Management Event MIB
for PacketCable/IPCablecom MTAs

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other Intellectual Property Rights (IPR) claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of RFC 3668.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Copyright Notice

Copyright (C) The Internet Society (2005). All Rights Reserved.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it provides a common data and format representation for events generated by PacketCable and IPCablecom compliant Multimedia Terminal Adapter devices.
This memo specifies a MIB module in a manner that is compliant to the SNMP SMIv2. The set of objects are consistent with the SNMP framework and existing SNMP standards.

Table of Contents

1. The Internet-Standard Management Framework.........................2
2. Introduction...2
3. Terminology..3
 3.1 MTA...3
 3.2 Endpoint..3
 3.3 MSO..4
 3.4 UDP..4
4. Overview...4
 4.1 Structure of the MIB..5
 4.1.1 pktcDevEventControl..................................5
 4.1.2 pktcDevEventThrottle................................5
 4.1.3 pktcDevEventStatus..................................5
 4.1.4 pktcDevEventDescr....................................5
 4.1.5 pktcDevEvNotification.................................5
5. Definitions...5
6. Acknowledgments..24
7. Normative References...24
8. Informative References...25
9. Security Considerations..25
Authors Addresses..26
Disclaimer of validity...27
Full Copyright Statement...27

1. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

2. Introduction

A multimedia terminal adapter (MTA) is used to deliver broadband Internet, data, and/or voice access jointly with telephony service to
a subscriber’s or customer’s premises using a cable network infrastructure. A MTA is normally installed at the customer’s or subscriber’s premises, and it is coupled to a multiple system operator (MSO) using a hybrid fiber coax (HFC) access network.

A MTA is provisioned by the MSO for broadband Internet, data, and/or voice service. For more information on MTA provisioning refer to [PKT-SP-PROV] and [PKT-SP-MIB-MTA]. MTA devices include one or more endpoints (e.g., telephone ports) which receive call signaling information to establish ring cadence, and codecs used for providing telephony service. For more information on call signaling refer to [PKT-SP-MGCP] and [RFC3435]. For more information on codecs refer to [PKT-SP-CODEC].

Given the complexity of such systems it is important that a suitable event management mechanism be defined to allow for effective management. This MIB module provides objects suitable for generation and management of events on the MTA.

3. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL", when used in the guidelines in this memo, are to be interpreted as described in RFC 2119 [RFC2119].

The terms "MIB module" and "information module" are used interchangeably in this memo. As used here, both terms refer to any of the three types of information modules defined in Section 3 of RFC 2578 [RFC2578].

3.1 MTA

A MTA is a PacketCable or IPCablecom compliant device providing telephony services over a cable or hybrid system used to deliver video signals to a community. It contains an interface to endpoints, a network interface, codecs, and all signaling and encapsulation functions required for Voice over IP transport, call signaling, and Quality of Service signaling. A MTA can be an embedded or a standalone device. An Embedded MTA (E-MTA) is a MTA device containing an embedded Data Over Cable Service Interface Specifications (DOCSIS) Cable Modem. A Standalone MTA (S-MTA) is a MTA device separated from the DOCSIS Cable Modem by non-DOCSIS MAC interface (e.g., Ethernet, USB).

3.2 Endpoint

An endpoint or MTA endpoint is a standard telephony physical port located on the MTA and used for attaching the telephone device to the MTA.
3.3 MSO
Multi-System Operator. A cable company that operates many head-end locations in several cities.

3.4 UDP

4. Overview
This MIB module provides a set of objects required for generation and management of events on PacketCable, European Telecommunications Standards Institute (ETSI), and International Telecommunication Union Telecommunication Standardization Sector (ITU-T) IPCablecom compliant Multimedia Terminal Adapter (MTA) devices. The EVENT MIB module is intended to supersede various EVENT MIB modules from which it is partly derived:
- the PacketCable 1.5 Management Event MIB Specification [PKT-SP-EVEMIB1.5],
- the ITU-T IPCablecom management event mechanism MIB requirements [ITU-T-J176]

4.1 Structure of the MIB
This MIB is structured in six groups:
- Management information that controls the event reporting (pktcDevEventControl).
- Management information that configures the event throttling control (pktcDevEventThrottle).
- Management information reflecting the status of the event transmission (pktcDevEventStatus).
- Management information that specifies the possible events that can be generated by the PacketCable device (pktcDevEventDescr).
- Management information related to the events generated by the PacketCable device (pktcDevEventLog).
- Management information that defines the trap and inform messages (pktcDevEvNotification).
4.1.1 pktcDevEventControl

The objects in this group contain information related to the destination Syslog Server and actions related to the event tables.

pktcDevEvControl - this object defines the actions related to the event tables.

pktcDevEvSyslogAddressType - this object defines the address type of the Syslog Server.

pktcDevEvSyslogAddress - this object specifies the address of the Syslog server.

pktcDevEvSyslogUdpPort - this object specifies the UDP-port to which the Syslog messages need to be send.

4.1.2 pktcDevEventThrottle

The objects in this group control the throttling of the reported events.

4.1.3 pktcDevEventStatus

The objects in this group relate to the status of the event transmissions.

4.1.4 pktcDevEventDescr

The objects in this group contain the description of the possible events that can be generated.

4.1.5 pktcDevEvNotification

The objects in this group define the structure for the SNMP trap and SNMP Inform notifications.

5. Definitions

PKTC-EVENT-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, Unsigned32, NOTIFICATION-TYPE, BITS, mib-2
 FROM SNMPv2-SMI
 TruthValue,

De Ketelaere/Nechamkin/Channabasappa Expires - August 2005 [Page 5]
PacketCable/IPCablecom Event management MIB February 2005

DateAndTime FROM SNMPv2-TC
SnmpAdminString FROM SNMP-FRAMEWORK-MIB
OBJECT-GROUP,
MODULE-COMPLIANCE,
NOTIFICATION-GROUP FROM SNMPv2-CONF
ifPhysAddress FROM IF-MIB
InetAddressType,
InetAddress,
InetPortNumber FROM INET-ADDRESS-MIB ;

pktcEventMib MODULE-IDENTITY
LAST-UPDATED "200502200000Z" -- 02/20/2005
ORGANIZATION "Cable Television Laboratories, Inc"
CONTACT-INFO
"Sumanth Channabasappa
Cable Television Laboratories, Inc.
858 Coal Creek Circle,
Louisville, CO 80027, USA
+1 303-661-3307
Sumanth@cablelabs.com

Wim De Ketelaere
tComLabs
Stapelplein 70
9000 Gent, Belgium
+32 9 269 22 90
deretelaere@tComLabs.com

Eugene Nechamkin
Broadcom Corporation
200 - 13711 International Place
Richmond, BC, V6V 2Z8, Canada
+1 604 233 8500
enechamkin@broadcom.com"

DESCRIPTION
"This MIB module supplies the basic management objects
for event reporting

Acknowledgements:
John Berg - CableLabs, Inc.
Venkatesh Sunkad - CableLabs, Inc.
Kevin Marez - Motorola, Inc.
Satish Kumar - Texas Instruments"

REVISION
"200502200000Z"

DESCRIPTION
"Initial version, published as RFC yyyy."
-- RFC Ed: replace yyyy with actual RFC number and remove this note

::= { mib-2 XXX }

-- RFC Ed: replace XXX with IANA-assigned number and remove this
-- note

--
-- pktcDevEventControl OBJECT IDENTIFIER ::= { pktcEventMib 1 }
 pktcDevEventThrottle OBJECT IDENTIFIER ::= { pktcEventMib 2 }
 pktcDevEventStatus OBJECT IDENTIFIER ::= { pktcEventMib 3 }
 pktcDevEventDescr OBJECT IDENTIFIER ::= { pktcEventMib 4 }
 pktcDevEventLog OBJECT IDENTIFIER ::= { pktcEventMib 5 }
 pktcDevEvNotification OBJECT IDENTIFIER ::= { pktcEventMib 6 }

--- Event Reporting control objects

pktcDevEvControl OBJECT-TYPE
SYNTAX BITS {
 resetEventLogTable(0),
 resetEventDescrTable(1)
} MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This MIB object defines the actions related to the event
log configuration.

The MTA MUST take the appropriate action whenever
a bit is set to a value of ‘1’.

Setting the resetEventLogTable(0) bit to
a value of ‘1’ clears the entire event log
(Deletes all entries in pktcDevEventLogTable).

Setting resetEventDescrTable(1) to a value of ‘1’
resets the pktcDevEventDescrTable to the
factory default values.

Setting a control bit to a value of ‘0’ MUST not
result in any action.

 Reading this MIB object MUST always return ’00’.

::= { pktcDevEventControl 1 }

pktcDevEvSyslogAddressType OBJECT-TYPE
SYNTAX InetAddressType

De Ketelaere/Nechamkin/Channabasappa Expires - August 2005
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "This MIB Object defines the address type of the Syslog server. PacketCable devices implementing this MIB MUST support an InetAddressType of ipv4(1). PacketCable devices MAY optionally implement other address types.

 If an unsupported InetAddressType is used to set this object, the PacketCable device MUST reject it and report an SNMP error stating 'wrong value'.

 If an SNMP SET results in a type that does not match the value contained in the MIB Object pktcDevEvSyslogAddress, the PacketCable device MUST reject the SNMP SET with an 'inconsistent value' error."
 ::= { pktcDevEventControl 2 }

pktcDevEvSyslogAddress OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "This MIB Object contains the IP address of the Syslog server. If this is set to either 0.0.0.0 or 255.255.255.255 the device MUST inhibit syslog transmission.

 The use of FQDNs is syntactically allowed, but discouraged since a failure to resolve them in a timely manner may leave the device without access to the Syslog daemon during critical network events.

 The type of address this object represents is defined by the MIB Object pktDevEvSyslogAddressType.

 If an SNMP SET results in a type that does not match that indicated by the MIB Object pktcDevEvSyslogAddressType, the PacketCable device MUST reject the SNMP SET with an 'inconsistent value' error."
 ::= { pktcDevEventControl 3 }

pktcDevEvSyslogUdpPort OBJECT-TYPE
SYNTAX InetPortNumber
MAX-ACCESS read-write
STATUS current
DESCRIPTION

De Ketelaere/Nechamkin/Channabasappa Expires - August 2005
"This MIB Object contains the UDP Port Number of the Syslog Server. The PacketCable device must send the Syslog messages to this port on the Syslog Server."

DEFVAL { 514 }
::= { pktcDevEventControl 4 }

pktcDevEvReportingLevel OBJECT-TYPE
SYNTAX BITS {
 emergency(0),
 alert(1),
 critical(2),
 error(3),
 warning(4),
 notice(5),
 info(6),
 debug(7)
 }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This MIB Object can be used to collectively turn on/off event levels for all enabled event classes as described in the MIB table 'pktcDevEventClassReportTable'.

The value of a ‘reporting level bit’ set through this MIB Object results in the corresponding bit in the MIB Object ‘pktcDevEventClassReportLevel’ set to the same value, for all event classes that are enabled for reporting (‘pktcDevEventReportStatus’ set to a value of ‘true’).

It is recommended that the bits corresponding to emergency(0), alert(1), critical(2) and error(3) always be set to a value of ‘1’."
::= { pktcDevEventControl 5 }

pktcDevEventClassReportTable OBJECT-TYPE
SYNTAX SEQUENCE OF PktcDevEventClassReportEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This MIB table contains all the event classes and the reporting status information."
::= { pktcDevEventControl 6 }

pktcDevEventClassReportEntry OBJECT-TYPE
SYNTAX PktcDevEventClassReportEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in this table MUST be created for each event class defined by a vendor for the events described as part of 'pktcDevEventDescrTable'.

By definition of the MIB Object 'pktcDevEventDescrClass', an entry MUST be created for the event class 'generic'."

INDEX { pktcDevEventClass }
::= { pktcDevEventClassReportTable 1 }

PktcDevEventClassReportEntry ::= SEQUENCE {
pktcDevEventClass SnmpAdminString,
pktcDevEventReportStatus TruthValue,
pktcDevEventClassReportLevel BITS
}

pktcDevEventClass OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (1..10))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This MIB Object contains the identifier of an event class supported by the device."
::= { pktcDevEventClassReportEntry 1 }

pktcDevEventReportStatus OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This MIB Object indicates if events belonging to a particular event class are to be enabled or disabled for reporting.

Setting this object to a value of 'true' enables reporting as per the MIB Object 'pktcDevEventDescrReporting'.

Setting this object to a value of 'false' disables any reporting, irrespective of the value of the MIB Object 'pktcDevEventDescrReporting'.

The default value of this MIB Object is vendor specific. However, the vendor SHOULD enable all
event categories defined by PacketCable by default."
 ::= { pktcDevEventClassReportEntry 2 }

pktcDevEventClassReportLevel OBJECT-TYPE
SYNTAX BITS {
 emergency(0),
 alert(1),
 critical(2),
 error(3),
 warning(4),
 notice(5),
 info(6),
 debug(7),
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This MIB Object defines the reporting levels of events for the corresponding event class, that need to be included for reporting.

This MIB Object has no effect unless the 'pktcDevEventReportStatus' is set to a value of 'true', for the corresponding event class.

Setting a bit to a value of '1' implies that events corresponding to that level MUST be reported as defined by the corresponding value of 'pktcDevEventDescrReporting'.

Setting a bit to a value of '0' implies that events corresponding to that level MUST NOT be reported, irrespective of the corresponding value of 'pktcDevEventDescrReporting'.

It is recommended that the bits corresponding to emergency(0), alert(1), critical(2) and error(3) always be set to a value of '1'."

 ::= { pktcDevEventClassReportEntry 3 }

-- Event throttling control
--
pktcDevEvThrottleAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
 unconstrained(1),
 maintainBelowThreshold(2),

stopAtThreshold(3),
inhibited(4)
)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"This MIB Object controls the throttling of the transmitted messages upon generation of an event (SNMP/Syslog).

A value of unconstrained(1) causes event messages to be transmitted without regard to the threshold settings.

A value of maintainBelowThreshold(2) causes event messages to be suppressed if the number of transmissions would otherwise exceed the threshold.
A value of stopAtThreshold(3) causes event message transmission to cease at the threshold, and not resume until directed to do so.

A value of inhibited(4) causes all event message Transmission to be suppressed.

An event causing both an SNMP and a Syslog message is still treated as a single event.

Writing to this object resets the thresholding state.

Refer to MIB Objects pktcDevEvThrottleThreshold and pktcDevEvThrottleInterval for information on throttling."
DEFVAL { unconstrained }
::= { pktcDevEventThrottle 1 }

pktcDevEvThrottleThreshold OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"This MIB Object contains the number of events per pktcDevEvThrottleInterval to be transmitted before throttling.

An event causing both a SNMP and a syslog message is still treated as a single event."
DEFVAL { 2 }
::= { pktcDevEventThrottle 2 }

pktcDevEvThrottleInterval OBJECT-TYPE
SYNTAX Unsigned32
UNITS "seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "This MIB Object contains the interval over which
 the throttle threshold applies." DEFVAL { 1 }
::= { pktcDevEventThrottle 4 }

-- Status Reporting

pktcDevEvTransmissionStatus OBJECT-TYPE
SYNTAX BITS {
 syslogThrottled(0),
 snmpThrottled(1),
 validSyslogServerAbsent(2),
 validSnmpManagerAbsent(3),
 syslogTransmitError(4),
 snmpTransmitError(5)
 }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This MIB Object reflects the status of the event
 transmission.

 If a bit corresponding to a state is set to a value
 of:
 '1', it indicates that the state is true
 '0', it indicates that the state is false

 'Event throttling' is based on thresholds and the current
 setting of pktcDevEvThrottleAdminStatus.

 'Server/Manager' indicators must be based on the
 availability of valid Syslog server/SNMP managers.

 'Transmit Errors' must only be used in cases where the
 PacketCable Device can identify unavailable servers."
::= { pktcDevEventStatus 1 }

-- Event Descriptions

pktcDevEventDescrTable OBJECT-TYPE
SYNTAX SEQUENCE OF PktcDevEventDescrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This MIB table contains all the possible events that can be generated by the device. This includes both PacketCable defined and vendor-specific events."
::= { pktcDevEventDescr 1 }

pktcDevEventDescrEntry OBJECT-TYPE
SYNTAX PktcDevEventDescrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in this table is created for each event the PacketCable Device implementing this MIB is capable of reporting."
INDEX { pktcDevEventDescrId, pktcDevEventDescrEnterprise }
::= { pktcDevEventDescrTable 1 }

PktcDevEventDescrEntry ::= SEQUENCE {
pktcDevEventDescrId INTEGER,
pktcDevEventDescrEnterprise INTEGER,
pktcDevEventDescrFacility INTEGER,
pktcDevEventDescrLevel INTEGER,
pktcDevEventDescrReporting BITS,
pktcDevEventDescrText SnmpAdminString,
pktcDevEventDescrClass SnmpAdminString
}

pktcDevEventDescrId OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This MIB Object contains the event identifier for the specific event to which the priority and display strings belong. The event identifier can either be PacketCable defined or vendor-specific."
::= { pktcDevEventDescrEntry 1 }

pktcDevEventDescrEnterprise OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This MIB Object provides the IANA enterprise number of
the Organization defining the event. Thus, all
PacketCable defined events will contain the CableLabs
IANA enterprise number and for vendor-specific events it
will contain the IANA enterprise number of the defining
organization."
::= { pktcDevEventDescrEntry 2 }

pktcDevEventDescrFacility OBJECT-TYPE
SYNTAX INTEGER {
 kernel(0),
 user(1),
 mail(2),
 daemon(3),
 auth(4),
 syslog(5),
 lpr(6),
 news(7),
 uucp(8),
 cron(9),
 authPriv(10),
 ftp(11),
 ntp(12),
 security(13),
 console(14),
 clockDaemon(15),
 local0(16),
 local1(17),
 local2(18),
 local3(19),
 local4(20),
 local5(21),
 local6(22),
 local7(23)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This MIB Object contains the facility
for the event.
For PacketCable events this MUST be set to
local0(16)."
::= { pktcDevEventDescrEntry 3 }

pktcDevEventDescrLevel OBJECT-TYPE
SYNTAX INTEGER {
 emergency(0),
 alert(1),
 critical(2),
 error(3),
 warning(4),
 notice(5),
 info(6),
 debug(7)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This MIB Object contains the priority level that
is applicable to the corresponding event.

The levels are as described below:

 emergency(0) - A condition that makes the system
 unusable.
 alert(1) - A service-affecting condition for which
 immediate action must be taken.
 critical(2) - A service-affecting critical condition.
 error(3) - An error condition.
 warning(4) - A warning condition.
 notice(5) - A normal but significant condition.
 info(6) - An informational message.
 debug(7) - A debug message."
::= { pktcDevEventDescrEntry 4 }

pktcDevEventDescrReporting OBJECT-TYPE
SYNTAX BITS {
 local(0),
 syslog(1),
 snmpTrap(2),
 snmpInform(3)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This MIB Object defines the action to be taken on
occurrence of this event.

Setting a bit to a value of '1' indicates that the
corresponding action will be taken upon occurrence of
this event, provided the required parameters are present. (e.g.: Syslog Server for Syslog messages, SNMP targets for SNMP traps and SNMP INFORMs etc). If none of the bits are set then no action is taken upon occurrence of the event.

The default value of this MIB Object is dependent on the value of the MIB Object 'pktcDevEventDescrLevel', for the corresponding event.

For the following values of 'pktcDevEventDescrLevel': emergency(0), alert(1), critical(2) and error(3), the PacketCable device MUST set the bits for local(0), syslog(1) and snmpInform(3) to a value of ‘1’ and the rest to a value of ‘0’.

For all the remaining values of 'pktcDevEventDescrLevel', the PacketCable device MUST set the bits for local(0) and syslog(1) to a value of ‘1’ and the rest to a value of ‘0’.

::= { pktcDevEventDescrEntry 5 }

pktcDevEventDescrText OBJECT-TYPE
SYNTAX SnmpAdminString(SIZE (0..127))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "This MIB Object contains event display string providing a human-readable description of the event."
::= { pktcDevEventDescrEntry 6 }

pktcDevEventDescrClass OBJECT-TYPE
SYNTAX SnmpAdminString(SIZE (1..10))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "This MIB Object represents an event class associated with the corresponding event.

 Vendors MAY choose to define different event classes (e.g. DHCP, SNMP, DEBUG) to group together related events. Vendors SHOULD use standard protocol acronyms for well known protocols. However, separating packetcable defined from vendor-specific events for the same protocol is recommended (e.g DHCP and V-DHCP for the DHCP protocol).
If vendors choose not to define event classes, then the value of this MIB Object MUST be set to ‘generic’.

```::= { pktcDevEventDescrEntry 7 }
```

Events generated

```pktcDevEventLogTable OBJECT-TYPE
SYNTAX      SEQUENCE OF PktcDevEventLogEntry
MAX-ACCESS  not-accessible
STATUS      current
DESCRIPTION
"This MIB table contains a log of the events generated by the PacketCable device. A description of all the events that can be generated by the device can be obtained from the MIB table ‘pktcDevEventDescrTable’.

```::= { pktcDevEventLog 1 }
```

PktcDevEventLogEntry OBJECT-TYPE
SYNTAX      PktcDevEventLogEntry
MAX-ACCESS  not-accessible
STATUS      current
DESCRIPTION
"Each entry in this table describes an event that has occurred, indexed in the chronological order of generation. The details of the event are borrowed from the parameters associated with the corresponding event entry in ‘pktcDevEventDescrTable’, at the time of the event generation. While all entries created as such can be cleared using the MIB Object pktcDevEvControl, the Event entries themselves cannot be individually deleted."

INDEX { pktcDevEvLogIndex }
```::= { pktcDevEventLogTable 1 }
```
PacketCable/IPCablecom Event management MTA MIB

pktcDevEvLogAdditionalInfo SnmpAdminString

pktcDevEvLogIndex OBJECT-TYPE
SYNTAX          Unsigned32
MAX-ACCESS      not-accessible
STATUS          current
DESCRIPTION    "This MIB Object provides relative ordering of the objects in the event log. This object will always increase except when (a) the log is reset via pktcDevEvControl, (b) the device reboots and does not implement non-volatile storage for this log, (c) it reaches the value 2^31. The next entry for all the above cases is 0. This also serves as an indicator of event sequence."
::= { pktcDevEventLogEntry 1 }

pktcDevEvLogTime OBJECT-TYPE
SYNTAX          DateAndTime
MAX-ACCESS      read-only
STATUS          current
DESCRIPTION    "This MIB Object provides a human-readable description of the time at which the event occurred."
::= { pktcDevEventLogEntry 2 }

pktcDevEvLogEnterprise OBJECT-TYPE
SYNTAX          Unsigned32
MAX-ACCESS      read-only
STATUS          current
DESCRIPTION    "This MIB Object provides the IANA enterprise number of the Organization defining the event. Thus, all PacketCable defined events will contain the CableLabs IANA enterprise number and for vendor-specific events it will contain the IANA enterprise number of the defining organization."
::= { pktcDevEventLogEntry 3 }

pktcDevEvLogId OBJECT-TYPE
SYNTAX          Unsigned32
MAX-ACCESS      read-only
STATUS          current
DESCRIPTION

"This MIB Object contains the event identifier for the specific event to which the priority and display strings belong. The event identifier can either be PacketCable defined or vendor-specific."

::= { pktcDevEventLogEntry 4 }

pktcDevEvLogText OBJECT-TYPE
  SYNTAX       SnmpAdminString
  MAX-ACCESS   read-only
  STATUS       current
  DESCRIPTION  "This MIB Object contains the contents of pktcDevEventDescrText, corresponding to the event, at the moment of generation."

::= { pktcDevEventLogEntry 5 }

pktcDevEvLogEndpointName OBJECT-TYPE
  SYNTAX       SnmpAdminString
  MAX-ACCESS   read-only
  STATUS       current
  DESCRIPTION  "This MIB Object provides the endpoint identifier followed by the PacketCable MTA’s Fully Qualified Domain Name (FQDN) and the IP Address (IP) of the PacketCable MTA device.

This will be denoted as follows:
  aaln/n:<FQDN>/<IP>, where ‘n’ is the Endpoint number.
or
  <FQDN>/<IP> if it is not specific to an endpoint."

::= { pktcDevEventLogEntry 6 }

pktcDevEvLogType OBJECT-TYPE
  SYNTAX       BITS {
               local (0),
               syslog (1),
               trap (2),
               inform (3)
             }
  MAX-ACCESS   read-only
  STATUS       current
  DESCRIPTION  "This MIB Object contains the kind of actions taken by the PacketCable device when the event under
consideration occurred.

A bit with a value of 1 indicates the corresponding action was taken. Setting it to a value of 0 indicates that the corresponding action was not taken.

An event may trigger one or more actions (e.g.: Syslog and SNMP) or may remain as a local event since transmissions could be disabled or inhibited as defined by the Throttle MIB Objects.

::= { pktcDevEventLogEntry 7 }

pktcDevEvLogTargetInfo OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This MIB Object contains a comma separated list of the actions taken, along with the target IP address for the generated event.

The syntax is as:

Where <action-n/IP> is to be denoted as follows:
For Syslog events:
syslog/<IP address of the Syslog Server:port>
For SNMP traps:
snmpTrap/<IP address of the SNMP Server:port>
For SNMP INFORMS:
snmpInform/<IP address of the SNMP Server:port>

If there are multiple targets for the same type (SNMP Traps sent to multiple IP addresses) or if there are multiple messages sent to the same IP (Syslog and SNMP sent to the same IP address) they need to be reported individually."

::= { pktcDevEventLogEntry 8 }

pktcDevEvLogCorrelationId OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This MIB Object contains the correlation ID generated by the MTA as per section 5.4.5 of [3] that was being used by the MTA when the event was generated."
::= { pktcDevEventLogEntry 9 }

pktcDevEvLogAdditionalInfo OBJECT-TYPE
SYNTAX     SnmpAdminString
MAX-ACCESS read-only
STATUS     current
DESCRIPTION
"This MIB Object contains additional, useful
information in relation to the corresponding event that a
PacketCable device might wish to report (for example:
parameterized data or debugging information). The format
is vendor-specific.
However, the PacketCable device is not required to
implement this functionality."
::= { pktcDevEventLogEntry 10 }

---
-- Notifications
---

pktcDevEvNotificationIndex OBJECT IDENTIFIER ::= 
{ pktcDevEvNotification 0 }

pktcDevEvInform NOTIFICATION-TYPE
OBJECTS { pktcDevEvLogTime,
pktcDevEvLogEnterprise,pktcDevEvLogId,
pktcDevEvLogEndpointName,pktcDevEvLogCorrelationId,ifPhysAddress}
STATUS     current
DESCRIPTION
"This Notification MIB Objects contains the Inform
contents for event reporting "
::= { pktcDevEvNotificationIndex 1 }

pktcDevEvTrap NOTIFICATION-TYPE
OBJECTS { pktcDevEvLogTime,
pktcDevEvLogEnterprise,pktcDevEvLogId,
pktcDevEvLogEndpointName,pktcDevEvLogCorrelationId,ifPhysAddress}
STATUS     current
DESCRIPTION
"This Notification MIB Objects contains the Trap contents
for event reporting "
::= { pktcDevEvNotificationIndex 2 }

---
-- Conformance/Compliance
---

pktcEventConformance OBJECT IDENTIFIER ::=
pktcEventCompliances OBJECT IDENTIFIER ::= 
{ pktcEventConformance 1 }

pktcEventGroups OBJECT IDENTIFIER ::= 
{ pktcEventConformance 2 }

pktcEventBasicCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for devices that implement 
Event reporting feature."
MODULE --pktcEventMib

MANDATORY-GROUPS {
  pktcEventGroup,
  pktcEventNotificationGroup
}
-- units of conformance
::= { pktcEventCompliances 3 }

pktcEventGroup OBJECT-GROUP
OBJECTS {
pktcDevEvControl,
pktcDevEvSyslogAddressType,
pktcDevEvSyslogAddress,
pktcDevEvSyslogUdpPort,
pktcDevEvThrottleAdminStatus,
pktcDevEvThrottleThreshold,
pktcDevEvThrottleInterval,
pktcDevEvTransmissionStatus,
pktcDevEventDescrFacility,
pktcDevEventDescrLevel,
pktcDevEventDescrReporting,
pktcDevEventDescrText,
pktcDevEvLogTime,
pktcDevEvLogEnterprise,
pktcDevEvLogId,
pktcDevEvLogText,
pktcDevEvLogEndpointName,
pktcDevEvLogType,
pktcDevEvLogTargetInfo,
pktcDevEvLogCorrelationId,
pktcDevEvLogAdditionalInfo,
pktcDevEvReportingLevel,
pktcDevEventDescrClass,
pktcDevEventReportStatus,
pktcDevEventClassReportLevel}
6. Acknowledgments

This document is a production of the PacketCable Working Group.

The current editors wish to express gratitude to:

John Berg          CableLabs, Inc.
Paul Duffy         Cisco Systems, Inc.
Rick Vetter        Motorola, Inc.
Wim De Ketelaere   tComLabs
Peter Bates        Telcordia
Satish Kumar       Texas Instruments, Inc.
Kevin Marez        Motorola, Inc.
Roy Spitzer        Telogy Networks, Inc.

7. Normative References


8. Informative References


9. Security Considerations

There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These are the tables and objects and their sensitivity/vulnerability:

pktcDevEventControl: This table controls events that can be generated, the destination Syslog address information and event classes, if supported. Network operations can be impacted if insufficient security is provided. And misconfiguration of allowed event classes for event generation might impact network performance.
pktcDevEventThrottle: This table controls the rate at which events can be generated, if not configured properly, the network load caused by event messaging might severely impact network performance.

Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:

pktcDevEventLogTable: This table contains the log of generated event messages. Read access to this table might reveal some specific information that should be kept confidential.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module, is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

Authors Addresses

Wim De Ketelaere
tComLabs
Stapelplein 70
9000 Gent, Belgium
+32 9 269 22 90
deketelaere@tComLabs.com

Eugene Nechamkin
Broadcom Corporation
200 - 13711 International Place
Richmond, BC, V6V 2Z8, Canada
Disclaimer of validity

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

Full Copyright Statement

Copyright (C) The Internet Society (2005). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.