
Network Working Group I. Hickson
Internet-Draft Google, Inc.
Intended status: Standards Track May 23, 2010
Expires: November 24, 2010

 The WebSocket protocol
 draft-ietf-hybi-thewebsocketprotocol-00

Abstract

 The WebSocket protocol enables two-way communication between a user
 agent running untrusted code running in a controlled environment to a
 remote host that has opted-in to communications from that code. The
 security model used for this is the Origin-based security model
 commonly used by Web browsers. The protocol consists of an initial
 handshake followed by basic message framing, layered over TCP. The
 goal of this technology is to provide a mechanism for browser-based
 applications that need two-way communication with servers that does
 not rely on opening multiple HTTP connections (e.g. using
 XMLHttpRequest or <iframe>s and long polling).

 NOTE! THIS COPY OF THIS DOCUMENT IS OBSOLETE.

 For an up-to-date copy of this specification, please see:

 http://www.whatwg.org/specs/web-socket-protocol/

Hickson Expires November 24, 2010 [Page 1]

http://www.whatwg.org/specs/web-socket-protocol/

Internet-Draft The WebSocket protocol May 2010

Author’s note

 This document is automatically generated from the same source
 document as the HTML specification. [HTML]

 Please send feedback to either the hybi@ietf.org list or the
 whatwg@whatwg.org list.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 24, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hickson Expires November 24, 2010 [Page 2]

https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft The WebSocket protocol May 2010

Table of Contents

 1. Introduction . 4
 1.1 . Background . 4
 1.2 . Protocol overview . 4
 1.3 . Opening handshake . 7
 1.4 . Closing handshake . 10
 1.5 . Design philosophy . 11
 1.6 . Security model . 12
 1.7 . Relationship to TCP and HTTP 12
 1.8 . Establishing a connection 12
 1.9 . Subprotocols using the WebSocket protocol 13
 2. Conformance requirements 15
 2.1 . Terminology . 15
 3. WebSocket URLs . 17
 3.1 . Parsing WebSocket URLs 17
 3.2 . Constructing WebSocket URLs 18
 4. Client-side requirements 19
 4.1 . Opening handshake . 19
 4.2 . Data framing . 28
 4.3 . Handling errors in UTF-8 from the server 30
 5. Server-side requirements 32
 5.1 . Reading the client’s opening handshake 32
 5.2 . Sending the server’s opening handshake 35
 5.3 . Data framing . 39
 5.4 . Handling errors in UTF-8 from the client 41
 6. Closing the connection . 42
 6.1 . Client-initiated closure 42
 6.2 . Server-initiated closure 42
 6.3 . Closure . 42
 7. Security considerations 44
 8. IANA considerations . 45
 8.1 . Registration of ws: scheme 45
 8.2 . Registration of wss: scheme 46
 8.3 . Registration of the "WebSocket" HTTP Upgrade keyword . . . 47
 8.4 . Sec-WebSocket-Key1 and Sec-WebSocket-Key2 47
 8.5 . Sec-WebSocket-Location 48
 8.6 . Sec-WebSocket-Origin 49
 8.7 . Sec-WebSocket-Protocol 50
 9. Using the WebSocket protocol from other specifications 51
 10. Acknowledgements . 52
 11. Normative References . 53
 Author’s Address . 55

Hickson Expires November 24, 2010 [Page 3]

Internet-Draft The WebSocket protocol May 2010

1. Introduction

1.1 . Background

 This section is non-normative.

 Historically, creating an instant messenger chat client as a Web
 application has required an abuse of HTTP to poll the server for
 updates while sending upstream notifications as distinct HTTP calls.

 This results in a variety of problems:

 o The server is forced to use a number of different underlying TCP
 connections for each client: one for sending information to the
 client, and a new one for each incoming message.

 o The wire protocol has a high overhead, with each client-to-server
 message having an HTTP header.

 o The client-side script is forced to maintain a mapping from the
 outgoing connections to the incoming connection to track replies.

 A simpler solution would be to use a single TCP connection for
 traffic in both directions. This is what the WebSocket protocol
 provides. Combined with the WebSocket API, it provides an
 alternative to HTTP polling for two-way communication from a Web page
 to a remote server. [WSAPI]

 The same technique can be used for a variety of Web applications:
 games, stock tickers, multiuser applications with simultaneous
 editing, user interfaces exposing server-side services in real time,
 etc.

1.2 . Protocol overview

 This section is non-normative.

 The protocol has two parts: a handshake, and then the data transfer.

 The handshake from the client looks as follows:

Hickson Expires November 24, 2010 [Page 4]

Internet-Draft The WebSocket protocol May 2010

 GET /demo HTTP/1.1
 Host: example.com
 Connection: Upgrade
 Sec-WebSocket-Key2: 12998 5 Y3 1 .P00
 Sec-WebSocket-Protocol: sample
 Upgrade: WebSocket
 Sec-WebSocket-Key1: 4 @1 46546xW%0l 1 5
 Origin: http://example.com

 ^n:ds[4U

 The handshake from the server looks as follows:

 HTTP/1.1 101 WebSocket Protocol Handshake
 Upgrade: WebSocket
 Connection: Upgrade
 Sec-WebSocket-Origin: http://example.com
 Sec-WebSocket-Location: ws://example.com/demo
 Sec-WebSocket-Protocol: sample

 8jKS’y:G*Co,Wxa-

 The leading line from the client follows the Request-Line format.
 The leading line from the server follows the Status-Line format. The
 Request-Line and Status-Line productions are defined in the HTTP
 specification.

 After the leading line in both cases come an unordered ASCII case-
 insensitive set of fields, one per line, that each match the
 following non-normative ABNF: [RFC5234]

 field = 1*name-char colon [space] *any-char cr lf
 colon = %x003A ; U+003A COLON (:)
 space = %x0020 ; U+0020 SPACE
 cr = %x000D ; U+000D CARRIAGE RETURN (CR)
 lf = %x000A ; U+000A LINE FEED (LF)
 name-char = %x0000-0009 / %x000B-000C / %x000E-0039 / %x003B-10FFFF
 ; a Unicode character other than U+000A LINE FEED (LF), U+000D CARRIAGE RETURN (CR), or U+003A COLON (:)
 any-char = %x0000-0009 / %x000B-000C / %x000E-10FFFF
 ; a Unicode character other than U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)

 NOTE: The character set for the above ABNF is Unicode. The fields
 themselves are encoded as UTF-8.

 Lines that don’t match the above production cause the connection to
 be aborted.

 Finally, after the last field, the client sends 10 bytes starting

Hickson Expires November 24, 2010 [Page 5]

https://tools.ietf.org/pdf/rfc5234

Internet-Draft The WebSocket protocol May 2010

 with 0x0D 0x0A and followed by 8 random bytes, part of a challenge,
 and the server sends 18 bytes starting with 0x0D 0x0A and followed by
 16 bytes consisting of a challenge response. The details of this
 challenge and other parts of the handshake are described in the next
 section.

 Once the client and server have both sent their handshakes, and if
 the handshake was successful, then the data transfer part starts.
 This is a two-way communication channel where each side can,
 independently from the other, send data at will.

 Data is sent in the form of UTF-8 text. Each frame of data starts
 with a 0x00 byte and ends with a 0xFF byte, with the UTF-8 text in
 between.

 The WebSocket protocol uses this framing so that specifications that
 use the WebSocket protocol can expose such connections using an
 event-based mechanism instead of requiring users of those
 specifications to implement buffering and piecing together of
 messages manually.

 To close the connection cleanly, a frame consisting of just a 0xFF
 byte followed by a 0x00 byte is sent from one peer to ask that the
 other peer close the connection.

 The protocol is designed to support other frame types in future.
 Instead of the 0x00 and 0xFF bytes, other bytes might in future be
 defined. Frames denoted by bytes that do not have the high bit set
 (0x00 to 0x7F) are treated as a stream of bytes terminated by 0xFF.
 Frames denoted by bytes that have the high bit set (0x80 to 0xFF)
 have a leading length indicator, which is encoded as a series of
 7-bit bytes stored in octets with the 8th bit being set for all but
 the last byte. The remainder of the frame is then as much data as
 was specified. (The closing handshake contains no data and therefore
 has a length byte of 0x00.)

 This wire format for the data transfer part is described by the
 following non-normative ABNF, which is given in two alternative
 forms: the first describing the wire format as allowed by this
 specification, and the second describing how an arbitrary bytestream
 would be parsed. [RFC5234]

Hickson Expires November 24, 2010 [Page 6]

https://tools.ietf.org/pdf/rfc5234

Internet-Draft The WebSocket protocol May 2010

 ; the wire protocol as allowed by this specification
 frames = *frame
 frame = text-frame / closing-frame
 text-frame = %x00 *(UTF8-char) %xFF
 closing-frame = %xFF %x00

 ; the wire protocol including error-handling and forward-compatible parsing rules
 frames = *frame
 frame = text-frame / binary-frame
 text-frame = (%x00-7F) *(%x00-FE) %xFF
 binary-frame = (%x80-FF) length < as many bytes as given by the length >
 length = *(%x80-FF) (%x00-7F)

 The UTF8-char rule is defined in the UTF-8 specification. [RFC3629]

 NOTE: The above ABNF is intended for a binary octet environment.

 !!! WARNING: At this time, the WebSocket protocol cannot be used to
 send binary data. Using any of the frame types other than 0x00 and
 0xFF is invalid. All other frame types are reserved for future use
 by future versions of this protocol.

 The following diagram summarises the protocol:

 Handshake
 |
 V
 Frame type byte <--------------------------------------.
 | | |
 | ‘--> (0x00 to 0x7F) --> Data... --> 0xFF -->-+
 | |
 ‘--> (0x80 to 0xFE) --> Length --> Data... ------->-’

1.3 . Opening handshake

 This section is non-normative.

 The opening handshake is intended to be compatible with HTTP-based
 server-side software, so that a single port can be used by both HTTP
 clients talking to that server and WebSocket clients talking to that
 server. To this end, the WebSocket client’s handshake appears to
 HTTP servers to be a regular GET request with an Upgrade offer:

 GET / HTTP/1.1
 Upgrade: WebSocket
 Connection: Upgrade

Hickson Expires November 24, 2010 [Page 7]

https://tools.ietf.org/pdf/rfc3629

Internet-Draft The WebSocket protocol May 2010

 Fields in the handshake are sent by the client in a random order; the
 order is not meaningful.

 Additional fields are used to select options in the WebSocket
 protocol. The only options available in this version are the
 subprotocol selector, |Sec-WebSocket-Protocol|, and |Cookie|, which
 can used for sending cookies to the server (e.g. as an authentication
 mechanism). The |Sec-WebSocket-Protocol| field takes an arbitrary
 string:

 Sec-WebSocket-Protocol: chat

 This field indicates the subprotocol (the application-level protocol
 layered over the WebSocket protocol) that the client intends to use.
 The server echoes this field in its handshake to indicate that it
 supports that subprotocol.

 The other fields in the handshake are all security-related. The
 |Host| field is used to protect against DNS rebinding attacks and to
 allow multiple domains to be served from one IP address.

 Host: example.com

 The server includes the hostname in the |Sec-WebSocket-Location|
 field of its handshake, so that both the client and the server can
 verify that they agree on which host is in use.

 The |Origin| field is used to protect against unauthorized cross-
 origin use of a WebSocket server by scripts using the |WebSocket| API
 in a Web browser. The server specifies which origin it is willing to
 receive requests from by including a |Sec-WebSocket-Origin| field
 with that origin. If multiple origins are authorized, the server
 echoes the value in the |Origin| field of the client’s handshake.

 Origin: http://example.com

 Finally, the server has to prove to the client that it received the
 client’s WebSocket handshake, so that the server doesn’t accept
 connections that are not WebSocket connections. This prevents an
 attacker from tricking a WebSocket server by sending it carefully-
 crafted packets using |XMLHttpRequest| or a |form| submission.

 To prove that the handshake was received, the server has to take
 three pieces of information and combine them to form a response. The
 first two pieces of information come from the |Sec-WebSocket-Key1|
 and |Sec-WebSocket-Key2| fields in the client handshake:

Hickson Expires November 24, 2010 [Page 8]

Internet-Draft The WebSocket protocol May 2010

 Sec-WebSocket-Key1: 18x 6]8vM;54 *(5: { U1]8 z [8
 Sec-WebSocket-Key2: 1_ tx7X d < nw 334J702) 7]o}‘ 0

 For each of these fields, the server has to take the digits from the
 value to obtain a number (in this case 1868545188 and 1733470270
 respectively), then divide that number by the number of spaces
 characters in the value (in this case 12 and 10) to obtain a 32-bit
 number (155712099 and 173347027). These two resulting numbers are
 then used in the server handshake, as described below.

 The counting of spaces is intended to make it impossible to smuggle
 this field into the resource name; making this even harder is the
 presence of _two_ such fields, and the use of a newline as the only
 reliable indicator that the end of the key has been reached. The use
 of random characters interspersed with the spaces and the numbers
 ensures that the implementor actually looks for spaces and newlines,
 instead of being treating any character like a space, which would
 make it again easy to smuggle the fields into the path and trick the
 server. Finally, _dividing_ by this number of spaces is intended to
 make sure that even the most naive of implementations will check for
 spaces, since if ther server does not verify that there are some
 spaces, the server will try to divide by zero, which is usually fatal
 (a correct handshake will always have at least one space).

 The third piece of information is given after the fields, in the last
 eight bytes of the handshake, expressed here as they would be seen if
 interpreted as ASCII:

 Tm[K T2u

 The concatenation of the number obtained from processing the |Sec-
 WebSocket-Key1| field, expressed as a big-endian 32 bit number, the
 number obtained from processing the |Sec-WebSocket-Key2| field, again
 expressed as a big-endian 32 bit number, and finally the eight bytes
 at the end of the handshake, form a 128 bit string whose MD5 sum is
 then used by the server to prove that it read the handshake.

 The handshake from the server is much simpler than the client
 handshake. The first line is an HTTP Status-Line, with the status
 code 101 (the HTTP version and reason phrase aren’t important):

 HTTP/1.1 101 WebSocket Protocol Handshake

 The fields follow. Two of the fields are just for compatibility with
 HTTP:

Hickson Expires November 24, 2010 [Page 9]

Internet-Draft The WebSocket protocol May 2010

 Upgrade: WebSocket
 Connection: Upgrade

 Two of the fields are part of the security model described above,
 echoing the origin and stating the exact host, port, resource name,
 and whether the connection is expected to be encrypted:

 Sec-WebSocket-Origin: http://example.com
 Sec-WebSocket-Location: ws://example.com/

 These fields are checked by the Web browser when it is acting as a
 |WebSocket| client for scripted pages. A server that only handles
 one origin and only serves one resource can therefore just return
 hard-coded values and does not need to parse the client’s handshake
 to verify the correctness of the values.

 Option fields can also be included. In this version of the protocol,
 the main option field is |Sec-WebSocket-Protocol|, which indicates
 the subprotocol that the server speaks. Web browsers verify that the
 server included the same value as was specified in the |WebSocket|
 constructor, so a server that speaks multiple subprotocols has to
 make sure it selects one based on the client’s handshake and
 specifies the right one in its handshake.

 Sec-WebSocket-Protocol: chat

 The server can also set cookie-related option fields to _set_
 cookies, as in HTTP.

 After the fields, the server sends the aforementioned MD5 sum, a 16
 byte (128 bit) value, shown here as if interpreted as ASCII:

 fQJ,fN/4F4!~K~MH

 This value depends on what the client sends, as described above. If
 it doesn’t match what the client is expecting, the client would
 disconnect.

 Having part of the handshake appear after the fields ensures that
 both the server and the client verify that the connection is not
 being interrupted by an HTTP intermediary such as a man-in-the-middle
 cache or proxy.

1.4 . Closing handshake

 This section is non-normative.

 The closing handshake is far simpler than the opening handshake.

Hickson Expires November 24, 2010 [Page 10]

Internet-Draft The WebSocket protocol May 2010

 Either peer can send a 0xFF frame with length 0x00 to begin the
 closing handshake. Upon receiving a 0xFF frame, the other peer sends
 an identical 0xFF frame in acknowledgement, if it hasn’t already sent
 one. Upon receiving _that_ 0xFF frame, the first peer then closes
 the connection, safe in the knowledge that no further data is
 forthcoming.

 After sending a 0xFF frame, a peer does not send any further data;
 after receiving a 0xFF frame, a peer discards any further data
 received.

 It is safe for both peers to initiate this handshake simultaneously.

 The closing handshake is intended to replace the TCP closing
 handshake (FIN/ACK), on the basis that the TCP closing handshake is
 not always reliable end-to-end, especially in the presence of man-in-
 the-middle proxies and other intermediaries.

1.5 . Design philosophy

 This section is non-normative.

 The WebSocket protocol is designed on the principle that there should
 be minimal framing (the only framing that exists is to make the
 protocol frame-based instead of stream-based, and to support a
 distinction between Unicode text and binary frames). It is expected
 that metadata would be layered on top of WebSocket by the application
 layer, in the same way that metadata is layered on top of TCP by the
 application layer (HTTP).

 Conceptually, WebSocket is really just a layer on top of TCP that
 adds a Web "origin"-based security model for browsers; adds an
 addressing and protocol naming mechanism to support multiple services
 on one port and multiple host names on one IP address; layers a
 framing mechanism on top of TCP to get back to the IP packet
 mechanism that TCP is built on, but without length limits; and
 reimplements the closing handshake in-band. Other than that, it adds
 nothing. Basically it is intended to be as close to just exposing
 raw TCP to script as possible given the constraints of the Web. It’s
 also designed in such a way that its servers can share a port with
 HTTP servers, by having its handshake be a valid HTTP Upgrade
 handshake also.

 The protocol is intended to be extensible; future versions will
 likely introduce a mechanism to compress data and might support
 sending binary data.

Hickson Expires November 24, 2010 [Page 11]

Internet-Draft The WebSocket protocol May 2010

1.6 . Security model

 This section is non-normative.

 The WebSocket protocol uses the origin model used by Web browsers to
 restrict which Web pages can contact a WebSocket server when the
 WebSocket protocol is used from a Web page. Naturally, when the
 WebSocket protocol is used by a dedicated client directly (i.e. not
 from a Web page through a Web browser), the origin model is not
 useful, as the client can provide any arbitrary origin string.

 This protocol is intended to fail to establish a connection with
 servers of pre-existing protocols like SMTP or HTTP, while allowing
 HTTP servers to opt-in to supporting this protocol if desired. This
 is achieved by having a strict and elaborate handshake, and by
 limiting the data that can be inserted into the connection before the
 handshake is finished (thus limiting how much the server can be
 influenced).

 It is similarly intended to fail to establish a connection when data
 from other protocols, especially HTTP, is sent to a WebSocket server,
 for example as might happen if an HTML |form| were submitted to a
 WebSocket server. This is primarily achieved by requiring that the
 server prove that it read the handshake, which it can only do if the
 handshake contains the appropriate parts which themselves can only be
 sent by a WebSocket handshake; in particular, fields starting with
 |Sec-| cannot be set by an attacker from a Web browser, even when
 using |XMLHttpRequest|.

1.7 . Relationship to TCP and HTTP

 This section is non-normative.

 The WebSocket protocol is an independent TCP-based protocol. Its
 only relationship to HTTP is that its handshake is interpreted by
 HTTP servers as an Upgrade request.

 Based on the expert recommendation of the IANA, the WebSocket
 protocol by default uses port 80 for regular WebSocket connections
 and port 443 for WebSocket connections tunneled over TLS.

1.8 . Establishing a connection

 This section is non-normative.

 There are several options for establishing a WebSocket connection.

 On the face of it, the simplest method would seem to be to use port

Hickson Expires November 24, 2010 [Page 12]

Internet-Draft The WebSocket protocol May 2010

 80 to get a direct connection to a WebSocket server. Port 80
 traffic, however, will often be intercepted by man-in-the-middle HTTP
 proxies, which can lead to the connection failing to be established.

 The most reliable method, therefore, is to use TLS encryption and
 port 443 to connect directly to a WebSocket server. This has the
 advantage of being more secure; however, TLS encryption can be
 computationally expensive.

 When a connection is to be made to a port that is shared by an HTTP
 server (a situation that is quite likely to occur with traffic to
 ports 80 and 443), the connection will appear to the HTTP server to
 be a regular GET request with an Upgrade offer. In relatively simple
 setups with just one IP address and a single server for all traffic
 to a single hostname, this might allow a practical way for systems
 based on the WebSocket protocol to be deployed. In more elaborate
 setups (e.g. with load balancers and multiple servers), a dedicated
 set of hosts for WebSocket connections separate from the HTTP servers
 is probably easier to manage.

1.9 . Subprotocols using the WebSocket protocol

 This section is non-normative.

 The client can request that the server use a specific subprotocol by
 including the |Sec-Websocket-Protocol| field in its handshake. If it
 is specified, the server needs to include the same field and value in
 its response for the connection to be established.

 These subprotocol names do not need to be registered, but if a
 subprotocol is intended to be implemented by multiple independent
 WebSocket servers, potential clashes with the names of subprotocols
 defined independently can be avoided by using names that contain the
 domain name of the subprotocol’s originator. For example, if Example
 Corporation were to create a Chat subprotocol to be implemented by
 many servers around the Web, they could name it "chat.example.com".
 If the Example Organisation called their competing subprotocol
 "example.org’s chat protocol", then the two subprotocols could be
 implemented by servers simultaneously, with the server dynamically
 selecting which subprotocol to use based on the value sent by the
 client.

 Subprotocols can be versioned in backwards-incompatible ways by
 changing the subprotocol name, eg. going from "bookings.example.net"
 to "bookings.example.net2". These subprotocols would be considered
 completely separate by WebSocket clients. Backwards-compatible
 versioning can be implemented by reusing the same subprotocol string
 but carefully designing the actual subprotocol to support this kind

Hickson Expires November 24, 2010 [Page 13]

Internet-Draft The WebSocket protocol May 2010

 of extensibility.

Hickson Expires November 24, 2010 [Page 14]

Internet-Draft The WebSocket protocol May 2010

2. Conformance requirements

 All diagrams, examples, and notes in this specification are non-
 normative, as are all sections explicitly marked non-normative.
 Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this
 document are to be interpreted as described in RFC2119. For
 readability, these words do not appear in all uppercase letters in
 this specification. [RFC2119]

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("must", "should", "may", etc) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps may
 be implemented in any manner, so long as the end result is
 equivalent. (In particular, the algorithms defined in this
 specification are intended to be easy to follow, and not intended to
 be performant.)

 Implementations may impose implementation-specific limits on
 otherwise unconstrained inputs, e.g. to prevent denial of service
 attacks, to guard against running out of memory, or to work around
 platform-specific limitations.

 The conformance classes defined by this specification are user agents
 and servers.

2.1 . Terminology

 Converting a string to ASCII lowercase means replacing all
 characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER
 A to LATIN CAPITAL LETTER Z) with the corresponding characters in the
 range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL
 LETTER Z).

 Comparing two strings in an *ASCII case-insensitive* manner means
 comparing them exactly, code point for code point, except that the
 characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER
 A to LATIN CAPITAL LETTER Z) and the corresponding characters in the
 range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL
 LETTER Z) are considered to also match.

 The term "URL" is used in this section in a manner consistent with
 the terminology used in HTML, namely, to denote a string that might

Hickson Expires November 24, 2010 [Page 15]

https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119

Internet-Draft The WebSocket protocol May 2010

 or might not be a valid URI or IRI and to which certain error
 handling behaviors will be applied when the string is parsed. [HTML]

 When an implementation is required to _send_ data as part of the
 WebSocket protocol, the implementation may delay the actual
 transmission arbitrarily, e.g. buffering data so as to send fewer IP
 packets.

Hickson Expires November 24, 2010 [Page 16]

Internet-Draft The WebSocket protocol May 2010

3. WebSocket URLs

3.1 . Parsing WebSocket URLs

 The steps to *parse a WebSocket URL’s components* from a string /url/
 are as follows. These steps return either a /host/, a /port/, a
 /resource name/, and a /secure/ flag, or they fail.

 1. If the /url/ string is not an absolute URL, then fail this
 algorithm. [WEBADDRESSES]

 2. Resolve the /url/ string using the resolve a Web address
 algorithm defined by the Web addresses specification, with the
 URL character encoding set to UTF-8. [WEBADDRESSES] [RFC3629]

 NOTE: It doesn’t matter what it is resolved relative to, since
 we already know it is an absolute URL at this point.

 3. If /url/ does not have a <scheme> component whose value, when
 converted to ASCII lowercase, is either "ws" or "wss", then fail
 this algorithm.

 4. If /url/ has a <fragment> component, then fail this algorithm.

 5. If the <scheme> component of /url/ is "ws", set /secure/ to
 false; otherwise, the <scheme> component is "wss", set /secure/
 to true.

 6. Let /host/ be the value of the <host> component of /url/,
 converted to ASCII lowercase.

 7. If /url/ has a <port> component, then let /port/ be that
 component’s value; otherwise, there is no explicit /port/.

 8. If there is no explicit /port/, then: if /secure/ is false, let
 /port/ be 80, otherwise let /port/ be 443.

 9. Let /resource name/ be the value of the <path> component (which
 might be empty) of /url/.

 10. If /resource name/ is the empty string, set it to a single
 character U+002F SOLIDUS (/).

 11. If /url/ has a <query> component, then append a single U+003F
 QUESTION MARK character (?) to /resource name/, followed by the
 value of the <query> component.

Hickson Expires November 24, 2010 [Page 17]

https://tools.ietf.org/pdf/rfc3629

Internet-Draft The WebSocket protocol May 2010

 12. Return /host/, /port/, /resource name/, and /secure/.

3.2 . Constructing WebSocket URLs

 The steps to *construct a WebSocket URL* from a /host/, a /port/, a
 /resource name/, and a /secure/ flag, are as follows:

 1. Let /url/ be the empty string.

 2. If the /secure/ flag is false, then append the string "ws://" to
 /url/. Otherwise, append the string "wss://" to /url/.

 3. Append /host/ to /url/.

 4. If the /secure/ flag is false and port is not 80, or if the
 /secure/ flag is true and port is not 443, then append the string
 ":" followed by /port/ to /url/.

 5. Append /resource name/ to /url/.

 6. Return /url/.

Hickson Expires November 24, 2010 [Page 18]

Internet-Draft The WebSocket protocol May 2010

4. Client-side requirements

 This section only applies to user agents, not to servers.

 NOTE: This specification doesn’t currently define a limit to the
 number of simultaneous connections that a client can establish to a
 server.

4.1 . Opening handshake

 When the user agent is to *establish a WebSocket connection* to a
 host /host/, on a port /port/, from an origin whose ASCII
 serialization is /origin/, with a flag /secure/, with a string giving
 a /resource name/, and optionally with a string giving a /protocol/,
 it must run the following steps. The /host/ must be ASCII-only (i.e.
 it must have been punycode-encoded already if necessary). The
 /origin/ must not contain characters in the range U+0041 to U+005A
 (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z). The
 /resource name/ and /protocol/ strings must be non-empty strings of
 ASCII characters in the range U+0020 to U+007E. The /resource name/
 string must start with a U+002F SOLIDUS character (/) and must not
 contain a U+0020 SPACE character. [ORIGIN]

 1. If the user agent already has a WebSocket connection to the
 remote host (IP address) identified by /host/, even if known by
 another name, wait until that connection has been established or
 for that connection to have failed. If multiple connections to
 the same IP address are attempted simultaneously, the user agent
 must serialize them so that there is no more than one connection
 at a time running through the following steps.

 NOTE: This makes it harder for a script to perform a denial of
 service attack by just opening a large number of WebSocket
 connections to a remote host.

 NOTE: There is no limit to the number of established WebSocket
 connections a user agent can have with a single remote host.
 Servers can refuse to connect users with an excessive number of
 connections, or disconnect resource-hogging users when suffering
 high load.

 2. _Connect_: If the user agent is configured to use a proxy when
 using the WebSocket protocol to connect to host /host/ and/or
 port /port/, then connect to that proxy and ask it to open a TCP
 connection to the host given by /host/ and the port given by
 /port/.

Hickson Expires November 24, 2010 [Page 19]

Internet-Draft The WebSocket protocol May 2010

 EXAMPLE: For example, if the user agent uses an HTTP proxy
 for all traffic, then if it was to try to connect to port 80
 on server example.com, it might send the following lines to
 the proxy server:

 CONNECT example.com:80 HTTP/1.1
 Host: example.com

 If there was a password, the connection might look like:

 CONNECT example.com:80 HTTP/1.1
 Host: example.com
 Proxy-authorization: Basic ZWRuYW1vZGU6bm9jYXBlcyE=

 Otherwise, if the user agent is not configured to use a proxy,
 then open a TCP connection to the host given by /host/ and the
 port given by /port/.

 NOTE: Implementations that do not expose explicit UI for
 selecting a proxy for WebSocket connections separate from other
 proxies are encouraged to use a SOCKS proxy for WebSocket
 connections, if available, or failing that, to prefer the proxy
 configured for HTTPS connections over the proxy configured for
 HTTP connections.

 For the purpose of proxy autoconfiguration scripts, the URL to
 pass the function must be constructed from /host/, /port/,
 /resource name/, and the /secure/ flag using the steps to
 construct a WebSocket URL.

 NOTE: The WebSocket protocol can be identified in proxy
 autoconfiguration scripts from the scheme ("ws:" for unencrypted
 connections and "wss:" for encrypted connections).

 3. If the connection could not be opened, then fail the WebSocket
 connection and abort these steps.

 4. If /secure/ is true, perform a TLS handshake over the
 connection. If this fails (e.g. the server’s certificate could
 not be verified), then fail the WebSocket connection and abort
 these steps. Otherwise, all further communication on this
 channel must run through the encrypted tunnel. [RFC2246]

 User agents must use the Server Name Indication extension in the
 TLS handshake. [RFC4366]

 5. Send the UTF-8 string "GET" followed by a UTF-8-encoded U+0020
 SPACE character to the remote side (the server).

Hickson Expires November 24, 2010 [Page 20]

https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc4366

Internet-Draft The WebSocket protocol May 2010

 Send the /resource name/ value, encoded as UTF-8.

 Send another UTF-8-encoded U+0020 SPACE character, followed by
 the UTF-8 string "HTTP/1.1", followed by a UTF-8-encoded U+000D
 CARRIAGE RETURN U+000A LINE FEED character pair (CRLF).

 6. Let /fields/ be an empty list of strings.

 7. Add the string "Upgrade: WebSocket" to /fields/.

 8. Add the string "Connection: Upgrade" to /fields/.

 9. Let /hostport/ be an empty string.

 10. Append the /host/ value, converted to ASCII lowercase, to
 /hostport/.

 11. If /secure/ is false, and /port/ is not 80, or if /secure/ is
 true, and /port/ is not 443, then append a U+003A COLON
 character (:) followed by the value of /port/, expressed as a
 base-ten integer, to /hostport/.

 12. Add the string consisting of the concatenation of the string
 "Host:", a U+0020 SPACE character, and /hostport/, to /fields/.

 13. Add the string consisting of the concatenation of the string
 "Origin:", a U+0020 SPACE character, and the /origin/ value, to
 /fields/.

 14. If there is no /protocol/, then skip this step.

 Otherwise, add the string consisting of the concatenation of the
 string "Sec-WebSocket-Protocol:", a U+0020 SPACE character, and
 the /protocol/ value, to /fields/.

 15. If the client has any cookies that would be relevant to a
 resource accessed over HTTP, if /secure/ is false, or HTTPS, if
 it is true, on host /host/, port /port/, with /resource name/ as
 the path (and possibly query parameters), then add to /fields/
 any HTTP headers that would be appropriate for that information.
 [RFC2616] [RFC2109] [RFC2965]

 This includes "HttpOnly" cookies (cookies with the http-only-
 flag set to true); the WebSocket protocol is not considered a
 non-HTTP API for the purpose of cookie processing.

 16. Let /spaces_1/ be a random integer from 1 to 12 inclusive.

Hickson Expires November 24, 2010 [Page 21]

https://tools.ietf.org/pdf/rfc2616
https://tools.ietf.org/pdf/rfc2109
https://tools.ietf.org/pdf/rfc2965

Internet-Draft The WebSocket protocol May 2010

 Let /spaces_2/ be a random integer from 1 to 12 inclusive.

 EXAMPLE: For example, 5 and 9.

 17. Let /max_1/ be the largest integer not greater than
 4,294,967,295 divided by /spaces_1/.

 Let /max_2/ be the largest integer not greater than
 4,294,967,295 divided by /spaces_2/.

 EXAMPLE: Continuing the example, 858,993,459 and 477,218,588.

 18. Let /number_1/ be a random integer from 0 to /max_1/ inclusive.

 Let /number_2/ be a random integer from 0 to /max_2/ inclusive.

 EXAMPLE: For example, 777,007,543 and 114,997,259.

 19. Let /product_1/ be the result of multiplying /number_1/ and
 /spaces_1/ together.

 Let /product_2/ be the result of multiplying /number_2/ and
 /spaces_2/ together.

 EXAMPLE: Continuing the example, 3,885,037,715 and
 1,034,975,331.

 20. Let /key_1/ be a string consisting of /product_1/, expressed in
 base ten using the numerals in the range U+0030 DIGIT ZERO (0)
 to U+0039 DIGIT NINE (9).

 Let /key_2/ be a string consisting of /product_2/, expressed in
 base ten using the numerals in the range U+0030 DIGIT ZERO (0)
 to U+0039 DIGIT NINE (9).

 EXAMPLE: Continuing the example, "3885037715" and "1034975331".

 21. Insert between one and twelve random characters from the ranges
 U+0021 to U+002F and U+003A to U+007E into /key_1/ at random
 positions.

 Insert between one and twelve random characters from the ranges
 U+0021 to U+002F and U+003A to U+007E into /key_2/ at random
 positions.

 NOTE: This corresponds to random printable ASCII characters
 other than the digits and the U+0020 SPACE character.

Hickson Expires November 24, 2010 [Page 22]

Internet-Draft The WebSocket protocol May 2010

 EXAMPLE: Continuing the example, this could lead to "P388O503D&
 ul7{K%gX(%715" and "1N?|kUT0or3o4I97N5-S3O31".

 22. Insert /spaces_1/ U+0020 SPACE characters into /key_1/ at random
 positions other than the start or end of the string.

 Insert /spaces_2/ U+0020 SPACE characters into /key_2/ at random
 positions other than the start or end of the string.

 EXAMPLE: Continuing the example, this could lead to "P388 O503D&
 ul7 {K%gX(%7 15" and "1 N ?|k UT0or 3o 4 I97N 5-S3O 31".

 23. Add the string consisting of the concatenation of the string
 "Sec-WebSocket-Key1:", a U+0020 SPACE character, and the /key_1/
 value, to /fields/.

 Add the string consisting of the concatenation of the string
 "Sec-WebSocket-Key2:", a U+0020 SPACE character, and the /key_2/
 value, to /fields/.

 24. For each string in /fields/, in a random order: send the string,
 encoded as UTF-8, followed by a UTF-8-encoded U+000D CARRIAGE
 RETURN U+000A LINE FEED character pair (CRLF). It is important
 that the fields be output in a random order so that servers not
 depend on the particular order used by any particular client.

 25. Send a UTF-8-encoded U+000D CARRIAGE RETURN U+000A LINE FEED
 character pair (CRLF).

 26. Let /key3/ be a string consisting of eight random bytes (or
 equivalently, a random 64 bit integer encoded in big-endian
 order).

 EXAMPLE: For example, 0x47 0x30 0x22 0x2D 0x5A 0x3F 0x47 0x58.

 27. Send /key3/ to the server.

 28. Read bytes from the server until either the connection closes,
 or a 0x0A byte is read. Let /field/ be these bytes, including
 the 0x0A byte.

 If /field/ is not at least seven bytes long, or if the last two
 bytes aren’t 0x0D and 0x0A respectively, or if it does not
 contain at least two 0x20 bytes, then fail the WebSocket
 connection and abort these steps.

 User agents may apply a timeout to this step, failing the
 WebSocket connection if the server does not send back data in a

Hickson Expires November 24, 2010 [Page 23]

Internet-Draft The WebSocket protocol May 2010

 suitable time period.

 29. Let /code/ be the substring of /field/ that starts from the byte
 after the first 0x20 byte, and ends with the byte before the
 second 0x20 byte.

 30. If /code/ is not three bytes long, or if any of the bytes in
 /code/ are not in the range 0x30 to 0x39, then fail the
 WebSocket connection and abort these steps.

 31. If /code/, interpreted as UTF-8, is "101", then move to the next
 step.

 If /code/, interpreted as UTF-8, is "407", then either close the
 connection and jump back to step 2, providing appropriate
 authentication information, or fail the WebSocket connection.
 407 is the code used by HTTP meaning "Proxy Authentication
 Required". User agents that support proxy authentication must
 interpret the response as defined by HTTP (e.g. to find and
 interpret the |Proxy-Authenticate| header).

 Otherwise, fail the WebSocket connection and abort these steps.

 32. Let /fields/ be a list of name-value pairs, initially empty.

 33. _Field_: Let /name/ and /value/ be empty byte arrays.

 34. Read a byte from the server.

 If the connection closes before this byte is received, then fail
 the WebSocket connection and abort these steps.

 Otherwise, handle the byte as described in the appropriate entry
 below:

 -> If the byte is 0x0D (ASCII CR)
 If the /name/ byte array is empty, then jump to the fields
 processing step. Otherwise, fail the WebSocket connection
 and abort these steps.

 -> If the byte is 0x0A (ASCII LF)
 Fail the WebSocket connection and abort these steps.

 -> If the byte is 0x3A (ASCII :)
 Move on to the next step.

Hickson Expires November 24, 2010 [Page 24]

Internet-Draft The WebSocket protocol May 2010

 -> If the byte is in the range 0x41 to 0x5A (ASCII A-Z)
 Append a byte whose value is the byte’s value plus 0x20 to
 the /name/ byte array and redo this step for the next byte.

 -> Otherwise
 Append the byte to the /name/ byte array and redo this step
 for the next byte.

 NOTE: This reads a field name, terminated by a colon, converting
 upper-case ASCII letters to lowercase, and aborting if a stray
 CR or LF is found.

 35. Let /count/ equal 0.

 NOTE: This is used in the next step to skip past a space
 character after the colon, if necessary.

 36. Read a byte from the server and increment /count/ by 1.

 If the connection closes before this byte is received, then fail
 the WebSocket connection and abort these steps.

 Otherwise, handle the byte as described in the appropriate entry
 below:

 -> If the byte is 0x20 (ASCII space) and /count/ equals 1
 Ignore the byte and redo this step for the next byte.

 -> If the byte is 0x0D (ASCII CR)
 Move on to the next step.

 -> If the byte is 0x0A (ASCII LF)
 Fail the WebSocket connection and abort these steps.

 -> Otherwise
 Append the byte to the /value/ byte array and redo this step
 for the next byte.

 NOTE: This reads a field value, terminated by a CRLF, skipping
 past a single space after the colon if there is one.

 37. Read a byte from the server.

 If the connection closes before this byte is received, or if the
 byte is not a 0x0A byte (ASCII LF), then fail the WebSocket
 connection and abort these steps.

 NOTE: This skips past the LF byte of the CRLF after the field.

Hickson Expires November 24, 2010 [Page 25]

Internet-Draft The WebSocket protocol May 2010

 38. Append an entry to the /fields/ list that has the name given by
 the string obtained by interpreting the /name/ byte array as a
 UTF-8 byte stream and the value given by the string obtained by
 interpreting the /value/ byte array as a UTF-8 byte stream.

 39. Return to the "Field" step above.

 40. _Fields processing_: Read a byte from the server.

 If the connection closes before this byte is received, or if the
 byte is not a 0x0A byte (ASCII LF), then fail the WebSocket
 connection and abort these steps.

 NOTE: This skips past the LF byte of the CRLF after the blank
 line after the fields.

 41. If there is not exactly one entry in the /fields/ list whose
 name is "upgrade", or if there is not exactly one entry in the
 /fields/ list whose name is "connection", or if there is not
 exactly one entry in the /fields/ list whose name is "sec-
 websocket-origin", or if there is not exactly one entry in the
 /fields/ list whose name is "sec-websocket-location", or if the
 /protocol/ was specified but there is not exactly one entry in
 the /fields/ list whose name is "sec-websocket-protocol", or if
 there are any entries in the /fields/ list whose names are the
 empty string, then fail the WebSocket connection and abort these
 steps. Otherwise, handle each entry in the /fields/ list as
 follows:

 -> If the entry’s name is "upgrade"
 If the value is not exactly equal to the string "WebSocket",
 then fail the WebSocket connection and abort these steps.

 -> If the entry’s name is "connection"
 If the value, converted to ASCII lowercase, is not exactly
 equal to the string "upgrade", then fail the WebSocket
 connection and abort these steps.

 -> If the entry’s name is "sec-websocket-origin"
 If the value is not exactly equal to /origin/, then fail the
 WebSocket connection and abort these steps. [ORIGIN]

 -> If the entry’s name is "sec-websocket-location"
 If the value is not exactly equal to a string obtained from
 the steps to construct a WebSocket URL from /host/, /port/,
 /resource name/, and the /secure/ flag, then fail the
 WebSocket connection and abort these steps.

Hickson Expires November 24, 2010 [Page 26]

Internet-Draft The WebSocket protocol May 2010

 -> If the entry’s name is "sec-websocket-protocol"
 If there was a /protocol/ specified, and the value is not
 exactly equal to /protocol/, then fail the WebSocket
 connection and abort these steps. (If no /protocol/ was
 specified, the field is ignored.)

 -> If the entry’s name is "set-cookie" or "set-cookie2" or
 another cookie-related field name
 If the relevant specification is supported by the user agent,
 handle the cookie as defined by the appropriate
 specification, with the resource being the one with the host
 /host/, the port /port/, the path (and possibly query
 parameters) /resource name/, and the scheme |http| if
 /secure/ is false and |https| if /secure/ is true. [RFC2109]
 [RFC2965]

 If the relevant specification is not supported by the user
 agent, then the field must be ignored.

 -> Any other name
 Ignore it.

 42. Let /challenge/ be the concatenation of /number_1/, expressed as
 a big-endian 32 bit integer, /number_2/, expressed as a big-
 endian 32 bit integer, and the eight bytes of /key_3/ in the
 order they were sent on the wire.

 EXAMPLE: Using the examples given earlier, this leads to the 16
 bytes 0x2E 0x50 0x31 0xB7 0x06 0xDA 0xB8 0x0B 0x47 0x30 0x22
 0x2D 0x5A 0x3F 0x47 0x58.

 43. Let /expected/ be the MD5 fingerprint of /challenge/ as a big-
 endian 128 bit string. [RFC1321]

 EXAMPLE: Using the examples given earlier, this leads to the 16
 bytes 0x30 0x73 0x74 0x33 0x52 0x6C 0x26 0x71 0x2D 0x32 0x5A
 0x55 0x5E 0x77 0x65 0x75. In ASCII, these bytes correspond to
 the string "0st3Rl&q-2ZU^weu".

 44. Read sixteen bytes from the server. Let /reply/ be those bytes.

 If the connection closes before these bytes are received, then
 fail the WebSocket connection and abort these steps.

 45. If /reply/ does not exactly equal /expected/, then fail the
 WebSocket connection and abort these steps.

Hickson Expires November 24, 2010 [Page 27]

https://tools.ietf.org/pdf/rfc2109
https://tools.ietf.org/pdf/rfc2965
https://tools.ietf.org/pdf/rfc1321

Internet-Draft The WebSocket protocol May 2010

 46. The *WebSocket connection is established*. Now the user agent
 must send and receive to and from the connection as described in
 the next section.

4.2 . Data framing

 Once a WebSocket connection is established, the user agent must run
 through the following state machine for the bytes sent by the server.
 If at any point during these steps a read is attempted but fails
 because the WebSocket connection is closed, then abort.

 1. Try to read a byte from the server. Let /frame type/ be that
 byte.

 2. Let /error/ be false.

 3. Handle the /frame type/ byte as follows:

 If the high-order bit of the /frame type/ byte is set (i.e. if
 /frame type/ _and_ed with 0x80 returns 0x80)
 Run these steps:

 1. Let /length/ be zero.

 2. _Length_: Read a byte, let /b/ be that byte.

 3. Let /b_v/ be an integer corresponding to the low 7 bits of
 /b/ (the value you would get by _and_ing /b/ with 0x7F).

 4. Multiply /length/ by 128, add /b_v/ to that result, and
 store the final result in /length/.

 5. If the high-order bit of /b/ is set (i.e. if /b/ _and_ed
 with 0x80 returns 0x80), then return to the step above
 labeled _length_.

 6. Read /length/ bytes.

 !!! WARNING: It is possible for a server to (innocently
 or maliciously) send frames with lengths greater than
 2**(31) or 2**(32) bytes, overflowing a signed or unsigned
 32bit integer. User agents may therefore impose
 implementation-specific limits on the lengths of invalid
 frames that they will skip; even supporting frames 2GB in
 length is considered, at the time of writing, as going
 well above and beyond the call of duty.

Hickson Expires November 24, 2010 [Page 28]

Internet-Draft The WebSocket protocol May 2010

 7. Discard the read bytes.

 8. If the /frame type/ is 0xFF and the /length/ was 0, then
 run the following substeps:

 1. If the WebSocket closing handshake has not yet
 started, then start the WebSocket closing handshake.

 2. Wait until either the WebSocket closing handshake has
 started or the WebSocket connection is closed.

 3. If the WebSocket connection is not already closed,
 then close the WebSocket connection: *The WebSocket
 closing handshake has finished*. (If the connection
 closes before this happens, then the closing handshake
 doesn’t finish.)

 4. Abort these steps. Any data on the connection after
 the 0xFF frame is discarded.

 Otherwise, let /error/ be true.

 If the high-order bit of the /frame type/ byte is _not_ set (i.e.
 if /frame type/ _and_ed with 0x80 returns 0x00)
 Run these steps:

 1. Let /raw data/ be an empty byte array.

 2. _Data_: Read a byte, let /b/ be that byte.

 3. If /b/ is not 0xFF, then append /b/ to /raw data/ and
 return to the previous step (labeled _data_).

 4. Interpret /raw data/ as a UTF-8 string, and store that
 string in /data/.

 5. If /frame type/ is 0x00, then *a WebSocket message has
 been received* with text /data/. Otherwise, discard the
 data and let /error/ be true.

 4. If /error/ is true, then *a WebSocket error has been detected*.

 5. Return to the first step to read the next byte.

 If the user agent is faced with content that is too large to be
 handled appropriately, runs out of resources for buffering incoming
 data, or hits an artificial resource limit intended to avoid resource
 starvation, then it must fail the WebSocket connection.

Hickson Expires November 24, 2010 [Page 29]

Internet-Draft The WebSocket protocol May 2010

 Once a WebSocket connection is established, but before the WebSocket
 closing handshake has started, the user agent must use the following
 steps to *send /data/ using the WebSocket*:

 1. Send a 0x00 byte to the server.

 2. Encode /data/ using UTF-8 and send the resulting byte stream to
 the server.

 3. Send a 0xFF byte to the server.

 Once the WebSocket closing handshake has started, the user agent must
 not send any further data on the connection.

 Once a WebSocket connection is established, the user agent must use
 the following steps to *start the WebSocket closing handshake*.
 These steps must be run asynchronously relative to whatever algorithm
 invoked this one.

 1. If the WebSocket closing handshake has started, then abort these
 steps.

 2. Send a 0xFF byte to the server.

 3. Send a 0x00 byte to the server.

 4. *The WebSocket closing handshake has started*.

 5. Wait a user-agent-determined length of time, or until the
 WebSocket connection is closed.

 6. If the WebSocket connection is not already closed, then close the
 WebSocket connection. (If this happens, then the closing
 handshake doesn’t finish.)

 NOTE: The closing handshake finishes once the server returns the 0xFF
 packet, as described above.

 If at any point there is a fatal problem with sending data to the
 server, the user agent must fail the WebSocket connection.

4.3 . Handling errors in UTF-8 from the server

 When a client is to interpret a byte stream as UTF-8 but finds that
 the byte stream is not in fact a valid UTF-8 stream, then any bytes
 or sequences of bytes that are not valid UTF-8 sequences must be

Hickson Expires November 24, 2010 [Page 30]

Internet-Draft The WebSocket protocol May 2010

 interpreted as a U+FFFD REPLACEMENT CHARACTER.

Hickson Expires November 24, 2010 [Page 31]

Internet-Draft The WebSocket protocol May 2010

5. Server-side requirements

 This section only applies to servers.

5.1 . Reading the client’s opening handshake

 When a client starts a WebSocket connection, it sends its part of the
 opening handshake. The server must parse at least part of this
 handshake in order to obtain the necessary information to generate
 the server part of the handshake.

 The client handshake consists of the following parts. If the server,
 while reading the handshake, finds that the client did not send a
 handshake that matches the description below, the server should abort
 the WebSocket connection.

 1. The three-character UTF-8 string "GET".

 2. A UTF-8-encoded U+0020 SPACE character (0x20 byte).

 3. A string consisting of all the bytes up to the next UTF-8-encoded
 U+0020 SPACE character (0x20 byte). The result of decoding this
 string as a UTF-8 string is the name of the resource requested by
 the server. If the server only supports one resource, then this
 can safely be ignored; the client verifies that the right
 resource is supported based on the information included in the
 server’s own handshake. The resource name will begin with U+002F
 SOLIDUS character (/) and will only include characters in the
 range U+0021 to U+007E.

 4. A string of bytes terminated by a UTF-8-encoded U+000D CARRIAGE
 RETURN U+000A LINE FEED character pair (CRLF). All the
 characters from the second 0x20 byte up to the first 0x0D 0x0A
 byte pair in the data from the client can be safely ignored. (It
 will probably be the string "HTTP/1.1".)

 5. A series of fields.

 Each field is terminated by a UTF-8-encoded U+000D CARRIAGE
 RETURN U+000A LINE FEED character pair (CRLF). The end of the
 fields is denoted by the terminating CRLF pair being followed
 immediately by another CRLF pair.

 NOTE: In other words, the fields start with the first 0x0D 0x0A
 byte pair, end with the first 0x0D 0x0A 0x0D 0x0A byte sequence,
 and are separate from each other by 0x0D 0x0A byte pairs.

 The fields are encoded as UTF-8.

Hickson Expires November 24, 2010 [Page 32]

Internet-Draft The WebSocket protocol May 2010

 Each field consists of a name, consisting of one or more
 characters in the ranges U+0021 to U+0039 and U+003B to U+007E,
 followed by a U+003A COLON character (:) and a U+0020 SPACE
 character, followed by zero or more characters forming the value.

 The expected field names, the meaning of their corresponding
 values, and the processing servers are required to apply to those
 fields, are described below, after the description of the client
 handshake.

 6. After the first 0x0D 0x0A 0x0D 0x0A byte sequence, indicating the
 end of the fields, the client sends eight random bytes. These
 are used in constructing the server handshake.

 The expected field names, and the meaning of their corresponding
 values, are as follows. Field names must be compared in an ASCII
 case-insensitive manner.

 |Upgrade|
 Invariant part of the handshake. Will always have a value that is
 an ASCII case-insensitive match for the string "WebSocket".

 Can be safely ignored, though the server should abort the
 WebSocket connection if this field is absent or has a different
 value, to avoid vulnerability to cross-protocol attacks.

 |Connection|
 Invariant part of the handshake. Will always have a value that is
 an ASCII case-insensitive match for the string "Upgrade".

 Can be safely ignored, though the server should abort the
 WebSocket connection if this field is absent or has a different
 value, to avoid vulnerability to cross-protocol attacks.

 |Host|
 The value gives the hostname that the client intended to use when
 opening the WebSocket. It would be of interest in particular to
 virtual hosting environments, where one server might serve
 multiple hosts, and might therefore want to return different data.

 Can be safely ignored, though the server should abort the
 WebSocket connection if this field is absent or has a value that
 does not match the server’s host name, to avoid vulnerability to
 cross-protocol attacks and DNS rebinding attacks.

Hickson Expires November 24, 2010 [Page 33]

Internet-Draft The WebSocket protocol May 2010

 |Origin|
 The value gives the scheme, hostname, and port (if it’s not the
 default port for the given scheme) of the page that asked the
 client to open the WebSocket. It would be interesting if the
 server’s operator had deals with operators of other sites, since
 the server could then decide how to respond (or indeed, _whether_
 to respond) based on which site was requesting a connection.
 [ORIGIN]

 Can be safely ignored, though the server should abort the
 WebSocket connection if this field is absent or has a value that
 does not match one of the origins the server is expecting to
 communicate with, to avoid vulnerability to cross-protocol attacks
 and cross-site scripting attacks.

 |Sec-WebSocket-Protocol|
 The value gives the name of a subprotocol that the client is
 intending to select. It would be interesting if the server
 supports multiple protocols or protocol versions.

 Can be safely ignored, though the server may abort the WebSocket
 connection if the field is absent but the conventions for
 communicating with the server are such that the field is expected;
 and the server should abort the WebSocket connection if the field
 has a value that does not match one of the subprotocols that the
 server supports, to avoid integrity errors once the connection is
 established.

 |Sec-WebSocket-Key1|

 |Sec-WebSocket-Key2|
 The values provide the information required for computing the
 server’s handshake, as described in the next section.

 Other fields
 Other fields can be used, such as "Cookie", for authentication
 purposes. Their semantics are equivalent to the semantics of the
 HTTP headers with the same names.

 Unrecognized fields can be safely ignored, and are probably either
 the result of intermediaries injecting fields unrelated to the
 operation of the WebSocket protocol, or clients that support future
 versions of the protocol offering options that the server doesn’t
 support.

Hickson Expires November 24, 2010 [Page 34]

Internet-Draft The WebSocket protocol May 2010

5.2 . Sending the server’s opening handshake

 When a client establishes a WebSocket connection to a server, the
 server must run the following steps.

 1. If the server supports encryption, perform a TLS handshake over
 the connection. If this fails (e.g. the client indicated a host
 name in the extended client hello "server_name" extension that
 the server does not host), then close the connection; otherwise,
 all further communication for the connection (including the
 server handshake) must run through the encrypted tunnel.
 [RFC2246]

 2. Establish the following information:

 /host/
 The host name or IP address of the WebSocket server, as it is
 to be addressed by clients. The host name must be punycode-
 encoded if necessary. If the server can respond to requests
 to multiple hosts (e.g. in a virtual hosting environment),
 then the value should be derived from the client’s handshake,
 specifically from the "Host" field.

 /port/
 The port number on which the server expected and/or received
 the connection.

 /resource name/
 An identifier for the service provided by the server. If the
 server provides multiple services, then the value should be
 derived from the resource name given in the client’s
 handshake.

 /secure flag/
 True if the connection is encrypted or if the server expected
 it to be encrypted; false otherwise.

 /origin/
 The ASCII serialization of the origin that the server is
 willing to communicate with, converted to ASCII lowercase.
 If the server can respond to requests from multiple origins
 (or indeed, all origins), then the value should be derived
 from the client’s handshake, specifically from the "Origin"
 field. [ORIGIN]

Hickson Expires November 24, 2010 [Page 35]

https://tools.ietf.org/pdf/rfc2246

Internet-Draft The WebSocket protocol May 2010

 /subprotocol/
 Either null, or a string representing the subprotocol the
 server is ready to use. If the server supports multiple
 subprotocols, then the value should be derived from the
 client’s handshake, specifically from the "Sec-WebSocket-
 Protocol" field. The absence of such a field is equivalent
 to the null value. The empty string is not the same as the
 null value for these purposes.

 /key_1/
 The value of the "Sec-WebSocket-Key1" field in the client’s
 handshake.

 /key_2/
 The value of the "Sec-WebSocket-Key2" field in the client’s
 handshake.

 /key_3/
 The eight random bytes sent after the first 0x0D 0x0A 0x0D
 0x0A sequence in the client’s handshake.

 3. Let /location/ be the string that results from constructing a
 WebSocket URL from /host/, /port/, /resource name/, and /secure
 flag/.

 4. Let /key-number_1/ be the digits (characters in the range U+0030
 DIGIT ZERO (0) to U+0039 DIGIT NINE (9)) in /key_1/, interpreted
 as a base ten integer, ignoring all other characters in /key_1/.

 Let /key-number_2/ be the digits (characters in the range U+0030
 DIGIT ZERO (0) to U+0039 DIGIT NINE (9)) in /key_2/, interpreted
 as a base ten integer, ignoring all other characters in /key_2/.

 EXAMPLE: For example, assume that the client handshake was:

 GET / HTTP/1.1
 Connection: Upgrade
 Host: example.com
 Upgrade: WebSocket
 Sec-WebSocket-Key1: 3e6b263 4 17 80
 Origin: http://example.com
 Sec-WebSocket-Key2: 17 9 G‘ZD9 2 2b 7X 3 /r90

 WjN}|M(6

 The /key-number_1/ would be the number 3,626,341,780, and the
 /key-number_2/ would be the number 1,799,227,390.

Hickson Expires November 24, 2010 [Page 36]

Internet-Draft The WebSocket protocol May 2010

 In this example, incidentally, /key_3/ is "WjN}|M(6", or 0x57
 0x6A 0x4E 0x7D 0x7C 0x4D 0x28 0x36.

 5. Let /spaces_1/ be the number of U+0020 SPACE characters in
 /key_1/.

 Let /spaces_2/ be the number of U+0020 SPACE characters in
 /key_2/.

 If either /spaces_1/ or /spaces_2/ is zero, then abort the
 WebSocket connection. This is a symptom of a cross-protocol
 attack.

 EXAMPLE: In the example above, /spaces_1/ would be 4 and
 /spaces_2/ would be 10.

 6. If /key-number_1/ is not an integral multiple of /spaces_1/,
 then abort the WebSocket connection.

 If /key-number_2/ is not an integral multiple of /spaces_2/,
 then abort the WebSocket connection.

 NOTE: This can only happen if the client is not a conforming
 WebSocket client.

 7. Let /part_1/ be /key-number_1/ divided by /spaces_1/.

 Let /part_2/ be /key-number_2/ divided by /spaces_2/.

 EXAMPLE: In the example above, /part_1/ would be 906,585,445 and
 /part_2/ would be 179,922,739.

 8. Let /challenge/ be the concatenation of /part_1/, expressed as a
 big-endian 32 bit integer, /part_2/, expressed as a big-endian
 32 bit integer, and the eight bytes of /key_3/ in the order they
 were sent on the wire.

 EXAMPLE: In the example above, this would be the 16 bytes 0x36
 0x09 0x65 0x65 0x0A 0xB9 0x67 0x33 0x57 0x6A 0x4E 0x7D 0x7C 0x4D
 0x28 0x36.

 9. Let /response/ be the MD5 fingerprint of /challenge/ as a big-
 endian 128 bit string. [RFC1321]

 EXAMPLE: In the example above, this would be the 16 bytes 0x6E
 0x60 0x39 0x65 0x42 0x6B 0x39 0x7A 0x24 0x52 0x38 0x70 0x4F 0x74
 0x56 0x62, or "n‘9eBk9z$R8pOtVb" in ASCII.

Hickson Expires November 24, 2010 [Page 37]

https://tools.ietf.org/pdf/rfc1321

Internet-Draft The WebSocket protocol May 2010

 10. Send the following line, terminated by the two characters U+000D
 CARRIAGE RETURN and U+000A LINE FEED (CRLF) and encoded as
 UTF-8, to the client:

 HTTP/1.1 101 WebSocket Protocol Handshake

 This line may be sent differently if necessary, but must match
 the Status-Line production defined in the HTTP specification,
 with the Status-Code having the value 101.

 11. Send the following fields to the client. Each field must be
 sent as a line consisting of the field name, which must be an
 ASCII case-insensitive match for the field name in the list
 below, followed by a U+003A COLON character (:) and a U+0020
 SPACE character, followed by the field value as specified in the
 list below, followed by the two characters U+000D CARRIAGE
 RETURN and U+000A LINE FEED (CRLF). The lines must be encoded
 as UTF-8. The lines may be sent in any order.

 |Upgrade|
 The value must be the string "WebSocket".

 |Connection|
 The value must be the string "Upgrade".

 |Sec-WebSocket-Location|
 The value must be /location/

 |Sec-WebSocket-Origin|
 The value must be /origin/

 |Sec-WebSocket-Protocol|
 This field must be included if /subprotocol/ is not null, and
 must not be included if /subprotocol/ is null.

 If included, the value must be /subprotocol/

 Optionally, include "Set-Cookie", "Set-Cookie2", or other
 cookie-related fields, with values equal to the values that
 would be used for the identically named HTTP headers. [RFC2109]
 [RFC2965]

 12. Send two bytes 0x0D 0x0A (ASCII CRLF).

 13. Send /response/.

 This completes the server’s handshake. If the server finishes these
 steps without aborting the WebSocket connection, and if the client

Hickson Expires November 24, 2010 [Page 38]

https://tools.ietf.org/pdf/rfc2109
https://tools.ietf.org/pdf/rfc2965

Internet-Draft The WebSocket protocol May 2010

 does not then fail the connection, then the connection is established
 and the server may begin and receiving sending data, as described in
 the next section.

5.3 . Data framing

 The server must run through the following steps to process the bytes
 sent by the client. If at any point during these steps a read is
 attempted but fails because the WebSocket connection is closed, then
 abort.

 1. _Frame_: Read a byte from the client. Let /type/ be that byte.

 2. If the most significant bit of /type/ is not set, then run the
 following steps:

 1. If /type/ is not a 0x00 byte, then the server may abort these
 steps and either immediately disconnect from the client or
 set the /client terminated/ flag.

 2. Let /raw data/ be an empty byte array.

 3. _Data_: Read a byte, let /b/ be that byte.

 4. If /b/ is not 0xFF, then append /b/ to /raw data/ and return
 to the previous step (labeled _data_).

 5. If /type/ was 0x00, interpret /raw data/ as a UTF-8 string,
 and apply whatever server-specific processing is to occur for
 the resulting string (the message from the client).

 Otherwise, the most significant bit of /type/ is set. Run the
 following steps.

 6. If /type/ is not a 0xFF byte, then the server may abort
 these steps and either immediately disconnect from the
 client or set the /client terminated/ flag.

 7. Let /length/ be zero.

 8. _Length_: Read a byte, let /b/ be that byte.

 9. If /b/ is not a 0x00 byte, then run these substeps:

 1. The server may abort these steps and either immediately
 disconnect from the client or set the /client
 terminated/ flag.

Hickson Expires November 24, 2010 [Page 39]

Internet-Draft The WebSocket protocol May 2010

 2. Let /b_v/ be an integer corresponding to the low 7 bits
 of /b/ (the value you would get by _and_ing /b/ with
 0x7F).

 3. Multiply /length/ by 128, add /b_v/ to that result, and
 store the final result in /length/.

 4. If the high-order bit of /b/ is set (i.e. if /b/ _and_ed
 with 0x80 returns 0x80), then return to the step above
 labeled _length_.

 5. Read /length/ bytes.

 !!! WARNING: It is possible for a malicious client to
 send frames with lengths greater than 2**(31) or 2**(32)
 bytes, overflowing a signed or unsigned 32bit integer.
 Servers may therefore impose implementation-specific
 limits on the lengths of invalid frames that they will
 skip, if they support skipping such frames at all. If a
 server cannot correctly skip past a long frame, then the
 server must abort these steps (discarding all future
 data), and should either immediately disconnect from the
 client or set the /client terminated/ flag.

 6. Discard the read bytes.

 10. If /type/ is 0xFF and /length/ is 0, then set the /client
 terminated/ flag and abort these steps. All further data
 sent by the client should be discarded.

 3. Return to the step labeled _frame_.

 The server must run through the following steps to send strings to
 the client:

 1. Send a 0x00 byte to the client to indicate the start of a string.

 2. Encode /data/ using UTF-8 and send the resulting byte stream to
 the client.

 3. Send a 0xFF byte to the client to indicate the end of the
 message.

 At any time, the server may decide to terminate the WebSocket
 connection by running through the following steps:

Hickson Expires November 24, 2010 [Page 40]

Internet-Draft The WebSocket protocol May 2010

 1. Send a 0xFF byte and a 0x00 byte to the client to indicate the
 start of the closing handshake.

 2. Wait until the /client terminated/ flag has been set, or until a
 server-defined timeout expires.

 3. Close the WebSocket connection.

 Once these steps have started, the server must not send any further
 data to the server. The 0xFF 0x00 bytes indicate the end of the
 server’s data, and further bytes will be discarded by the client.

5.4 . Handling errors in UTF-8 from the client

 When a server is to interpret a byte stream as UTF-8 but finds that
 the byte stream is not in fact a valid UTF-8 stream, behavior is
 undefined. A server could close the connection, convert invalid byte
 sequences to U+FFFD REPLACEMENT CHARACTERs, store the data verbatim,
 or perform application-specific processing. Subprotocols layered on
 the WebSocket protocol might define specific behavior for servers.

Hickson Expires November 24, 2010 [Page 41]

Internet-Draft The WebSocket protocol May 2010

6. Closing the connection

6.1 . Client-initiated closure

 Certain algorithms require the user agent to *fail the WebSocket
 connection*. To do so, the user agent must close the WebSocket
 connection, and may report the problem to the user (which would be
 especially useful for developers).

 Except as indicated above or as specified by the application layer
 (e.g. a script using the WebSocket API), user agents should not close
 the connection.

 User agents must not convey any failure information to scripts in a
 way that would allow a script to distinguish the following
 situations:

 o A server whose host name could not be resolved.

 o A server to which packets could not successfully be routed.

 o A server that refused the connection on the specified port.

 o A server that did not complete the opening handshake (e.g. because
 it was not a WebSocket server).

 o A WebSocket server that sent a correct opening handshake, but that
 specified options that caused the client to drop the connection
 (e.g. the server specified an origin that differed from the
 script’s).

 o A WebSocket server that abruptly closed the connection after
 successfully completing the opening handshake.

6.2 . Server-initiated closure

 Certain algorithms require or recommend that the server *abort the
 WebSocket connection* during the opening handshake. To do so, the
 server must simply close the WebSocket connection.

6.3 . Closure

 To *close the WebSocket connection*, the user agent or server must
 close the TCP connection, using whatever mechanism possible (e.g.
 either the TCP RST or FIN mechanisms). When a user agent notices
 that the server has closed its connection, it must immediately close
 its side of the connection also. Whether the user agent or the
 server closes the connection first, it is said that the *WebSocket

Hickson Expires November 24, 2010 [Page 42]

Internet-Draft The WebSocket protocol May 2010

 connection is closed*. If the connection was closed after the client
 finished the WebSocket closing handshake, then the WebSocket
 connection is said to have been closed _cleanly_.

 Servers may close the WebSocket connection whenever desired. User
 agents should not close the WebSocket connection arbitrarily.

Hickson Expires November 24, 2010 [Page 43]

Internet-Draft The WebSocket protocol May 2010

7. Security considerations

 While this protocol is intended to be used by scripts in Web pages,
 it can also be used directly by hosts. Such hosts are acting on
 their own behalf, and can therefore send fake "Origin" fields,
 misleading the server. Servers should therefore be careful about
 assuming that they are talking directly to scripts from known
 origins, and must consider that they might be accessed in unexpected
 ways. In particular, a server should not trust that any input is
 valid.

 EXAMPLE: For example, if the server uses input as part of SQL
 queries, all input text should be escaped before being passed to the
 SQL server, lest the server be susceptible to SQL injection.

 Servers that are not intended to process input from any Web page but
 only for certain sites should verify the "Origin" field is an origin
 they expect, and should only respond with the corresponding "Sec-
 WebSocket-Origin" if it is an accepted origin. Servers that only
 accept input from one origin can just send back that value in the
 "Sec-WebSocket-Origin" field, without bothering to check the client’s
 value.

 If at any time a server is faced with data that it does not
 understand, or that violates some criteria by which the server
 determines safety of input, or when the server sees a handshake that
 does not correspond to the values the server is expecting (e.g.
 incorrect path or origin), the server should just disconnect. It is
 always safe to disconnect.

 The biggest security risk when sending text data using this protocol
 is sending data using the wrong encoding. If an attacker can trick
 the server into sending data encoded as ISO-8859-1 verbatim (for
 instance), rather than encoded as UTF-8, then the attacker could
 inject arbitrary frames into the data stream.

Hickson Expires November 24, 2010 [Page 44]

Internet-Draft The WebSocket protocol May 2010

8. IANA considerations

8.1 . Registration of ws: scheme

 A |ws:| URL identifies a WebSocket server and resource name.

 URI scheme name.
 ws

 Status.
 Permanent.

 URI scheme syntax.
 In ABNF terms using the terminals from the URI specifications:
 [RFC5234] [RFC3986]

 "ws" ":" hier-part ["?" query]

 The path and query components form the resource name sent to the
 server to identify the kind of service desired. Other components
 have the meanings described in RFC3986.

 URI scheme semantics.
 The only operation for this scheme is to open a connection using
 the WebSocket protocol.

 Encoding considerations.
 Characters in the host component that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by applying
 the IDNA ToASCII algorithm to the Unicode host name, with both the
 AllowUnassigned and UseSTD3ASCIIRules flags set, and using the
 result of this algorithm as the host in the URI. [RFC3490]

 Characters in other components that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by first
 encoding the characters as UTF-8 and then replacing the
 corresponding bytes using their percent-encoded form as defined in
 the URI and IRI specification. [RFC3986] [RFC3987]

 Applications/protocols that use this URI scheme name.
 WebSocket protocol.

 Interoperability considerations.
 None.

Hickson Expires November 24, 2010 [Page 45]

https://tools.ietf.org/pdf/rfc5234
https://tools.ietf.org/pdf/rfc3986
https://tools.ietf.org/pdf/rfc3986
https://tools.ietf.org/pdf/rfc3490
https://tools.ietf.org/pdf/rfc3986
https://tools.ietf.org/pdf/rfc3987

Internet-Draft The WebSocket protocol May 2010

 Security considerations.
 See "Security considerations" section above.

 Contact.
 Ian Hickson <ian@hixie.ch>

 Author/Change controller.
 Ian Hickson <ian@hixie.ch>

 References.
 This document.

8.2 . Registration of wss: scheme

 A |wss:| URL identifies a WebSocket server and resource name, and
 indicates that traffic over that connection is to be encrypted.

 URI scheme name.
 wss

 Status.
 Permanent.

 URI scheme syntax.
 In ABNF terms using the terminals from the URI specifications:
 [RFC5234] [RFC3986]

 "wss" ":" hier-part ["?" query]

 The path and query components form the resource name sent to the
 server to identify the kind of service desired. Other components
 have the meanings described in RFC3986.

 URI scheme semantics.
 The only operation for this scheme is to open a connection using
 the WebSocket protocol, encrypted using TLS.

 Encoding considerations.
 Characters in the host component that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by applying
 the IDNA ToASCII algorithm to the Unicode host name, with both the
 AllowUnassigned and UseSTD3ASCIIRules flags set, and using the
 result of this algorithm as the host in the URI. [RFC3490]

 Characters in other components that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by first
 encoding the characters as UTF-8 and then replacing the
 corresponding bytes using their percent-encoded form as defined in

Hickson Expires November 24, 2010 [Page 46]

https://tools.ietf.org/pdf/rfc5234
https://tools.ietf.org/pdf/rfc3986
https://tools.ietf.org/pdf/rfc3986
https://tools.ietf.org/pdf/rfc3490

Internet-Draft The WebSocket protocol May 2010

 the URI and IRI specification. [RFC3986] [RFC3987]

 Applications/protocols that use this URI scheme name.
 WebSocket protocol over TLS.

 Interoperability considerations.
 None.

 Security considerations.
 See "Security considerations" section above.

 Contact.
 Ian Hickson <ian@hixie.ch>

 Author/Change controller.
 Ian Hickson <ian@hixie.ch>

 References.
 This document.

8.3 . Registration of the "WebSocket" HTTP Upgrade keyword

 Name of token.
 WebSocket

 Author/Change controller.
 Ian Hickson <ian@hixie.ch>

 Contact.
 Ian Hickson <ian@hixie.ch>

 References.
 This document.

8.4 . Sec-WebSocket-Key1 and Sec-WebSocket-Key2

 This section describes two header fields for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Key1

 Applicable protocol
 http

Hickson Expires November 24, 2010 [Page 47]

https://tools.ietf.org/pdf/rfc3986
https://tools.ietf.org/pdf/rfc3987
https://tools.ietf.org/pdf/rfc3864

Internet-Draft The WebSocket protocol May 2010

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 Header field name
 Sec-WebSocket-Key2

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 The |Sec-WebSocket-Key1| and |Sec-WebSocket-Key2| headers are used in
 the WebSocket handshake. They are sent from the client to the server
 to provide part of the information used by the server to prove that
 it received a valid WebSocket handshake. This helps ensure that the
 server does not accept connections from non-Web-Socket clients (e.g.
 HTTP clients) that are being abused to send data to unsuspecting
 WebSocket servers.

8.5 . Sec-WebSocket-Location

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Location

Hickson Expires November 24, 2010 [Page 48]

https://tools.ietf.org/pdf/rfc3864

Internet-Draft The WebSocket protocol May 2010

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 The |Sec-WebSocket-Location| header is used in the WebSocket
 handshake. It is sent from the server to the client to confirm the
 URL of the connection. This enables the client to verify that the
 connection was established to the right server, port, and path,
 instead of relying on the server to verify that the requested host,
 port, and path are correct.

8.6 . Sec-WebSocket-Origin

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Origin

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 The |Sec-WebSocket-Origin| header is used in the WebSocket handshake.
 It is sent from the server to the client to confirm the origin of the
 script that opened the connection. This enables user agents to

Hickson Expires November 24, 2010 [Page 49]

https://tools.ietf.org/pdf/rfc3864

Internet-Draft The WebSocket protocol May 2010

 verify that the server is willing to serve the script that opened the
 connection.

8.7 . Sec-WebSocket-Protocol

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Protocol

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 The |Sec-WebSocket-Protocol| header is used in the WebSocket
 handshake. It is sent from the client to the server and back from
 the server to the client to confirm the subprotocol of the
 connection. This enables scripts to both select a subprotocol and be
 sure that the server agreed to serve that subprotocol.

Hickson Expires November 24, 2010 [Page 50]

https://tools.ietf.org/pdf/rfc3864

Internet-Draft The WebSocket protocol May 2010

9. Using the WebSocket protocol from other specifications

 The WebSocket protocol is intended to be used by another
 specification to provide a generic mechanism for dynamic author-
 defined content, e.g. in a specification defining a scripted API.

 Such a specification first needs to "establish a WebSocket
 connection", providing that algorithm with:

 o The destination, consisting of a /host/ and a /port/.

 o A /resource name/, which allows for multiple services to be
 identified at one host and port.

 o A /secure/ flag, which is true if the connection is to be
 encrypted, and false otherwise.

 o An ASCII serialization of an origin that is being made responsible
 for the connection. [ORIGIN]

 o Optionally a string identifying a protocol that is to be layered
 over the WebSocket connection.

 The /host/, /port/, /resource name/, and /secure/ flag are usually
 obtained from a URL using the steps to parse a WebSocket URL’s
 components. These steps fail if the URL does not specify a
 WebSocket.

 If a connection can be established, then it is said that the
 "WebSocket connection is established".

 If at any time the connection is to be closed, then the specification
 needs to use the "close the WebSocket connection" algorithm.

 When the connection is closed, for any reason including failure to
 establish the connection in the first place, it is said that the
 "WebSocket connection is closed".

 While a connection is open, the specification will need to handle the
 cases when "a WebSocket message has been received" with text /data/.

 To send some text /data/ to an open connection, the specification
 needs to "send /data/ using the WebSocket".

Hickson Expires November 24, 2010 [Page 51]

Internet-Draft The WebSocket protocol May 2010

10. Acknowledgements

 The WebSocket protocol is the result of many years of development,
 and as such hundreds of people have contributed to the specification
 during its lifetime. Unfortunately, since the specification started
 as nothing but a minor section of the larger WHATWG Web Applications
 1.0 specification, and later the HTML5 specification, no record was
 kept of who exactly contributed to what ended up becoming this
 specification as opposed to who contributed to other parts of that
 document.

 The reader is therefore referred to the Acknowledgements section of
 the WHATWG HTML specification for a full list of all contributions
 that have been made to the source document from which this
 specification is generated. [HTML]

Hickson Expires November 24, 2010 [Page 52]

Internet-Draft The WebSocket protocol May 2010

11. Normative References

 [HTML] Hickson, I., "HTML", May 2010, < http://whatwg.org/html5 >.

 [ORIGIN] Barth, A., Jackson, C., and I. Hickson, "The HTTP Origin
 Header", September 2009,
 < http://tools.ietf.org/html/draft-abarth-origin >.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321 ,
 April 1992.

 [RFC2109] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2109 , February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246 , January 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616 , June 1999.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965 , October 2000.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490 , March 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629 , November 2003.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90 , RFC 3864 ,
 September 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986 , January 2005.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987 , January 2005.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366 , April 2006.

Hickson Expires November 24, 2010 [Page 53]

http://whatwg.org/html5
http://tools.ietf.org/html/draft-abarth-origin
https://tools.ietf.org/pdf/rfc1321
https://tools.ietf.org/pdf/rfc2109
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc2616
https://tools.ietf.org/pdf/rfc2965
https://tools.ietf.org/pdf/rfc3490
https://tools.ietf.org/pdf/rfc3629
https://tools.ietf.org/pdf/bcp90
https://tools.ietf.org/pdf/rfc3864
https://tools.ietf.org/pdf/rfc3986
https://tools.ietf.org/pdf/rfc3987
https://tools.ietf.org/pdf/rfc4366

Internet-Draft The WebSocket protocol May 2010

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234 , January 2008.

 [WEBADDRESSES]
 Connolly, D. and C. Sperberg-McQueen, "Web addresses in
 HTML 5", May 2009, < http://www.w3.org/html/wg/href/draft >.

 [WSAPI] Hickson, I., "The Web Sockets API", May 2010,
 < http://dev.w3.org/html5/websockets/ >.

Hickson Expires November 24, 2010 [Page 54]

https://tools.ietf.org/pdf/rfc5234
http://www.w3.org/html/wg/href/draft
http://dev.w3.org/html5/websockets/

Internet-Draft The WebSocket protocol May 2010

Author’s Address

 Ian Hickson
 Google, Inc.

 Email: ian@hixie.ch
 URI: http://ln.hixie.ch/

Hickson Expires November 24, 2010 [Page 55]

http://ln.hixie.ch/

