BGP-LS Advertisement of IGP Traffic Engineering Performance Metric Extensions
draft-ietf-idr-te-pm-bgp-10

Abstract

This document defines new BGP-LS TLVs in order to carry the IGP Traffic Engineering Extensions defined in IS-IS and OSPF protocols.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation only when in ALL CAPS. Lower case uses of these words are not to be interpreted as carrying RFC-2119 significance.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 22, 2018.
1. Introduction

BGP-LS ([RFC7752]) defines NLRI and attributes in order to carry link-state information. New BGP-LS Link-Attribute TLVs are required in order to carry the Traffic Engineering Metric Extensions defined in [RFC7810] and [RFC7471].

2. Link Attribute TLVs for TE Metric Extensions

The following new Link Attribute TLVs are defined:
TLV Name
--
Unidirectional Link Delay
Min/Max Unidirectional Link Delay
Unidirectional Delay Variation
Unidirectional Packet Loss
Unidirectional Residual Bandwidth
Unidirectional Available Bandwidth
Unidirectional Bandwidth Utilization

3. TLV Details

3.1. Unidirectional Link Delay TLV

This TLV advertises the average link delay between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|  RESERVED   |                   Delay                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

where:

Figure 1

Type: 1114
Length: 4.

3.2. Min/Max Unidirectional Link Delay TLV

This sub-TLV advertises the minimum and maximum delay values between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
3.3. Unidirectional Delay Variation TLV

This sub-TLV advertises the average link delay variation between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

where:

Figure 3

Type: 1116
Length: 4.

3.4. Unidirectional Link Loss TLV

This sub-TLV advertises the loss (as a packet percentage) between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
where:

Type: 1117
Length: 4.

3.5. Unidirectional Residual Bandwidth TLV

This sub-TLV advertises the residual bandwidth between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

where:

Type: 1118
Length: 4.

3.6. Unidirectional Available Bandwidth TLV

This sub-TLV advertises the available bandwidth between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length |
+-+
| Available Bandwidth |
+-+

where:

Figure 4

Type: 1119
Length: 4.

3.7. Unidirectional Utilized Bandwidth TLV

This sub-TLV advertises the bandwidth utilization between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length |
+-+
| Utilized Bandwidth |
+-+

where:

Figure 5

Type: 1120
Length: 4.

4. Security Considerations

Procedures and protocol extensions defined in this document do not affect the BGP security model. See the ‘Security Considerations’ section of [RFC4271] for a discussion of BGP security. Also refer to [RFC4272] and [RFC6952] for analysis of security issues for BGP.

The TLVs introduced in this document are used to propagate IGP defined information ([RFC7810] and [RFC7471].) These TLVs represent the state and resources availability of the IGP link. The IGP
instances originating these TLVs are assumed to have all the required security and authentication mechanism (as described in [RFC7810] and [RFC7471]) in order to prevent any security issue when propagating the TLVs into BGP-LS.

5. IANA Considerations

This document requests assigning code-points from the registry "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" for the new Link Attribute TLVs defined in the table below:

<table>
<thead>
<tr>
<th>TLV code-point</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1114</td>
<td>Unidirectional Link Delay</td>
</tr>
<tr>
<td>1115</td>
<td>Min/Max Unidirectional Link Delay</td>
</tr>
<tr>
<td>1116</td>
<td>Unidirectional Delay Variation</td>
</tr>
<tr>
<td>1117</td>
<td>Unidirectional Packet Loss</td>
</tr>
<tr>
<td>1118</td>
<td>Unidirectional Residual Bandwidth</td>
</tr>
<tr>
<td>1119</td>
<td>Unidirectional Available Bandwidth</td>
</tr>
<tr>
<td>1120</td>
<td>Unidirectional Bandwidth Utilization</td>
</tr>
</tbody>
</table>

6. Contributors

The following people have substantially contributed to this document and should be considered co-authors:

Saikat Ray
Individual
Email: raysaikat@gmail.com

Hannes Gredler
RtBrick Inc.
Email: hannes@rtbrick.com

7. Acknowledgements

The authors wish to acknowledge comments from Ketan Talaulikar.
8. References

8.1. Normative References

8.2. Informative References

Authors’ Addresses
Les Ginsberg (editor)
Cisco Systems, Inc.
US
Email: ginsberg@cisco.com

Stefano Previdi
Cisco Systems, Inc.
IT
Email: stefano@previdi.net

Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China
Email: bill.wu@huawei.com

Jeff Tantsura
Individual
US
Email: jefftant.ietf@gmail.com

Clarence Filsfils
Cisco Systems, Inc.
Brussels
BE
Email: cfilsfil@cisco.com