Exporting Type Information for IPFIX Information Elements
draft-ietf-ipfix-exporting-type-00.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 10, 2008.

Copyright Notice

Copyright (C) The IETF Trust (2008).

Abstract

This document describes an extension to IPFIX to allow the encoding of IPFIX Information Model properties within an IPFIX Message stream, to allow the export of extended type information for enterprise-specific Information Elements. This format is designed to facilitate
interoperability and reusability among a wide variety of applications and tools.
1. Introduction

The IPFIX protocol specification allows the creation of enterprise-specific Information Elements to easily extend the protocol to meet requirements which aren’t covered by the existing Information Model. However, IPFIX Templates provide only the ability to export the size of the fields defined by these Information Elements; there is no mechanism to provide full type information for these Information Elements as is defined for the Information Elements in the IPFIX Information Model.

This limits the interoperability of enterprise-specific Information Elements. It is not possible to use analysis tools on IPFIX records containing these partially defined Information Elements that have not been developed with a priori knowledge of their types, since such tools will not be able to decode them; these tools can only treat and store them as opaque octet arrays. However, if richer information is available, additional operations such as efficient storage, display, and limited analysis of records containing enterprise-specific Information Elements become possible, even for Collecting Processes that had not been specifically developed to understand them.

This document proposes a mechanism to encode the full set of properties available for the definition of Information Elements within the IPFIX Information Model inline within an IPFIX Message stream using IPFIX Options. This mechanism may be used to fully define type information for Information Elements used within a message stream, without resort to an external reference or reliance on out-of-band configuration.

Note that the solution described in this draft is only for providing interoperability for enterprise specific information elements that are not yet standardized. The solution introduces overhead and does not lead to real interoperability as provided by standards. Therefore we highly recommend to standardize all new information elements by registering them with IANA. Standardization is straightforward. The type information that needs to be specified in order to support the proposed solution provides a perfect basis for the description required for standardizing the information element.

We assume that the proposed solution is mainly used in the following two situations: a) for information elements for very specific solutions or in very specific environments for which a standardization might not seem necessary because only few users are using it or b) temporarily for new information elements before they are standardized or to first investigate whether they become popular enough to become standardized.
It might happen that information elements previously described by the proposed exporting type information later become a standard information element. In some environments old and new version of the information element can coexist. A translation between information elements expressed by the described solution and standardized information elements is not necessary. Collectors will act in accordance to their capabilities and ignore messages that they do not support.

2. Terminology

Terms used in this document that are defined in the Terminology section of the IPFIX Protocol [I-D.ietf-ipfix-protocol] document are to be interpreted as defined there.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Type Information Export

This section describes the mechanism used to encode Information Element type information within an IPFIX Message stream. This mechanism consists of an Options Template Record used to define Information Element type records, and a set of Information Elements required by these type records. We first specify the necessary Information Elements, followed by the Information Element Type Options Template itself. Note that Information Element type records require one Information Element, informationElementId, that is defined in the PSAMP Information Model [I-D.ietf-psamp-info].

3.1. informationElementDataType

Description: A description of the storage type of an IPFIX information element. These correspond to the abstract data types defined in section 3.1 of the IPFIX Information Model [I-D.ietf-ipfix-info]; see that section for more information on the types described below. This field may take the following values:
### Value	Description
0x00 | octetArray
0x01 | unsigned8
0x02 | unsigned16
0x03 | unsigned32
0x04 | unsigned64
0x05 | signed8
0x06 | signed16
0x07 | signed32
0x08 | signed64
0x09 | float32
0x0A | float64
0x0B | boolean
0x0C | macAddress
0x0D | string
0x0E | dateTimeSeconds
0x0F | dateTimeMilliseconds
0x10 | dateTimeMicroseconds
0x11 | dateTimeNanoseconds
0x12 | ipv4Address
0x13 | ipv6Address

These types are registered in the IANA IPFIX Information Element Data Type subregistry. This subregistry is intended to assign numbers for type names, not to provide a mechanism for adding data types to the IPFIX Protocol, and as such requires a Standards Action [RFC2434] to modify.

Abstract Data Type: unsigned8

ElementId: TBD1

Status: Proposed

Reference: Section 3.1 of the IPFIX Information Model

3.2. informationElementDescription

Description: A string containing a human-readable description of an Information Element.

Abstract Data Type: string
Data Type Semantics: identifier
ElementId: TBD2
Status: Proposed

3.3. informationElementName

Description: A string containing the name of an Information Element.

Abstract Data Type: string
Data Type Semantics: identifier
ElementId: TBD3
Status: Proposed

3.4. informationElementRangeBegin

Description: Contains the inclusive low end of the range of acceptable values for an Information Element. Not valid and SHOULD be ignored by a Collecting Process unless informationElementRangeEnd is also available for the same Information Element.

Abstract Data Type: unsigned64
Data Type Semantics: quantity
ElementId: TBD4
Status: Proposed

3.5. informationElementRangeEnd

Description: Contains the inclusive high end of the range of acceptable values for an Information Element. Not valid and SHOULD be ignored by a Collecting Process unless informationElementRangeBegin is also available for the same Information Element.

Abstract Data Type: unsigned64
Data Type Semantics: quantity

ElementId: TBD5

Status: Proposed

3.6. informationElementSemantics

Description: A description of the semantics of an IPFIX information element. These correspond to the data type semantics defined in section 3.2 of the IPFIX Information Model [I-D.ietf-ipfix-info]; see that section for more information on the types described below. This field may take the following values; the special value 0x00 (none) is used to note that no semantics apply to the field; it cannot be manipulated by a Collecting Process or File Reader that does not understand it a priori.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>none</td>
</tr>
<tr>
<td>0x01</td>
<td>quantity</td>
</tr>
<tr>
<td>0x02</td>
<td>totalCounter</td>
</tr>
<tr>
<td>0x03</td>
<td>deltaCounter</td>
</tr>
<tr>
<td>0x04</td>
<td>identifier</td>
</tr>
<tr>
<td>0x05</td>
<td>flags</td>
</tr>
</tbody>
</table>

These semantics are registered in the IANA IPFIX Information Element Semantics subregistry. This subregistry is intended to assign numbers for semantics names, not to provide a mechanism for adding semantics to the IPFIX Protocol, and as such requires a Standards Action [RFC2434] to modify.

Abstract Data Type: unsigned8

ElementId: TBD6

Status: Proposed

Reference: Section 3.2 of the IPFIX Information Model

3.7. informationElementUnits

Description: A description of the units of an IPFIX Information Element. These correspond to the units implicitly defined in the Information Element definitions in section 5 of the IPFIX Information Model [I-D.ietf-ipfix-info]; see that section for more
information on the types described below. This field may take the following values; the special value 0x00 (none) is used to note that the field is unitless.

<table>
<thead>
<tr>
<th>Value</th>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>0x0001</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td>0x0002</td>
<td>octets</td>
<td></td>
</tr>
<tr>
<td>0x0003</td>
<td>packets</td>
<td></td>
</tr>
<tr>
<td>0x0004</td>
<td>flows</td>
<td></td>
</tr>
<tr>
<td>0x0005</td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>0x0006</td>
<td>milliseconds</td>
<td></td>
</tr>
<tr>
<td>0x0007</td>
<td>microseconds</td>
<td></td>
</tr>
<tr>
<td>0x0008</td>
<td>nanoseconds</td>
<td></td>
</tr>
<tr>
<td>0x0009</td>
<td>4-octet words</td>
<td>for IPv4 header length</td>
</tr>
<tr>
<td>0x000A</td>
<td>messages</td>
<td>for reliability reporting</td>
</tr>
<tr>
<td>0x000B</td>
<td>hops</td>
<td>for TTL</td>
</tr>
<tr>
<td>0x000C</td>
<td>entries</td>
<td>for MPLS label stack</td>
</tr>
</tbody>
</table>

These types are registered in the IANA IPFIX Information Element Units subregistry; new types may be added on a First Come First Served \([RFC2434]\) basis.

Abstract Data Type: unsigned16

ElementId: TBD7

Status: Proposed

Reference: Section 5 of the IPFIX Information Model

3.8. privateEnterpriseNumber

Description: A private enterprise number used to scope an informationElementID, as would appear in an IPFIX Template Record. This element can be used to scope properties to a specific Information Element. If the Enterprise ID bit of the corresponding Information Element is cleared (has the value 0), this IE should be set to 0. The presence of a non-zero value in this IE implies that the Enterprise ID bit of the corresponding Information Element is set (has the value 1).
Abstract Data Type: unsigned32
Data Type Semantics: identifier
ElementId: TBD8
Status: Proposed
Reference: Section 3.4.1 of the IPFIX Protocol draft

3.9. Information Element Type Options Template

The Information Element Type Options Template attaches type information to Information Elements used within Template Records, as scoped to an Observation Domain within a Transport Session. This provides a mechanism for representing an IPFIX Information Model inline within an IPFIX Message stream. Data Records described by this template are referred to as Information Element type records.

In deployments in which interoperability across vendor implementations of IPFIX is important, an Exporting Process exporting data using Templates containing enterprise-specific Information Elements SHOULD export an Information Element type record for each enterprise-specific Information Element it exports. Collecting Processes MAY use these type records to improve handling of unknown enterprise-specific Information Elements. Exporting Processes using enterprise-specific Information Elements to implement proprietary features MAY omit type records for those Information Elements.

Information Element type records MUST be handled by Collecting Processes as scoped to the Transport Session in which they are sent; this facility is not intended to provide a method for the permanent definition of Information Elements.

Similarly, for security reasons, type information for a given Information Element MUST NOT be re-defined by Information Element type records. Once an Information Element type record has been exported for a given Information Element within a given Transport Session, all subsequent type records for that Information Element MUST be identical. If conflicting semantic or type information is received in multiple semantics records by a Collecting Process, the Collecting Process MUST reset the Transport Session.

The template SHOULD contain the following Information Elements as defined in the PSAMP Information Model [I-D.ietf-psamp-info] and in this document, above:
<table>
<thead>
<tr>
<th>IE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>informationElementID</td>
<td>The Information Element identifier of the Information Element within the specified Template this record describes. This Information Element MUST be defined as a Scope Field. See the PSAMP Information Model [I-D.ietf-psamp-info] for a definition of this field.</td>
</tr>
<tr>
<td>privateEnterpriseNumber</td>
<td>The Private Enterprise number of the Information Element within the specified Template this record describes. This Information Element MUST be defined as a Scope Field.</td>
</tr>
<tr>
<td>informationElementDataType</td>
<td>The storage type of the specified Information Element.</td>
</tr>
<tr>
<td>informationElementSemantics</td>
<td>The semantic type of the specified Information Element.</td>
</tr>
<tr>
<td>informationElementUnits</td>
<td>The units of the specified Information Element. This element MAY be omitted if the Information Element is a unitless quantity, or a not a quantity or counter.</td>
</tr>
<tr>
<td>informationElementRangeBegin</td>
<td>The low end of the range of acceptable values for the specified Information Element. This element MAY be omitted if the Information Element’s acceptable range is defined by its data type.</td>
</tr>
<tr>
<td>informationElementRangeEnd</td>
<td>The high end of the range of acceptable values for the specified Information Element. This element MAY be omitted if the Information Element’s acceptable range is defined by its data type.</td>
</tr>
<tr>
<td>informationElementName</td>
<td>The name of the specified Information Element.</td>
</tr>
</tbody>
</table>
4. Security Considerations

The same security considerations as for the IPFIX Protocol [I-D.ietf-ipfix-protocol] apply.

5. IANA Considerations

This document specifies the creation of several new IPFIX Information Elements in the IPFIX Information Element registry located at http://www.iana.org/assignments/ipfix, as defined in section 3 above. IANA has assigned the following Information Element numbers for their respective Information Elements as specified below:

- Information Element Number TBD1 for the informationElementDataType Information Element
- Information Element Number TBD2 for the informationElementDescription Information Element
- Information Element Number TBD3 for the informationElementName Information Element
- Information Element Number TBD4 for the informationElementRangeBegin Information Element
- Information Element Number TBD5 for the informationElementRangeEnd Information Element
- Information Element Number TBD6 for the informationElementSemantics Information Element
- Information Element Number TBD7 for the informationElementUnits Information Element
- Information Element Number TBD8 for the privateEnterpriseNumber Information Element

[NOTE for IANA: The text TBD1, TBD2, TBD3, TBD4, TBD5, TBD6, TBD7, and TBD8 should be replaced with the respective assigned]
IANA has created an Information Element Data Type subregistry for the values defined for the informationElementSemantics Information Element. Entries may be added to this subregistry subject to a Standards Action [RFC2434].

[NOTE for IANA: Please create a new Information Element Data Type subregistry as specified in the paragraph above, with values taken from section 3.1 of this document.]

IANA has created an Information Element Semantics subregistry for the values defined for the informationElementSemantics Information Element. Entries may be added to this subregistry subject to a Standards Action [RFC2434].

[NOTE for IANA: Please create a new Information Element Semantics subregistry as specified in the paragraph above, with values taken from section 3.6 of this document.]

IANA has created an Information Element Units subregistry for the values defined for the informationElementUnits Information Element. Entries may be added to this subregistry on a Experts Review [RFC2434] basis.

[NOTE for IANA: Please create a new Information Element Units subregistry as specified in the paragraph above, with values taken from section 3.7 of this document.]

6. Acknowledgements

Thanks to Paul Aitken for the detailed technical review, and to David Moore for first raising this issue to the IPFIX mailing list.

7. References

7.1. Normative References

[I-D.ietf-ipfix-protocol]

[I-D.ietf-ipfix-info]
Quittek, J., "Information Model for IP Flow Information
Informative References

[I-D.ietf-psamp-info]

Appendix A. Examples

The following example illustrates how the type information extension mechanism defined in this document may be used to describe the semantics of enterprise-specific Information Elements. The Information Elements used in this example are as follows:

- initialTCPFlags, CERT (PEN 6871) private IE 14, 1 octet, the TCP flags on the first TCP packet in the flow.
- unionTCPFlags, CERT (PEN 6871) private IE 15, 1 octet, the union of the TCP flags on all packets after the first TCP packet in the flow.

An Exporting Process exporting flows containing these Information Elements might use a Template like the following:
Figure 1: Template with Enterprise-Specific IEs

However, a Collecting Process receiving Data Sets described by this Template can only treat the enterprise-specific Information Elements as opaque octets; specifically, there is no hint to the collector that they contain flag information. To use the type information extension mechanism to address this problem, the Exporting Process would first export the Information Element Type Options Template described in section 3.9 above:
Figure 2: Example Information Element Type Options Template

Then, the Exporting Process would then export two records described by the Example Information Element Type Options Template to describe the enterprise-specific Information Elements:
Figure 3: Type Information Extension Example

Authors’ Addresses

Elisa Boschi
Hitachi Europe SAS
Immeuble Le Theleme
1503 Route des Dolines
06560 Valbonne
France

Phone: +33 4 89874100
Email: elisa.boschi@hitachi-eu.com
Brian H. Trammell
CERT Network Situational Awareness
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, Pennsylvania 15213
United States

Phone: +1 412 268 9748
Email: bht@cert.org

Lutz Mark
Fraunhofer Institute for Open Communication Systems
Kaiserin-Augusta-Allee 31
10589 Berlin
Germany

Phone: +49 30 3463 7306
Email: lutz.mark@fokus.fraunhofer.de

Tanja Zseby
Fraunhofer Institute for Open Communication Systems
Kaiserin-Augusta-Allee 31
10589 Berlin
Germany

Phone: +49 30 3463 7153
Email: tanja.zseby@fokus.fraunhofer.de