IS-IS BFD Enabled TLV
draft-ietf-isis-bfd-tlv-02

Abstract

This document describes a TLV for use in the IS-IS routing protocol that allows for the proper use of the Bidirectional Forwarding Detection protocol (BFD). There exist certain scenarios in which IS-IS will not react appropriately to a BFD detected forwarding plane failure without use of either this TLV or some other method.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 8, 2010.

Copyright Notice
Internet-Draft IS-IS BFD Enabled TLV January 2010

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the BSD License.

Table of Contents

1. Introduction . 3
2. The Problem . 3
3. The Solution . 3
 3.1. State Definitions . 4
 3.2. Adjacency Establishment and Maintenance 4
 3.3. Advertisement of Topology Specific IS Neighbors 5
4. Transition . 5
5. Graceful Restart . 6
6. The BFD Enabled TLV . 6
7. Security Considerations . 6
8. IANA Considerations . 7
9. Acknowledgements . 7
10. References . 7
 10.1. Normative References 7
 10.2. Informative References 8
Authors’ Addresses . 8
1. Introduction

The Bidirectional Forwarding Detection protocol [I-D.ietf-bfd-base] is a protocol that allows for detection of a forwarding plane failure between two routers. A router can use [I-D.ietf-bfd-base] to validate that a peer router’s forwarding ability is functioning.

One specific application of BFD as described in [I-D.ietf-bfd-generic] is to verify the forwarding ability of an IS-IS [RFC1195] router’s adjacencies; however, the method described in [I-D.ietf-bfd-generic] does not allow for certain failure scenarios. We will define a TLV that will allow for proper response to the detection of all forwarding failures where the use of BFD is employed with IS-IS.

2. The Problem

We observe that to allow for mixed use (i.e., some routers running BFD and some not) [I-D.ietf-bfd-generic] does not require a BFD session be established prior to the establishment of an IS-IS adjacency. Thus, if a router A has neighbors B and C, and B does not support BFD, A would still form adjacencies with B and C, and would only establish a BFD session with C.

The problem with this solution is that it assumes that the transmission and receipt of IS-IS IIHs shares fate with forwarded data packets. This is not a fair assumption to make given that the primary use of BFD is to protect IPv4 (and IPv6) forwarding and IS-IS does not utilize IPv4 or IPv6 for sending or receiving its hellos.

Thus, if we consider our previous example, and if C is currently experiencing an IPv4 forwarding failure that allows for IS-IS IIHs to be sent and received, when A first starts (or restarts) A will assume that C simply does not support BFD, will form an adjacency with C, and may incorrectly forward IPv4 traffic through C.

3. The Solution

A simple solution to this problem is for an IS-IS router to advertise that it has BFD enabled on a given interface. It can do this through the inclusion of a TLV in its IIHs, and indeed that is our proposal.

When sending an IIH on a BFD enabled interface, a router which supports this extension MUST include the BFD enabled TLV in its IIH. The contents of the TLV MUST indicate what topologies/protocols [RFC5120] have been enabled for BFD by including the appropriate
MTID/NLID pairs.

When sending an IIH on an interface on which BFD is NOT enabled a router MUST NOT include the BFD enabled TLV.

3.1. State Definitions

The following definitions apply to each IS-IS neighbor:

For each locally supported MTID/NLID pair, an ISIS_TOPO_NLID_BFD_REQUIRED variable is assigned. If BFD is supported by both the local system and the neighbor for the MTID/NLID this variable is set to TRUE. Otherwise the variable is set to FALSE.

For each locally supported MTID, an ISIS_TOPO_BFD_REQUIRED variable is set to the logical OR of all ISIS_TOPO_NLID_BFD_REQUIRED variables associated with that MTID.

An ISIS_BFD_REQUIRED variable is set to the logical AND of all ISIS_TOPO_BFD_REQUIRED variables.

For each locally supported MTID/NLID pair, an ISIS_TOPO_NLID_STATE variable is assigned. If ISIS_TOPO_NLID_BFD_REQUIRED is TRUE, this variable follows the BFD session state for that MTID/NLID (UP == TRUE). Otherwise the variable is set to TRUE.

For each locally supported topology (MTID), an ISIS_TOPO_USEABLE variable is set to the logical AND of the set of ISIS_TOPO_NLID_STATE variables associated with that MTID.

An ISIS_NEIGHBOR_USEABLE variable is set to the logical OR of all ISIS_TOPO_USEABLE variables.

3.2. Adjacency Establishment and Maintenance

Whenever ISIS_BFD_REQUIRED is TRUE the following extensions to the rules for adjacency establishment and maintenance MUST apply:

- ISIS_NEIGHBOR_USEABLE MUST be TRUE before the adjacency can transition from INIT to UP state
- When the IS-IS adjacency is UP and ISIS_NEIGHBOR_USEABLE becomes FALSE the IS-IS adjacency MUST transition to DOWN.
- On a Point-to-Point circuit whenever ISIS_NEIGHBOR_USEABLE is FALSE, the Three-Way adjacency state MUST be set to DOWN in the Point-to-Point Three Way Adjacency TLV[RFC5303] in all transmitted
IIHs.

- On a LAN circuit whenever ISIS_NEIGHBOR_USEABLE is FALSE, the IS Neighbors TLV advertising the MAC address of the neighbor MUST be omitted in all transmitted IIHs.

3.3. Advertisement of Topology Specific IS Neighbors

The advertisement of a topology specific IS-neighbor (as well as the use of the neighbor in the topology specific decision process) is determined by the value of ISIS_TOPO_USEABLE for each topology. If ISIS_TOPO_USEABLE is TRUE then the topology specific neighbor is advertised. If ISIS_TOPO_USEABLE is FALSE then the topology specific neighbor is NOT advertised.

4. Transition

To allow for a non-disruptive transition to the use of BFD some amount of time should be allowed before bringing down an UP adjacency on a BFD enabled interface when the value of ISIS_BFD_REQUIRED becomes TRUE as a result of the introduction of the BFD TLV or the modification (by adding a new supported MTID/NLPID) of an existing BFD TLV in a neighbor’s IIH. A simple way to do this is to not update the adjacency hold-time when receiving such an IIH from a neighbor with whom we have an UP adjacency until ISIS_NEIGHBOR_USEABLE becomes TRUE.

If the value of ISIS_BFD_REQUIRED becomes FALSE as a result of the removal the BFD TLV or the modification (by removing a supported MTID/NLPID) of an existing BFD TLV in a neighbor’s IIH then BFD session establishment is no longer required to maintain the adjacency or transition the adjacency to the UP state.

If a BFD session is administratively shut down [I-D.ietf-bfd-base] and the BFD session state change impacts the value of ISIS_NEIGHBOR_USEABLE, then IS-IS SHOULD allow time for the corresponding MTID/NLPID to be removed from the neighbor’s BFD TLV by not updating the adjacency hold time until ISIS_BFD_REQUIRED becomes FALSE. Note that while this allows a non-disruptive transition, it still enforces consistency between the administrative state of the BFD session and the MTID/NLPID(s) advertised in the BFD TLV. This is necessary to provide consistent behavior regardless of whether the BFD AdminDown state is introduced before or after an IS-IS adjacency UP state has been achieved.
5. Graceful Restart

It is worth considering what if anything should be done when IS-IS is gracefully restarting [RFC5306].

In cases where BFD shares fate with the control plane, it can be expected that BFD session failure may occur in conjunction with the control plane restart. In such cases premature abort of IS-IS graceful restart as a result of BFD session failure is undesirable. Therefore, some mechanism to ignore the BFD session failure for a limited period of time would be beneficial. How this is implemented is beyond the scope of this document. Consult [I-D.ietf-bfd-generic] for further details.

6. The BFD Enabled TLV

The BFD enabled TLV is formatted as shown below. The TLV SHALL only be included in an IS-IS IIH PDU and only when BFD is enabled for one or more supported MTID/protocols on the interface over which the IIH is being sent. The NLPIDs encoded in the TLV are defined in [ISO9577]

<table>
<thead>
<tr>
<th>Type</th>
<th>139 (suggested - to be assigned by IANA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td># of octets in the value field (3 to 255)</td>
</tr>
<tr>
<td>Value</td>
<td>three octets specifying the MTID/NLPID for each topology/data protocol for which BFD support is enabled</td>
</tr>
</tbody>
</table>

No. of octets

```
+-----------------------+     
| R| R| R| R|   MTID        |     2     |
|-----------------------+     
|   NLPID               |     1     |
+-----------------------+     
```

7. Security Considerations

The TLV defined within this document describes an addition to the IS-IS Hello protocol and does not impact the security mechanism of the IS-IS protocol.
8. IANA Considerations

The following IS-IS TLV type is defined by this draft.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>IIH</th>
<th>LSP</th>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD Enabled TLV</td>
<td>139</td>
<td>y</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

Please update the IS-IS TLV Codepoint Registry accordingly.

Note to RFC Editor: this section may be removed on publication as an RFC.

9. Acknowledgements

The authors wish to thank Jeffrey Haas, Matthew Jones, Dave Katz, Jonathan Moon, Stefano Previdi, Mike Shand, Michael Shiplett and David Ward, for various input on this document.

10. References

10.1. Normative References

10.2. Informative References

[I-D.ietf-bfd-base]

[I-D.ietf-bfd-generic]

Authors’ Addresses

Christian E. Hopps
Cisco Systems
170 W. Tasman Dr.
San Jose, California 95134
USA

Email: chopps@cisco.com

Les Ginsberg
Cisco Systems
510 McCarthy Blvd.
Milpitas, Ca. 95035
USA

Email: ginsberg@cisco.com