
<thead>
<tr>
<th>Server</th>
<th>Client</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>(not selected)</td>
<td>(selected)</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begin multicast address request</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___________/</td>
<td>__________</td>
<td></td>
</tr>
<tr>
<td>/ DHCPDISCOVER</td>
<td>DHCPDISCOVER \</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determines</td>
<td></td>
<td>Determines</td>
</tr>
<tr>
<td>address(es)</td>
<td></td>
<td>address(es)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\</td>
<td></td>
<td>_________/</td>
</tr>
<tr>
<td>________</td>
<td>/DHCPOFFER</td>
<td></td>
</tr>
<tr>
<td>DHCPOFFER\</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collects replies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selects Address(es)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___________/</td>
<td>__________</td>
<td></td>
</tr>
<tr>
<td>/ DHCPREQUEST</td>
<td>DHCPREQUEST \</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Timeline diagram of messages exchanged between MDHCP client and servers using group multicast address for MDHCP capable servers.
4. MDHCP Protocol properties

Conflict free address allocation: In the intranet case, each MDHCP server MAY be allocated part of the administratively scoped address space. As long as the address space managed by MDHCP servers is non-overlapping for a given administrative scope, the protocol will allocate conflict free addresses. MDHCP protocol does not directly address the mechanisms for determining address allocation outside Intranet. However, we propose to use MDHCP as a front end to any future address allocation protocol for the Internet. The DHCP protocol will preserve conflict free address allocation property of the internet multicast address allocation protocol.

Small response time: The response time for MDHCP protocol is strictly based on the network propagation delay and the load on the MDHCP server.

The MDHCP protocol does not require a client system to be on all the time. Thus, it poses no additional requirements on power managed systems.
Multicast address scopes: The administratively scoped multicast address may be directly allocated by MDHCP server. However, it is envisioned that the MDHCP protocol will be indirectly used for Internet wide Multicast addresses allocation. In such deployment, the MDHCP server will act as a front-end to future Internet multicast address allocation protocols.

Efficient use of address space: The multicast address space may be statically partitioned between MDHCP servers to provide sufficient reliability and load management on servers. However, the multicast based address request will be able to obtain addresses from any of the available servers.

5. Security Considerations

This document does not explicitly address security considerations to avoid redundant effort with the work in progress in DHC working group of IETF on securing DHCP.

6. Acknowledgements

The authors would like to thank Rajeev Byrisetty, Steve Deering, Peter Ford, Mark Handley, Van Jacobson, David Oran, Thomas Pfenning, Dave Thayler, Ramesh Vyaghrapuri and the participants of IETF for their assistance with this protocol.

7. References

implementation’’,

8. Author’s Address

Baiju V. Patel
Intel Corp.
2111 NE 25th Ave.
Hillsboro, OR 97124

Phone: 503 264 2422
EMail: baiju@mailbox.jf.intel.com

Munil Shah
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
Phone: 425 703 3924
Email: munils@microsoft.com

This document will expire on April, 1998