BGP-LS Advertisement of IGP Traffic Engineering Performance Metric Extensions
draft-ietf-idr-te-pm-bgp-09

Abstract

This document defines new BGP-LS TLVs in order to carry the IGP Traffic Engineering Extensions defined in IS-IS and OSPF protocols.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation only when in ALL CAPS. Lower case uses of these words are not to be interpreted as carrying RFC-2119 significance.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction

BGP-LS ([RFC7752]) defines NLRI and attributes in order to carry link-state information. New BGP-LS Link-Attribute TLVs are required in order to carry the Traffic Engineering Metric Extensions defined in [RFC7810] and [RFC7471].
2. Link Attribute TLVs for TE Metric Extensions

The following new Link Attribute TLVs are defined:

<table>
<thead>
<tr>
<th>TLV Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidirectional Link Delay</td>
</tr>
<tr>
<td>Min/Max Unidirectional Link Delay</td>
</tr>
<tr>
<td>Unidirectional Delay Variation</td>
</tr>
<tr>
<td>Unidirectional Packet Loss</td>
</tr>
<tr>
<td>Unidirectional Residual Bandwidth</td>
</tr>
<tr>
<td>Unidirectional Available Bandwidth</td>
</tr>
<tr>
<td>Unidirectional Bandwidth Utilization</td>
</tr>
</tbody>
</table>

3. TLV Details

3.1. Unidirectional Link Delay TLV

This TLV advertises the average link delay between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|  RESERVED   |                   Delay                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

where:

Figure 1

Type: 1114

Length: 4.
3.2. Min/Max Unidirectional Link Delay TLV

This sub-TLV advertises the minimum and maximum delay values between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

```
<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RESERVED</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>RESERVED</td>
<td>Max Delay</td>
</tr>
</tbody>
</table>
```

where:

Figure 2

Type: 1115

Length: 8.

3.3. Unidirectional Delay Variation TLV

This sub-TLV advertises the average link delay variation between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

```
<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESERVED</td>
<td>Delay Variation</td>
</tr>
</tbody>
</table>
```

where:

Figure 3

Type: 1116

Length: 4.
3.4. Unidirectional Link Loss TLV

This sub-TLV advertises the loss (as a packet percentage) between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|  RESERVED   |                  Link Loss                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
where:

Type: 1117
Length: 4.
```

3.5. Unidirectional Residual Bandwidth TLV

This sub-TLV advertises the residual bandwidth between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Residual Bandwidth                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
where:

Type: 1118
Length: 4.
```

3.6. Unidirectional Available Bandwidth TLV

This sub-TLV advertises the available bandwidth between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
3.7. Unidirectional Utilized Bandwidth TLV

This sub-TLV advertises the bandwidth utilization between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

4. Security Considerations

Procedures and protocol extensions defined in this document do not affect the BGP security model. See the ‘Security Considerations’ section of [RFC4271] for a discussion of BGP security. Also refer to [RFC4272] and [RFC6952] for analysis of security issues for BGP.

The TLVs introduced in this document are used to propagate IGP defined information ([RFC7810] and [RFC7471].) These TLVs represent the state and resources availability of the IGP link. The IGP
instances originating these TLVs are assumed to have all the required security and authentication mechanism (as described in [RFC7810] and [RFC7471]) in order to prevent any security issue when propagating the TLVs into BGP-LS.

5. IANA Considerations

This document requests assigning code-points from the registry "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" for the new Link Attribute TLVs defined in the table below:

<table>
<thead>
<tr>
<th>TLV code-point</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1114</td>
<td>Unidirectional Link Delay</td>
</tr>
<tr>
<td>1115</td>
<td>Min/Max Unidirectional Link Delay</td>
</tr>
<tr>
<td>1116</td>
<td>Unidirectional Delay Variation</td>
</tr>
<tr>
<td>1117</td>
<td>Unidirectional Packet Loss</td>
</tr>
<tr>
<td>1118</td>
<td>Unidirectional Residual Bandwidth</td>
</tr>
<tr>
<td>1119</td>
<td>Unidirectional Available Bandwidth</td>
</tr>
<tr>
<td>1120</td>
<td>Unidirectional Bandwidth Utilization</td>
</tr>
</tbody>
</table>

6. Acknowledgements

The authors wish to acknowledge comments from Ketan Talaulikar.

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

Les Ginsberg (editor)
Cisco Systems, Inc.
US

Email: ginsberg@cisco.com

Stefano Previdi
Cisco Systems, Inc.
IT

Email: stefano@previdi.net