Status of This Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Abstract

This draft describes an optional implementation technique within IS-IS [ISO90, Cal90a, Cal90b] used today by several ISPs for routing within their clouds. IS-IS is an interior gateway routing protocol developed originally by OSI and used with IP extensions as IGP. This draft describes how to effectively bypass the problem of 255 circuits that IS-IS allows to maintain with minor violations of the specification that however does not prevent interoperability with existing implementations.

1. Introduction

IS-IS reserves within its packets only one byte for a circuit ID and the specification requests it to be unique. This ID is used in broadcast networks to identify a PNode. They don’t seem to serve any
particular purpose on p2p networks except for some checking in hellos and tie-breaking in removal of excess adjacencies.

2. More than 255 circuits for p2p links

For all p2p links within an Intermediate System, the same circuit ID can be chosen safely to interact with other Intermediate Systems. Even when two such systems are brought up on two ends of the link and both pick the same value, IS-IS specification does not preclude such a configuration. In case of multiple parallel links between the systems the only obvious problem is the impact on tie-breaking in case of excessive adjacencies. However, such a configuration cannot generate forwarding loops. Using the same circuit ID for all p2p circuits and general specification of p2p ISIS that originally assumed a reliable link layer, especially between same ISes can however lead to other subtle problems, those are however described and best solved using the optional 3-way hello technique described in [Kat99].

3. More than 255 circuits for broadcast links

More trickier a case is the one in which an intermediate system has to form adjacencies on a broadcast medium. The decisive insight is the fact that unique circuit ID on a broadcast medium is only needed in the case where the given intermediate system is assuming the role of the DIS for the LAN. As long as the intermediate system has not elected itself DIS, it can use a non-unique circuit ID (1). Therefore, it is enough to change circuit ID in all the packets transmitted to a unique one as soon as DIS election ran and the system must become DIS. Such behavior is basically indistinguishable from a node crashing and coming immediately back with a different circuit ID than the one used before the crash. Implementation experience shows that it is unwise to tear down the adjacencies before changing circuit IDs since this can lead to ‘’ripple’’-down behavior in DIS property on the broadcast media in case of all routers having the same preference. Additionally, when recycling a previously used circuit ID and reusing it on another LAN special

1. it is important to realize that circuit ID is not a part of tie-breaking rules on DIS election
care has to be taken that the newly generated pseudonode LSPs have sequence numbers high enough as to prevent unnecessary flooding.

When using this technique a node can use arbitrary number of circuits only being restricted by the fact that it cannot be DIS on more than 255 circuits since PNodes would become indistinguishable for different LANs. To solve that problem, different techniques, such as using multiple router IDs would be necessary, are however outside the scope of this draft. A possible, simple treatment of this problem is for a node to generate appropriate event or management notification and drop all hello packets on the appropriate LAN until a unique circuit ID becomes available or it detects a node with higher preference to become DIS on such LAN. Before going into the details of the procedure in the next section, it is worth to notice that the unique circuit IDs can be separated between levels (2).

3.1. Modification of the Behavior on Broadcast Media

The exact modification of the behavior for broadcast links is given here. It is a modification of chapter 8.4.1 of the original specification that states:

When the broadcast circuit is enabled on an Intermediate system the IS shall perform the following actions.

a) Commence sending IIH PDUs with the LAN ID field set to the concatenation of its own SystemID and its locally assigned one octet Local Circuit ID.

b) ... <omitted for clarity>

c) Start listening for ISO 9542 ISH PDUs and ESH PDUs and acquire adjacencies as appropriate. Do not run the Designated Intermediate System election process.

d) After waiting ISISHelloTimer * 2 seconds, run the Level 1 and/or the Level 2 Designated Intermediate System election process, depending on the Intermediate system type. This shall be run subsequently whenever an IIH PDU is received or transmitted as described in 8.4.3. (For these purposes, the transmission of the system’s own IIH PDU is equivalent to receiving it). If there

2. since a node can become DIS at either level independently
has been no change to the information on which the election is
performed since the last time it was run, the previous result can
be assumed. The relevant information is

1) the set of Intermediate system adjacency states,

2) the set of Intermediate System priorities (including this
   system’s) and

3) the existence (or otherwise) of at least one "Up" End system
   (not including Manual Adjacencies) or Intermediate system
   adjacency on the circuit.

An Intermediate system shall not declare itself to be a LAN
Designated Intermediate system of any type until it has at least one
"Up" End system (not including Manual Adjacencies) or Intermediate
system adjacency on the circuit. (This prevents an Intermediate
System which has a defective receiver and is incapable of receiving
any PDUs from erroneously electing itself LAN Designated Intermediate
System.) The LAN ID field in the LAN IIH PDUs transmitted by this
system shall be set to the value of the LAN ID reported in the LAN
IIH PDU (for the appropriate level) received from the system which
this system considers to be the Designated Intermediate System. This
value shall also be passed to the Update Process, as the pseudonode
ID, to enable Link State PDUs to be issued for this system claiming
connectivity to the pseudonode. If this system, as a result of the
Designated Intermediate System election process, considers itself to
be designated Intermediate System, the LAN ID field shall be set to
the concatenation of this system’s own ID and the locally assigned
one octet Local Circuit ID.

One additional point has to be introduced:

a) Commence sending IIH PDUs with the LAN ID field set to the
   concatenation of its own SystemID and a local non-zero, not
   necessarily unique circuit ID.

b) ... <omitted for clarity>
c) Start listening for ISO 9542 ISH PDUs and ESH PDUs and acquire adjacencies as appropriate. Do not run the Designated Intermediate System election process.

d) After waiting ISISHelloTimer * 2 seconds, run the Level 1 and or the Level 2 Designated Intermediate System election process depending on the Intermediate system type. If in any point in time the decision process determines the node to be DIS for this LAN:

1) Commence sending IIH PDUs with the LAN ID field set to the concatenation of its own SystemID and a local unique circuit ID.

otherwise exhibit standard behavior.

4. Acknowledgments

Some smart people probably thought about most of these things before and the p2p case may be documented in the best current practices for IS-IS in the Internet. Mike Shand and Tony Li commented on the proposal.

5. Security Consideration

ISIS security applies to the work presented. No specific security issues with the proposed solutions are known.

6. Intellectual Property Considerations

Lucent may seek patent or other intellectual property protection for some or all of the technologies disclosed in this document. If any standards arising from this document are or become protected by one or more patents assigned to Lucent, Lucent intends to disclose those patents and license them under openly specified and non-discriminatory terms.

References


Authors' Addresses

Tony Przygienda
Siara Systems
300 Ferguson Drive
Mountain View, CA 94043
prz@siara.com