Hypertext Transfer Protocol (HTTP) Client-Initiated Content-Encoding
draft-ietf-httpbis-cice-01

Abstract

In HTTP, content codings allow for payload encodings such as for compression or integrity checks. In particular, the "gzip" content coding is widely used for payload data sent in response messages.

Content codings can be used in request messages as well, however discoverability is not on par with response messages. This document extends the HTTP "Accept-Encoding" header field for use in responses, to indicate that content codings are supported in requests.

Editorial Note (To be removed by RFC Editor before publication)

Discussion of this draft takes place on the HTTPBIS working group mailing list (ietf-http-wg@w3.org), which is archived at <https://lists.w3.org/Archives/Public/ietf-http-wg/>.

Working Group information can be found at <https://tools.ietf.org/wg/httpbis/> and <http://httpwg.github.io/>; source code and issues list for this draft can be found at <https://github.com/httpwg/http-extensions>.

The changes in this draft are summarized in Appendix A.4.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on December 1, 2015.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info)
in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Notational Conventions ... 3
3. Using the ‘Accept-Encoding’ Header Field in Responses 3
4. Example ... 4
5. Deployment Considerations ... 5
6. Security Considerations .. 5
7. IANA Considerations ... 5
8. References .. 6
 8.1. Normative References ... 6
 8.2. Informative References ... 6
Appendix A. Change Log (to be removed by RFC Editor before
 publication) .. 6
 A.1. Since draft-reschke-http-cice-00 6
 A.2. Since draft-reschke-http-cice-01 6
 A.3. Since draft-reschke-http-cice-02 6
 A.4. Since draft-ietf-httpbis-cice-00 7
Appendix B. Acknowledgements ... 7
1. Introduction

In HTTP, content codings allow for payload encodings such as for compression or integrity checks ([RFC7231], Section 3.1.2). In particular, the "gzip" content coding is widely used for payload data sent in response messages.

Content codings can be used in request messages as well, however discoverability is not on par with response messages. This document extends the HTTP "Accept-Encoding" header field ([RFC7231], Section 5.3.4) for use in responses, to indicate that content codings are supported in requests.

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

This document reuses terminology defined in the base HTTP specifications, namely Section 2 of [RFC7230] and Section 3.1.2 of [RFC7231].

3. Using the 'Accept-Encoding' Header Field in Responses

Section 5.3.4 of [RFC7231] defines "Accept-Encoding" as a request header field only.

This specification expands that definition to allow "Accept-Encoding" as a response header field as well. When present in a response, it indicates what content codings the resource was willing to accept in the associated request. A field value that only contains "identity" implies that no content codings were supported.

Note that this information is specific to the associated request; the set of supported encodings might be different for other resources on the same server, and could change over time or depend on other aspects of the request (such as the request method).

Section 6.5.13 of [RFC7231] defines status code 415 (Unsupported Media Type) to apply to both media type and content coding related problems.

Servers that fail a request due to an unsupported content coding SHOULD respond with a 415 status and SHOULD include an "Accept-Encoding" header field in that response, allowing clients to distinguish between content coding related issues and media type related issues. In order to avoid confusion with media type related
problems, servers that fail a request with a 415 status for reasons unrelated to content codings SHOULD NOT include the "Accept-Encoding" header field.

It is expected that the most common use of "Accept-Encoding" in responses will have the 415 (Unsupported Media Type) status code, in response to optimistic use of a content coding by clients. However, the header field can also be used to indicate to clients that content codings are supported, to optimize future interactions. For example, a resource might include it in a 2xx response when the request payload was big enough to justify use of a compression coding, but the client failed to do so.

4. Example

A client submits a POST request using the "compress" content coding ([RFC7231], Section 3.1.2.1):

 POST /edit/ HTTP/1.1
 Host: example.org
 Content-Type: application/atom+xml;type=entry
 Content-Encoding: compress

 ...compressed payload...

The server rejects request because it only allows the "gzip" content coding:

 HTTP/1.1 415 Unsupported Media Type
 Date: Fri, 09 May 2014 11:43:53 GMT
 Accept-Encoding: gzip
 Content-Length: 68
 Content-Type: text/plain

 This resource only supports the "gzip" content coding in requests.

 ...at which point the client can retry the request with the supported "gzip" content coding.

Alternatively, a server that does not support any content codings in requests could answer with:

 HTTP/1.1 415 Unsupported Media Type
 Date: Fri, 09 May 2014 11:43:53 GMT
 Accept-Encoding: identity
 Content-Length: 61
 Content-Type: text/plain
This resource does not support content codings in requests.

5. Deployment Considerations

Servers that do not support content codings in requests already are required to fail a request that does use a content coding. Section 6.5.13 of [RFC7231] recommends using the status code 415 (Unsupported Media Type), so the only change needed is to include the "Accept-Encoding" header field with value "identity" in that response.

Servers that do support some content codings are required to fail requests with unsupported content codings as well. To be compliant with this specification, servers will need to use the status code 415 (Unsupported Media Type) to signal the problem, and will have to include an "Accept-Encoding" header field that enumerates the content codings that are supported. As the set of supported content codings is usually static and small, adding the header field ought to be trivial.

6. Security Considerations

This specification does not introduce any new security considerations beyond those discussed in Section 9 of [RFC7231].

7. IANA Considerations

HTTP header fields are registered within the "Message Headers" registry located at <http://www.iana.org/assignments/message-headers>, as defined by [BCP90].

This document updates the definition of the "Accept-Encoding" header field, so the "Permanent Message Header Field Names" registry shall be updated accordingly:

<table>
<thead>
<tr>
<th>Header Field Name</th>
<th>Protocol</th>
<th>Status</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept-Encoding</td>
<td>http</td>
<td>standard</td>
<td>[RFC7231], Section 5.3.4, and Section 3 of this document</td>
</tr>
</tbody>
</table>

8. References
8.1. Normative References

8.2. Informative References

Appendix A. Change Log (to be removed by RFC Editor before publication)

A.1. Since draft-reschke-http-cice-00

Clarified that the information returned in Accept-Encoding is per resource, not per server.

Added some deployment considerations.

Updated HTTP/1.1 references.

A.2. Since draft-reschke-http-cice-01

Restrict the scope of A-E from "future requests" to "at the time of this request".

Mention use of A-E in responses other than 415.

Recommend not to include A-E in a 415 response unless there was actually a problem related to content coding.

A.3. Since draft-reschke-http-cice-02

First Working Group draft; updated boilerplate accordingly.
A.4. Since draft-ietf-httpbis-cice-00

Apply editorial improvements suggested by Mark Nottingham.

Appendix B. Acknowledgements

Thanks go to the members of the and HTTPbis Working Group, namely Amos Jeffries, Mark Nottingham, and Ted Hardie.

Author’s Address

Julian F. Reschke
greenbytes GmbH
Hafenweg 16
Muenster, NW 48155
Germany

EMail: julian.reschke@greenbytes.de
URI: http://greenbytes.de/tech/webdav/