HTTP/1.1, part 5: Range Requests and Partial Responses
draft-ietf-httpbis-p5-range-12

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia information systems. HTTP has been in use by the World Wide Web global information initiative since 1990. This document is Part 5 of the seven-part specification that defines the protocol referred to as "HTTP/1.1" and, taken together, obsoletes RFC 2616. Part 5 defines range-specific requests and the rules for constructing and combining responses to those requests.

Editorial Note (To be removed by RFC Editor)

Discussion of this draft should take place on the HTTPBIS working group mailing list (ietf-http-wg@w3.org). The current issues list is at <http://tools.ietf.org/wg/httpbis/trac/report/3> and related documents (including fancy diffs) can be found at <http://tools.ietf.org/wg/httpbis/>.

The changes in this draft are summarized in Appendix D.13.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 28, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Table of Contents

1. Introduction .. 4
 1.1. Requirements 4
 1.2. Syntax Notation 4
 1.2.1. Core Rules 5
 1.2.2. ABNF Rules defined in other Parts of the
1. Introduction

HTTP clients often encounter interrupted data transfers as a result of cancelled requests or dropped connections. When a cache has stored a partial representation, it is desirable to request the remainder of that representation in a subsequent request rather than transfer the entire representation. There are also a number of Web applications that benefit from being able to request only a subset of a larger representation, such as a single page of a very large document or only part of an image to be rendered by a device with limited local storage.

This document defines HTTP/1.1 range requests, partial responses, and the multipart/byteranges media type. The protocol for range requests is an OPTIONAL feature of HTTP, designed so resources or recipients that do not implement this feature can respond as if it is a normal GET request without impacting interoperability. Partial responses are indicated by a distinct status code to not be mistaken for full responses by intermediate caches that might not implement the feature.

Although the HTTP range request mechanism is designed to allow for extensible range types, this specification only defines requests for byte ranges.

1.1. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

An implementation is not compliant if it fails to satisfy one or more of the "MUST" or "REQUIRED" level requirements for the protocols it implements. An implementation that satisfies all the "MUST" or "REQUIRED" level and all the "SHOULD" level requirements for its protocols is said to be "unconditionally compliant"; one that satisfies all the "MUST" level requirements but not all the "SHOULD" level requirements for its protocols is said to be "conditionally compliant".

1.2. Syntax Notation

This specification uses the ABNF syntax defined in Section 1.2 of [Part1] (which extends the syntax defined in [RFC5234] with a list rule). Appendix C shows the collected ABNF, with the list rule expanded.

The following core rules are included by reference, as defined in
1.2.1. Core Rules

The core rules below are defined in Section 1.2.2 of [Part1]:

\[
\begin{align*}
\text{token} & = \text{<token, defined in [Part1], Section 1.2.2>} \\
\text{OWS} & = \text{<OWS, defined in [Part1], Section 1.2.2>}
\end{align*}
\]

1.2.2. ABNF Rules defined in other Parts of the Specification

The ABNF rules below are defined in other parts:

\[
\begin{align*}
\text{HTTP-date} & = \text{<HTTP-date, defined in [Part1], Section 6.1>} \\
\text{entity-tag} & = \text{<entity-tag, defined in [Part4], Section 2>}
\end{align*}
\]

2. Range Units

HTTP/1.1 allows a client to request that only part (a range of) the representation be included within the response. HTTP/1.1 uses range units in the Range (Section 5.4) and Content-Range (Section 5.2) header fields. A representation can be broken down into subranges according to various structural units.

\[
\begin{align*}
\text{range-unit} & = \text{bytes-unit / other-range-unit} \\
\text{bytes-unit} & = \text{"bytes"} \\
\text{other-range-unit} & = \text{token}
\end{align*}
\]

HTTP/1.1 has been designed to allow implementations of applications that do not depend on knowledge of ranges. The only range unit defined by HTTP/1.1 is "bytes". Additional specifiers can be defined as described in Section 2.1.

If a range unit is not understood in a request, a server MUST ignore the whole Range header field (Section 5.4). If a range unit is not understood in a response, an intermediary SHOULD pass the response to the client; a client MUST fail.

2.1. Range Specifier Registry

The HTTP Range Specifier Registry defines the name space for the range specifier names.
Registrations MUST include the following fields:

- Name
- Description
- Pointer to specification text

Values to be added to this name space are subject to IETF review ([RFC5226], Section 4.1).

The registry itself is maintained at <http://www.iana.org/assignments/http-range-specifiers>.

3. Status Code Definitions

3.1. 206 Partial Content

The server has fulfilled the partial GET request for the resource. The request MUST have included a Range header field (Section 5.4) indicating the desired range, and MAY have included an If-Range header field (Section 5.3) to make the request conditional.

The response MUST include the following header fields:

- Either a Content-Range header field (Section 5.2) indicating the range included with this response, or a multipart/byteranges Content-Type including Content-Range fields for each part. If a Content-Length header field is present in the response, its value MUST match the actual number of octets transmitted in the message-body.

- Date

- Cache-Control, ETag, Expires, Content-Location, Last-Modified, and/or Vary, if the header field would have been sent in a 200 response to the same request

If the 206 response is the result of an If-Range request, the response SHOULD NOT include other representation header fields. Otherwise, the response MUST include all of the representation header fields that would have been returned with a 200 (OK) response to the same request.

A cache MUST NOT combine a 206 response with other previously cached content if the ETag or Last-Modified header fields do not match exactly, see Section 4.
A cache that does not support the Range and Content-Range header fields MUST NOT cache 206 (Partial Content) responses. Furthermore, if a response uses a range unit that is not understood by the cache, then it MUST NOT be cached either.

3.2. 416 Requested Range Not Satisfiable

A server SHOULD return a response with this status code if a request included a Range request-header field (Section 5.4), and none of the ranges-specifier values in this field overlap the current extent of the selected resource, and the request did not include an If-Range request-header field (Section 5.3). (For byte-ranges, this means that the first-byte-pos of all of the byte-range-spec values were greater than the current length of the selected resource.)

When this status code is returned for a byte-range request, the response SHOULD include a Content-Range header field specifying the current length of the representation (see Section 5.2). This response MUST NOT use the multipart/byteranges content-type.

4. Combining Ranges

A response might transfer only a subrange of a representation, either because the request included one or more Range specifications, or because a connection closed prematurely. After several such transfers, a cache might have received several ranges of the same representation.

If a cache has a stored non-empty set of subranges for a representation, and an incoming response transfers another subrange, the cache MAY combine the new subrange with the existing set if both the following conditions are met:

- Both the incoming response and the cache entry have a cache validator.
- The two cache validators match using the strong comparison function (see Section 4 of [Part4]).

If either requirement is not met, the cache MUST use only the most recent partial response (based on the Date values transmitted with every response, and using the incoming response if these values are equal or missing), and MUST discard the other partial information.

5. Header Field Definitions

This section defines the syntax and semantics of HTTP/1.1 header fields related to range requests and partial responses.
5.1. Accept-Ranges

The "Accept-Ranges" response-header field allows a resource to indicate its acceptance of range requests.

Accept-Ranges = "Accept-Ranges" ":" OWS Accept-Ranges-v
Accept-Ranges-v = acceptable-ranges
acceptable-ranges = 1#range-unit / "none"

Origin servers that accept byte-range requests MAY send

Accept-Ranges: bytes

but are not required to do so. Clients MAY generate range requests without having received this header field for the resource involved. Range units are defined in Section 2.

Servers that do not accept any kind of range request for a resource MAY send

Accept-Ranges: none

to advise the client not to attempt a range request.

5.2. Content-Range

The "Content-Range" header field is sent with a partial representation to specify where in the full representation the payload body is intended to be applied.

Range units are defined in Section 2.

Content-Range = "Content-Range" ":" OWS Content-Range-v
Content-Range-v = content-range-spec

content-range-spec = byte-content-range-spec

byte-content-range-spec = bytes-unit SP
byte-range-resp-spec "/"
(instance-length / "*")

byte-range-resp-spec = (first-byte-pos "-" last-byte-pos)
/ "*"

instance-length = 1*DIGIT

other-content-range-spec = other-range-unit SP
other-range-resp-spec
other-range-resp-spec = *CHAR

The header field SHOULD indicate the total length of the full representation, unless this length is unknown or difficult to determine. The asterisk "*" character means that the instance-length is unknown at the time when the response was generated.

Unlike byte-ranges-specifier values (see Section 5.4.1), a byte-range-resp-spec MUST only specify one range, and MUST contain absolute byte positions for both the first and last byte of the range.

A byte-content-range-spec with a byte-range-resp-spec whose last-byte-pos value is less than its first-byte-pos value, or whose instance-length value is less than or equal to its last-byte-pos value, is invalid. The recipient of an invalid byte-content-range-spec MUST ignore it and any content transferred along with it.

In the case of a byte range request: A server sending a response with status code 416 (Requested range not satisfiable) SHOULD include a Content-Range field with a byte-range-resp-spec of "*". The instance-length specifies the current length of the selected resource. A response with status code 206 (Partial Content) MUST NOT include a Content-Range field with a byte-range-resp-spec of "*".

Examples of byte-content-range-spec values, assuming that the representation contains a total of 1234 bytes:

- The first 500 bytes:
 bytes 0-499/1234

- The second 500 bytes:
 bytes 500-999/1234

- All except for the first 500 bytes:
 bytes 500-1233/1234

- The last 500 bytes:
 bytes 734-1233/1234

When an HTTP message includes the content of a single range (for example, a response to a request for a single range, or to a request for a set of ranges that overlap without any holes), this content is transmitted with a Content-Range header field, and a Content-Length
header field showing the number of bytes actually transferred. For example,

HTTP/1.1 206 Partial Content
Date: Wed, 15 Nov 1995 06:25:24 GMT
Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT
Content-Range: bytes 21010-47021/47022
Content-Length: 26012
Content-Type: image/gif

When an HTTP message includes the content of multiple ranges (for example, a response to a request for multiple non-overlapping ranges), these are transmitted as a multipart message. The multipart media type used for this purpose is "multipart/byteranges" as defined in Appendix A.

A response to a request for a single range MUST NOT be sent using the multipart/byteranges media type. A response to a request for multiple ranges, whose result is a single range, MAY be sent as a multipart/byteranges media type with one part. A client that cannot decode a multipart/byteranges message MUST NOT ask for multiple ranges in a single request.

When a client requests multiple ranges in one request, the server SHOULD return them in the order that they appeared in the request.

If the server ignores a byte-range-spec because it is syntactically invalid, the server SHOULD treat the request as if the invalid Range header field did not exist. (Normally, this means return a 200 response containing the full representation).

If the server receives a request (other than one including an If-Range request-header field) with an unsatisfiable Range request-header field (that is, all of whose byte-range-spec values have a first-byte-pos value greater than the current length of the selected resource), it SHOULD return a response code of 416 (Requested range not satisfiable) (Section 3.2).

Note: Clients cannot depend on servers to send a 416 (Requested range not satisfiable) response instead of a 200 (OK) response for an unsatisfiable Range request-header field, since not all servers implement this request-header field.

5.3. If-Range

If a client has a partial copy of a representation in its cache, and wishes to have an up-to-date copy of the entire representation in its cache, it could use the Range request-header field with a conditional
GET (using either or both of If-Unmodified-Since and If-Match.) However, if the condition fails because the representation has been modified, the client would then have to make a second request to obtain the entire current representation.

The "If-Range" request-header field allows a client to "short-circuit" the second request. Informally, its meaning is "if the representation is unchanged, send me the part(s) that I am missing; otherwise, send me the entire new representation".

If-Range = "If-Range" ":": OWS If-Range-v
If-Range-v = entity-tag / HTTP-date

If the client has no entity-tag for a representation, but does have a Last-Modified date, it MAY use that date in an If-Range header field. (The server can distinguish between a valid HTTP-date and any form of entity-tag by examining no more than two characters.) The If-Range header field SHOULD only be used together with a Range header field, and MUST be ignored if the request does not include a Range header field, or if the server does not support the sub-range operation.

If the entity-tag given in the If-Range header field matches the current cache validator for the representation, then the server SHOULD provide the specified sub-range of the representation using a 206 (Partial Content) response. If the cache validator does not match, then the server SHOULD return the entire representation using a 200 (OK) response.

5.4. Range

5.4.1. Byte Ranges

Since all HTTP representations are transferred as sequences of bytes, the concept of a byte range is meaningful for any HTTP representation. (However, not all clients and servers need to support byte-range operations.)

Byte range specifications in HTTP apply to the sequence of bytes in the representation body (not necessarily the same as the message-body).

A byte range operation MAY specify a single range of bytes, or a set of ranges within a single representation.

byte-ranges-specifier = bytes-unit "=" byte-range-set
byte-range-set = 1#(byte-range-spec / suffix-byte-range-spec)
byte-range-spec = first-byte-pos "-" [last-byte-pos]
first-byte-pos = 1*DIGIT
last-byte-pos = 1*DIGIT

The first-byte-pos value in a byte-range-spec gives the byte-offset of the first byte in a range. The last-byte-pos value gives the byte-offset of the last byte in the range; that is, the byte positions specified are inclusive. Byte offsets start at zero.

If the last-byte-pos value is present, it MUST be greater than or equal to the first-byte-pos in that byte-range-spec, or the byte-range-spec is syntactically invalid. The recipient of a byte-range-set that includes one or more syntactically invalid byte-range-spec values MUST ignore the header field that includes that byte-range-set.

If the last-byte-pos value is absent, or if the value is greater than or equal to the current length of the representation body, last-byte-pos is taken to be equal to one less than the current length of the representation in bytes.

By its choice of last-byte-pos, a client can limit the number of bytes retrieved without knowing the size of the representation.

suffix-byte-range-spec = "-" suffix-length
suffix-length = 1*DIGIT

A suffix-byte-range-spec is used to specify the suffix of the representation body, of a length given by the suffix-length value. (That is, this form specifies the last N bytes of a representation.) If the representation is shorter than the specified suffix-length, the entire representation is used.

If a syntactically valid byte-range-set includes at least one byte-range-spec whose first-byte-pos is less than the current length of the representation, or at least one suffix-byte-range-spec with a non-zero suffix-length, then the byte-range-set is satisfiable. Otherwise, the byte-range-set is unsatisfiable. If the byte-range-set is unsatisfiable, the server SHOULD return a response with a 416 (Requested range not satisfiable) status code. Otherwise, the server SHOULD return a response with a 206 (Partial Content) status code containing the satisfiable ranges of the representation.

Examples of byte-ranges-specifier values (assuming a representation of length 10000):

- The first 500 bytes (byte offsets 0-499, inclusive):
 bytes=0-499
The second 500 bytes (byte offsets 500-999, inclusive):
 bytes=500-999

The final 500 bytes (byte offsets 9500-9999, inclusive):
 bytes=-500

Or:
 bytes=9500-

The first and last bytes only (bytes 0 and 9999):
 bytes=0-0,-1

Several legal but not canonical specifications of the second 500 bytes (byte offsets 500-999, inclusive):
 bytes=500-600,601-999
 bytes=500-700,601-999

5.4.2. Range Retrieval Requests

The "Range" request-header field defines the GET method (conditional or not) to request one or more sub-ranges of the response representation body, instead of the entire representation body.

\[
\text{Range} = \"Range\" \, \text{":"} \, \text{OWS} \, \text{Range-v}
\]
\[
\text{Range-v} = \text{byte-ranges-specifier} \, / \, \text{other-ranges-specifier}
\]
\[
\text{other-ranges-specifier} = \text{other-range-unit} \, \text{"="} \, \text{other-range-set}
\]
\[
\text{other-range-set} = 1*\text{CHAR}
\]

A server MAY ignore the Range header field. However, HTTP/1.1 origin servers and intermediate caches ought to support byte ranges when possible, since Range supports efficient recovery from partially failed transfers, and supports efficient partial retrieval of large representations.

If the server supports the Range header field and the specified range or ranges are appropriate for the representation:

- The presence of a Range header field in an unconditional GET modifies what is returned if the GET is otherwise successful. In other words, the response carries a status code of 206 (Partial Content) instead of 200 (OK).
The presence of a Range header field in a conditional GET (a request using one or both of If-Modified-Since and If-None-Match, or one or both of If-Unmodified-Since and If-Match) modifies what is returned if the GET is otherwise successful and the condition is true. It does not affect the 304 (Not Modified) response returned if the conditional is false.

In some cases, it might be more appropriate to use the If-Range header field (see Section 5.3) in addition to the Range header field.

If a proxy that supports ranges receives a Range request, forwards the request to an inbound server, and receives an entire representation in reply, it MAY only return the requested range to its client.

6. IANA Considerations

6.1. Status Code Registration

The HTTP Status Code Registry located at <http://www.iana.org/assignments/http-status-codes> shall be updated with the registrations below:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>Partial Content</td>
<td>Section 3.1</td>
</tr>
<tr>
<td>416</td>
<td>Requested Range Not Satisfiable</td>
<td>Section 3.2</td>
</tr>
</tbody>
</table>

6.2. Header Field Registration

The Message Header Field Registry located at <http://www.iana.org/assignments/message-headers/message-header-index.html> shall be updated with the permanent registrations below (see [RFC3864]):

<table>
<thead>
<tr>
<th>Header Field Name</th>
<th>Protocol</th>
<th>Status</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept-Ranges</td>
<td>http</td>
<td>standard</td>
<td>Section 5.1</td>
</tr>
<tr>
<td>Content-Range</td>
<td>http</td>
<td>standard</td>
<td>Section 5.2</td>
</tr>
<tr>
<td>If-Range</td>
<td>http</td>
<td>standard</td>
<td>Section 5.3</td>
</tr>
<tr>
<td>Range</td>
<td>http</td>
<td>standard</td>
<td>Section 5.4</td>
</tr>
</tbody>
</table>

The change controller is: "IETF (iesg@ietf.org) - Internet Engineering Task Force".
6.3. Range Specifier Registration

The registration procedure for HTTP Range Specifiers is defined by Section 2.1 of this document.

The HTTP Range Specifier Registry shall be created at <http://www.iana.org/assignments/http-range-specifiers> and be populated with the registrations below:

+----------------------+-------------------+----------------------+
<table>
<thead>
<tr>
<th>Range Specifier Name</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>a range of octets</td>
<td>(this specification)</td>
</tr>
</tbody>
</table>
+-----------------------+-------------------+----------------------+

The change controller is: "IETF (iesg@ietf.org) - Internet Engineering Task Force".

7. Security Considerations

No additional security considerations have been identified beyond those applicable to HTTP in general [Part1].

8. Acknowledgments

Most of the specification of ranges is based on work originally done by Ari Luotonen and John Franks, with additional input from Steve Zilles, Daniel W. Connolly, Roy T. Fielding, Jim Gettys, Martin Hamilton, Koen Holtman, Shel Kaplan, Paul Leach, Alex Lopez-Ortiz, Larry Masinter, Jeff Mogul, Lou Montulli, David W. Morris, Luigi Rizzo, and Bill Weihl.

9. References

9.1. Normative References

Informative References

Appendix A. Internet Media Type multipart/byteranges

When an HTTP 206 (Partial Content) response message includes the content of multiple ranges (a response to a request for multiple non-overlapping ranges), these are transmitted as a multipart message-body ([RFC2046], Section 5.1). The media type for this purpose is called "multipart/byteranges". The following is to be registered with IANA [RFC4288].

Note: Despite the name "multipart/byteranges" is not limited to the byte ranges only.

The multipart/byteranges media type includes one or more parts, each with its own Content-Type and Content-Range fields. The required boundary parameter specifies the boundary string used to separate each body-part.
Type name: multipart

Subtype name: byteranges

Required parameters: boundary

Optional parameters: none

Encoding considerations: only "7bit", "8bit", or "binary" are permitted

Security considerations: none

Interoperability considerations: none

Published specification: This specification (see Appendix A).

Applications that use this media type:

Additional information:

Magic number(s): none

File extension(s): none

Macintosh file type code(s): none

Person and email address to contact for further information: See Authors Section.

Intended usage: COMMON

Restrictions on usage: none

Author/Change controller: IESG
For example:

HTTP/1.1 206 Partial Content
Date: Wed, 15 Nov 1995 06:25:24 GMT
Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT
Content-type: multipart/byteranges; boundary=THIS_STRING_SEPARATES

--THIS_STRING_SEPARATES
Content-type: application/pdf
Content-range: bytes 500-999/8000

...the first range...
--THIS_STRING_SEPARATES
Content-type: application/pdf
Content-range: bytes 7000-7999/8000

...the second range
--THIS_STRING_SEPARATES--

Other example:

HTTP/1.1 206 Partial Content
Date: Tue, 14 Nov 1995 06:25:24 GMT
Last-Modified: Tue, 14 July 04:58:08 GMT
Content-type: multipart/byteranges; boundary=THIS_STRING_SEPARATES

--THIS_STRING_SEPARATES
Content-type: video/example
Content-range: exampleunit 1.2-4.3/25

...the first range...
--THIS_STRING_SEPARATES
Content-type: video/example
Content-range: exampleunit 11.2-14.3/25

...the second range
--THIS_STRING_SEPARATES--

Notes:

1. Additional CRLFs MAY precede the first boundary string in the body.

2. Although [RFC2046] permits the boundary string to be quoted, some existing implementations handle a quoted boundary string incorrectly.
3. A number of browsers and servers were coded to an early draft of the byteranges specification to use a media type of multipart/x-byteranges, which is almost, but not quite compatible with the version documented in HTTP/1.1.

Appendix B. Compatibility with Previous Versions

B.1. Changes from RFC 2616

Clarify that it is not ok to use a weak cache validator in a 206 response. (Section 3.1)

Clarify that multipart/byteranges can consist of a single part. (Appendix A)

Appendix C. Collected ABNF

Accept-Ranges = "Accept-Ranges:" OWS Accept-Ranges-v
Accept-Ranges-v = acceptable-ranges

Content-Range = "Content-Range:" OWS Content-Range-v
Content-Range-v = content-range-spec

HTTP-date = <HTTP-date, defined in [Part1], Section 6.1>

If-Range = "If-Range:" OWS If-Range-v
If-Range-v = entity-tag / HTTP-date

OWS = <OWS, defined in [Part1], Section 1.2.2>

Range = "Range:" OWS Range-v
Range-v = byte-ranges-specifier / other-ranges-specifier

acceptable-ranges = (*("", OWS) range-unit *(OWS "," [OWS range-unit])) / "none"

byte-content-range-spec = bytes-unit SP byte-range-resp-spec "/" (instance-length / "/*")
byte-range-resp-spec = (first-byte-pos "-" last-byte-pos) / "/*/
byte-range-set = (*(",", OWS) byte-range-spec) /
suffix-byte-range-spec *(OWS "," [(OWS byte-range-spec) /
suffix-byte-range-spec])
byte-range-spec = first-byte-pos "-" [last-byte-pos]
byte-rangespecifier = bytes-unit "/" byte-range-set
bytes-unit = "bytes"

content-range-spec = byte-content-range-spec /
other-content-range-spec
entity-tag = <entity-tag, defined in [Part4], Section 2>

first-byte-pos = 1*DIGIT

instance-length = 1*DIGIT

last-byte-pos = 1*DIGIT

other-content-range-spec = other-range-unit SP other-range-resp-spec
other-range-resp-spec = *CHAR
other-range-set = 1*CHAR
other-range-unit = token
other-ranges-specifier = other-range-unit "=" other-range-set

range-unit = bytes-unit / other-range-unit

suffix-byte-range-spec = "-" suffix-length
suffix-length = 1*DIGIT

token = <token, defined in [Part1], Section 1.2.2>

ABNF diagnostics:

; Accept-Ranges defined but not used
; Content-Range defined but not used
; If-Range defined but not used
; Range defined but not used

Appendix D. Change Log (to be removed by RFC Editor before publication)

D.1. Since RFC 2616

Extracted relevant partitions from [RFC2616].

D.2. Since draft-ietf-httpbis-p5-range-00

Closed issues:

 validators in 206 responses"
 (<http://purl.org/NET/http-errata#ifrange206>)

- <http://tools.ietf.org/wg/httpbis/trac/ticket/35>: "Normative and
 Informative references"

- <http://tools.ietf.org/wg/httpbis/trac/ticket/86>: "Normative up-
 to-date references"
D.3. Since draft-ietf-httpbis-p5-range-01

Closed issues:

Ongoing work on ABNF conversion
(<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

- Add explicit references to BNF syntax and rules imported from other parts of the specification.

D.4. Since draft-ietf-httpbis-p5-range-02

Ongoing work on IANA Message Header Field Registration
(<http://tools.ietf.org/wg/httpbis/trac/ticket/40>):

- Reference RFC 3984, and update header field registrations for headers defined in this document.

D.5. Since draft-ietf-httpbis-p5-range-03

D.6. Since draft-ietf-httpbis-p5-range-04

Closed issues:

- <http://tools.ietf.org/wg/httpbis/trac/ticket/133>: "multipart/byteranges minimum number of parts"

Ongoing work on ABNF conversion
(<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

- Use "/" instead of "|" for alternatives.

- Introduce new ABNF rules for "bad" whitespace ("BWS"), optional whitespace ("OWS") and required whitespace ("RWS").

- Rewrite ABNFs to spell out whitespace rules, factor out header field value format definitions.

D.7. Since draft-ietf-httpbis-p5-range-05

Closed issues:

Ongoing work on Custom Ranges
(<http://tools.ietf.org/wg/httpbis/trac/ticket/85>):

- Remove bias in favor of byte ranges; allow custom ranges in ABNF.

Final work on ABNF conversion
(<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

- Add appendix containing collected and expanded ABNF, reorganize ABNF introduction.

D.8. Since draft-ietf-httpbis-p5-range-06

Closed issues:

D.9. Since draft-ietf-httpbis-p5-range-07

Closed issues:

- Fixed discrepancy in the If-Range definition about allowed validators.

- <http://tools.ietf.org/wg/httpbis/trac/ticket/150>: "multipart/byteranges for custom range units"

- <http://tools.ietf.org/wg/httpbis/trac/ticket/151>: "range unit missing from other-ranges-specifier in Range header"

D.10. Since draft-ietf-httpbis-p5-range-08

No significant changes.

D.11. Since draft-ietf-httpbis-p5-range-09

No significant changes.

D.12. Since draft-ietf-httpbis-p5-range-10

Closed issues:

Ongoing work on Custom Ranges
(<http://tools.ietf.org/wg/httpbis/trac/ticket/85>):

- Add IANA registry.

D.13. Since draft-ietf-httpbis-p5-range-11

Closed issues:

- <http://tools.ietf.org/wg/httpbis/trac/ticket/217>: "Caches can’t be required to serve ranges"

Index

 2
 206 Partial Content (status code) 6

 4
 416 Requested Range Not Satisfiable (status code) 7

A
 Accept-Ranges header 8

C
 Content-Range header 8

G
 Grammar
 Accept-Ranges 8
 Accept-Ranges-v 8
 acceptable-ranges 8
 byte-content-range-spec 8
 byte-range-resp-spec 8
 byte-range-set 11
 byte-range-spec 11
 byte-ranges-specifier 11
 bytes-unit 5
 Content-Range 8
 content-range-spec 8
 Content-Range-v 8
 first-byte-pos 11
 If-Range 11
If-Range-v 11
instance-length 8
last-byte-pos 11
other-range-unit 5
Range 13
range-unit 5
ranges-specifier 11
suffix-byte-range-spec 12
suffix-length 12

H
Headers
Accept-Ranges 8
Content-Range 8
If-Range 10
Range 11

I
If-Range header 10

M
Media Type
multipart/byteranges 16
multipart/x-byteranges 19
multipart/byteranges Media Type 16
multipart/x-byteranges Media Type 19

R
Range header 11

S
Status Codes
206 Partial Content 6
416 Requested Range Not Satisfiable 7

Authors’ Addresses

Roy T. Fielding (editor)
Day Software
23 Corporate Plaza DR, Suite 280
Newport Beach, CA 92660
USA

Phone: +1-949-706-5300
Fax: +1-949-706-5305
EMail: fielding@gbiv.com
URI: http://roy.gbiv.com/
Tim Berners-Lee
World Wide Web Consortium
MIT Computer Science and Artificial Intelligence Laboratory
The Stata Center, Building 32
32 Vassar Street
Cambridge, MA 02139
USA
EMail: timbl@w3.org
URI: http://www.w3.org/People/Berners-Lee/

Yves Lafon (editor)
World Wide Web Consortium
W3C / ERCIM
2004, rte des Lecioles
Sophia-Antipolis, AM 06902
France
EMail: ylafon@w3.org
URI: http://www.raubacapeu.net/people/yves/

Julian F. Reschke (editor)
greenbytes GmbH
Hafenweg 16
Muenster, NW 48155
Germany
Phone: +49 251 2807760
Fax: +49 251 2807761
EMail: julian.reschke@greenbytes.de
URI: http://greenbytes.de/tech/webdav/