Abstract

This document defines a YANG data model that can be used to configure and manage IS-IS protocol on network elements.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] when, and only when, they appear in all capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on July 22, 2019.
Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Design of the Data Model 3
 2.1. IS-IS Configuration 9
 2.2. Multitopology Parameters 9
 2.3. Per-Level Parameters 10
 2.4. Per-Interface Parameters 11
 2.5. Authentication Parameters 18
 2.6. IGP/LDP synchronization 18
 2.7. ISO parameters 18
 2.8. IP FRR ... 19
 2.9. Operational States 19
3. RPC Operations .. 20
4. Notifications ... 20
5. Interaction with Other YANG Modules 21
6. IS-IS YANG Module 22
7. Security Considerations 102
8. Contributors .. 103
9. IANA Considerations 103
10. Change log for ietf-isis YANG module 103
 10.1. From version -29 to version -30 103
 10.2. From version -28 to version -29 104
 10.3. From version -27 to version -28 104
 10.4. From version -26 to version -27 104
 10.5. From version -25 to version -26 104
 10.6. From version -24 to version -25 104
 10.7. From version -22 to version -24 105
 10.8. From version -21 to version -22 106
 10.9. From version -20 to version -21 106
 10.10. From version -19 to version -20 106
 10.11. From version -18 to version -19 106
 10.12. From version -17 to version -18 106
1. Introduction

This document defines a YANG ([RFC7950]) data model for IS-IS routing protocol.

The data model covers configuration of an IS-IS routing protocol instance as well as operational states.

A simplified tree representation of the data model is presented in Section 2. Tree diagrams used in this document follow the notation defined in [RFC8340].

The module is designed as per NMDA (Network Management Datastore Architecture) [RFC8342].

2. Design of the Data Model

The IS-IS YANG module augments the "control-plane-protocol" list in ietf-routing module (defined in [RFC8349]) with specific IS-IS parameters.

The figure below describes the overall structure of the isis YANG module:

module: ietf-isis
 augment /rt:routing/rt:ribs/rt:rib/rt:routes/rt:route:
 +--ro metric? uint32
 +--ro tag* uint64
augment /rt:routing/rt:control-plane-protocols/rt:control-plane-protocol:
 ++--rw isis
 ++--rw enable? boolean {admin-control}?
 ++--rw level-type? level
 ++--rw system-id? system-id
 ++--rw maximum-area-addresses? uint8 {maximum-area-addresses}?
 ++--rw area-address* area-address
 ++--rw lsp-mtu? uint16
 ++--rw lsp-lifetime? uint16
 ++--rw lsp-refresh? rt-types:timer-value-seconds16
(lsp-refresh)?
 ++--rw poi-tlv? boolean {poi-tlv}?
 ++--rw graceful-restart {graceful-restart}?
 | ++--rw enable? boolean
 | ++--rw restart-interval? rt-types:timer-value-seconds16
 | ++--rw helper-enable? boolean
 ++--rw nsr [nsr]?
 | ++--rw enable? boolean
 ++--rw node-tags {node-tag}?
 | ++--rw node-tag* [tag]
 | ...
 ++--rw metric-type
 | ++--rw value? enumeration
 | ++--rw level-1
 | ...
 | ++--rw level-2
 | ...
 ++--rw default-metric
 | ++--rw value? wide-metric
 | ++--rw level-1
 | ...
 | ++--rw level-2
 | ...
 ++--rw auto-cost {auto-cost}?
 | ++--rw enable? boolean
 | ++--rw reference-bandwidth? uint32
 ++--rw authentication
 | ++--rw (authentication-type)?
 | ...
 | ++--rw level-1
 | ...
 | ++--rw level-2
 | ...
 ++--rw address-families {nlpid-control}?
 | ++--rw address-family-list* [address-family]
 | ...
++rw mpls
 | ++rw te-rid {te-rid}?
 | ...
 | ++rw ldp
 ...
++rw spf-control
 | ++rw paths? uint16 {max-ecmp}?
 | ++rw ietf-spf-delay {ietf-spf-delay}?
 | ...
++rw fast-reroute {fast-reroute}?
 | ++rw lfa {lfa}?
++rw preference
 | ++rw (granularity)?
 | ...
++rw overload
 | ++rw status? boolean
++rw overload-max-metric {overload-max-metric}?
 | ++rw timeout? rt-types:timer-value-seconds16
++ro spf-log
 | ++ro event* [id]
 | ...
++ro lsp-log
 | ++ro event* [id]
 | ...
++ro hostnames
 | ++ro hostname* [system-id]
 | ...
++ro database
 | ++ro levels* [level]
 | ...
++ro local-rib
 | ++ro route* [prefix]
 | ...
++ro system-counters
 | ++ro level* [level]
 | ...
++ro protected-routes
 | ++ro address-family-stats* [address-family prefix alternate]
 | ...
++ro unprotected-routes
 | ++ro address-family-stats* [address-family prefix]
 | ...
++ro protection-statistics* [frr-protection-method]
 | ++ro frr-protection-method string
 | ++ro address-family-stats* [address-family]
 | ...
++rw topologies {multi-topology}?
| ...
| +--rw interfaces
| +--rw interface* [name]
| ...

rpcs:
 +---x clear-adjacency
 | +---w input
 | +---w routing-protocol-instance-name ->
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---w level? level
| | +---w interface? if:interface-ref

---x clear-database
 +---w input
 +---w routing-protocol-instance-name ->
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---w level? level

notifications:
 +---n database-overload
 | +---ro routing-protocol-name? ->
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro isis-level? level
| | +---ro overload? enumeration

---n lsp-too-large
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro isis-level? level
| | +---ro extended-circuit-id? extended-circuit-id
| | +---ro pdu-size? uint32
| | +---ro lsp-id? lsp-id

---n if-state-change
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro routing-protocol-name? ->
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro isis-level? level
| | +---ro interface-name? if:interface-ref
| | +---ro interface-level? level
| | +---ro extended-circuit-id? extended-circuit-id
| | +---ro state? if-state-type

---n corrupted-lsp-detected
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro routing-protocol-name? ->
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro isis-level? level
| | +---ro lsp-id? lsp-id

---n attempt-to-exceed-max-sequence
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro routing-protocol-name? ->
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro isis-level? level
| | +---ro lsp-id? lsp-id

---n id-len-mismatch
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro routing-protocol-name? ->
|/rt:routing/control-plane-protocols/control-plane-protocol/name
| | +---ro isis-level? level
| | +---ro interface-name? if:interface-ref
| +--ro interface-level? level
| +--ro extended-circuit-id? extended-circuit-id
| +--ro pdu-field-len? uint8
| +--ro raw-pdu? binary
+---n max-area-addresses-mismatch
 | +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 | +--ro isis-level? level
 | +--ro interface-name? if:interface-ref
 | +--ro interface-level? level
 | +--ro extended-circuit-id? extended-circuit-id
 | +--ro max-area-addresses? uint8
 | +--ro raw-pdu? binary
+---n own-lsp-purge
 | +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 | +--ro isis-level? level
 | +--ro interface-name? if:interface-ref
 | +--ro interface-level? level
 | +--ro extended-circuit-id? extended-circuit-id
 | +--ro lsp-id? lsp-id
+---n sequence-number-skipped
 | +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 | +--ro isis-level? level
 | +--ro interface-name? if:interface-ref
 | +--ro interface-level? level
 | +--ro extended-circuit-id? extended-circuit-id
 | +--ro lsp-id? lsp-id
+---n authentication-type-failure
 | +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 | +--ro isis-level? level
 | +--ro interface-name? if:interface-ref
 | +--ro interface-level? level
 | +--ro extended-circuit-id? extended-circuit-id
 | +--ro raw-pdu? binary
+---n authentication-failure
 | +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 | +--ro isis-level? level
 | +--ro interface-name? if:interface-ref
 | +--ro interface-level? level
 | +--ro extended-circuit-id? extended-circuit-id
 | +--ro raw-pdu? binary
+---n version-skew
 | +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 | +--ro isis-level? level
 | +--ro interface-name? if:interface-ref
 | +--ro interface-level? level
 | +--ro extended-circuit-id? extended-circuit-id
 | +--ro protocol-version? uint8
 | +--ro raw-pdu? binary
++-n area-mismatch
 +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 +--ro isis-level? level
 +--ro interface-name? if:interface-ref
 +--ro interface-level? level
 +--ro extended-circuit-id? extended-circuit-id
 +--ro raw-pdu? binary
++-n rejected-adjacency
 +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 +--ro isis-level? level
 +--ro interface-name? if:interface-ref
 +--ro interface-level? level
 +--ro extended-circuit-id? extended-circuit-id
 +--ro raw-pdu? binary
 +--ro reason? string
++-n protocols-supported-mismatch
 +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 +--ro isis-level? level
 +--ro interface-name? if:interface-ref
 +--ro interface-level? level
 +--ro extended-circuit-id? extended-circuit-id
 +--ro raw-pdu? binary
 +--ro protocols* uint8
++-n lsp-error-detected
 +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 +--ro isis-level? level
 +--ro interface-name? if:interface-ref
 +--ro interface-level? level
 +--ro extended-circuit-id? extended-circuit-id
 +--ro lsp-id? lsp-id
 +--ro raw-pdu? binary
 +--ro error-offset? uint32
 +--ro tlv-type? uint8
++-n adjacency-state-change
 +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 +--ro isis-level? level
 +--ro interface-name? if:interface-ref
 +--ro interface-level? level
 +--ro extended-circuit-id? extended-circuit-id
 +--ro neighbor? string
 +--ro neighbor-system-id? system-id
 +--ro state? adj-state-type
 +--ro reason? string
++-n lsp-received
 +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
 +--ro isis-level? level
 +--ro interface-name? if:interface-ref
 +--ro interface-level? level
2.1. IS-IS Configuration

The IS-IS configuration container is divided in:

- Global parameters.
- Per interface configuration (see Section 2.4).

Additional modules may be created to support any additional parameters. These additional modules MUST augment the ietf-isis module.

The model implements features, thus some of the configuration statement becomes optional. As an example, the ability to control the administrative state of a particular IS-IS instance is optional. By advertising the feature "admin-control", a device communicates to the client that it supports the ability to shutdown a particular IS-IS instance.

The global configuration contains usual IS-IS parameters such as lsp-mtu, lsp-lifetime, lsp-refresh, default-metric...

2.2. Multitopology Parameters

The model supports multitopology (MT) IS-IS as defined in [RFC5120].

The "topologies" container is used to enable support of MT extensions.

The "name" used in the topology list should refer to an existing RIB of the device.

Some specific parameters could be defined on a per topology basis both at global level and at interface level: for example, an interface metric can be defined per topology.
Multiple address families (like IPv4 or IPv6) can also be activated within the default topology. This can be achieved using the "afs" container (requiring "nlpid-control" feature to be advertised).

2.3. Per-Level Parameters

Some parameters allow a per level configuration. In this case, the parameter is modeled as a container with three configuration locations:

- a top level container: corresponds to level-1-2, so the configuration applies to both levels.
- a level-1 container: corresponds to level-1 specific parameters.
- a level-2 container: corresponds to level-2 specific parameters.

```
+--rw priority
    |  +--rw value?   uint8
    |  +--rw level-1
    |     |  +--rw value?   uint8
    |     +--rw level-2
            |  +--rw value?   uint8
```

Example:

```
<priority>
    <value>250</value>
    <level-1>
        <value>100</value>
    </level-1>
    <level-2>
        <value>200</value>
    </level-2>
</priority>
```

An implementation SHOULD prefer a level specific parameter over a level-all parameter. As example, if the priority is 100 for the level-1, 200 for the level-2 and 250 for the top level configuration, the implementation should use 100 for the level-1 and 200 for the level-2.

Some parameters like "overload bit" and "route preference" are not modeled to support a per level configuration. If an implementation supports per level configuration for such parameter, this implementation SHOULD augment the current model by adding both level-1 and level-2 containers and SHOULD reuse existing configuration groupings.
Example of augmentation:

```yang
augment "/rt:routing/" +
    "rt:control-plane-protocols/rt:control-plane-protocol"+
    "/isis:isis/isis:overload" {
    when "rt:type = 'isis:isis'" {
        description
            "This augment IS-IS routing protocol when used";
    }
    description
        "This augments IS-IS overload configuration
        with per level configuration.";

    container level-1 {
        uses isis:overload-global-cfg;
        description
            "Level 1 configuration.";
    }
    container level-2 {
        uses isis:overload-global-cfg;
        description
            "Level 2 configuration.";
    }
}
```

If an implementation does not support per level configuration for a parameter modeled with per level configuration, the implementation SHOULD advertise a deviation to announce the non support of the level-1 and level-2 containers.

Finally, if an implementation supports per level configuration but does not support the level-1-2 configuration, it SHOULD also advertise a deviation.

2.4. Per-Interface Parameters

The per-interface section of the IS-IS instance describes the interface specific parameters.

The interface is modeled as a reference to an existing interface defined in the "ietf/interfaces" YANG model ([RFC8343]).

Each interface has some interface-specific parameters that may have a different per level value as described in previous section. An interface-specific parameter always override an IS-IS global parameter.
Some parameters like hello-padding are defined as containers to allow easy extension by vendor specific modules.

++-rw interfaces
 +++-rw interface* [name]
 +--rw name if:interface-ref
 +--rw level-type? level
 +--rw lsp-pacing-interval?
 rt-types:timer-value-milliseconds
 +--rw lsp-retransmit-interval?
 rt-types:timer-value-seconds16
 +--rw passive? boolean
 +--rw csnp-interval?
 rt-types:timer-value-seconds16
 +--rw hello-padding
 | +--rw enable? boolean
 | +--rw mesh-group-enable? mesh-group-state
 | +--rw mesh-group? uint8
 | +--rw interface-type? interface-type
 | +--rw enable? boolean {admin-control}?
 | +--rw tag* uint32 {prefix-tag}?
 | +--rw tag64* uint64 {prefix-tag64}?
 +--rw node-flag? boolean {node-flag}?
 +--rw hello-authentication
 | +--rw (authentication-type)?
 | | +--:(key-chain) {key-chain}?
 | | | +--rw key-chain? key-chain:key-chain-ref
 | | | +--:(password)
 | | | | +--rw key? string
 | | | | +--rw crypto-algorithm? identityref
 | | +--rw level-1
 | | | +--rw (authentication-type)?
 | | | | +--:(key-chain) {key-chain}?
 | | | | | +--rw key-chain?
 | +--rw level-2
 | | +--rw (authentication-type)?
 | | | +--:(key-chain) {key-chain}?
 | | | | +--rw key-chain?
 +-- key-chain:key-chain-ref
 | +--:(password)
 | | +--rw key? string
 | | +--rw crypto-algorithm? identityref
 +--rw level-2
 | +--rw (authentication-type)?
 | | +--:(key-chain) {key-chain}?
 | | | +--rw key-chain?
 +-- key-chain:key-chain-ref
 +--:(password)
 | +--rw key? string
 | +--rw crypto-algorithm? identityref
 +--rw hello-interval
 | +--rw value? rt-types:timer-value-seconds16
 | +--rw level-1
 | | +--rw value? rt-types:timer-value-seconds16
 | | +--rw level-2
 | | +--rw value? rt-types:timer-value-seconds16
 +--rw hello-multiplier
Internet-Draft isis-cfg January 2019

| +--rw value? uint16
| +--rw level-1
| | +--rw value? uint16
| +--rw level-2
| | +--rw value? uint16

| +--rw priority
| +--rw value? uint8
| +--rw level-1
| | +--rw value? uint8
| +--rw level-2
| | +--rw value? uint8

| +--rw metric
| +--rw value? wide-metric
| +--rw level-1
| | +--rw value? wide-metric
| +--rw level-2
| | +--rw value? wide-metric

| +--rw bfd (bfd)?
| | +--rw enable? boolean
| | +--rw local-multiplier? multiplier
| | +--rw (interval-config-type)?
| | +--:(tx-rx-intervals)
| | | +--rw desired-min-tx-interval? uint32
| | | +--rw required-min-rx-interval? uint32
| | +--:(single-interval) {single-minimum-interval}?
| | +--rw min-interval? uint32

| +--rw address-families {nlpid-control}?
| +--rw address-family-list* [address-family]
| +--rw address-family iana-rt-types:address-family

| +--rw mpls
| +--rw ldp
| | +--rw igp-sync? boolean {ldp-igp-sync}?

| +--rw fast-reroute {fast-reroute}?
| +--rw lfa (lfa)?
| | +--rw candidate-enable? boolean
| | +--rw enable? boolean
| | +--rw remote-lfa (remote-lfa)?
| | | +--rw enable? boolean
| | +--rw level-1
| | | +--rw candidate-enable? boolean
| | | +--rw enable? boolean
| | | +--rw remote-lfa (remote-lfa)?
| | | +--rw enable? boolean
| | +--rw level-2
| | +--rw candidate-enable? boolean
| | +--rw enable? boolean
| | +--rw remote-lfa (remote-lfa)?
| | +--rw enable? boolean
---ro adjacencies
 ---ro adjacency* []
 ---ro neighbor-sys-type? level
 ---ro neighbor-sysid? system-id
 ---ro neighbor-extended-circuit-id?
 extended-circuit-id
 ---ro neighbor-snpa? snpa
 ---ro usage? level
 ---ro hold-timer?
 rt-types:timer-value-seconds16
 ---ro neighbor-priority? uint8
 ---ro lastuptime? yang:timestamp
 ---ro state? adj-state-type
 ---ro event-counters
 ---ro adjacency-changes? uint32
 ---ro adjacency-number? uint32
 ---ro init-fails? uint32
 ---ro adjacency-rejects? uint32
 ---ro id-len-mismatch? uint32
 ---ro max-area-addresses-mismatch? uint32
 ---ro authentication-type-fails? uint32
 ---ro authentication-fails? uint32
 ---ro lan-dis-changes? uint32
 ---ro packet-counters
 ---ro level* [level]
 ---ro level level-number
 ---ro iih
 | ---ro in? uint32
 | ---ro out? uint32
 ---ro ish
 | ---ro in? uint32
 | ---ro out? uint32
 ---ro esh
 | ---ro in? uint32
 | ---ro out? uint32
 ---ro lsp
 | ---ro in? uint32
 | ---ro out? uint32
 ---ro psnp
 | ---ro in? uint32
 | ---ro out? uint32
 ---ro csnp
 | ---ro in? uint32
 | ---ro out? uint32
 ---ro unknown
 | ---ro in? uint32
 | ---ro out? uint32
 ---rw topologies (multi-topology)?
 ---rw topology* [name]
 ---rw name ->
 ../../../..<../rt:ribs/rib/name
+-rw metric
 +-rw value? wide-metric
 +-rw level-1
 | +-rw value? wide-metric
 +-rw level-2
 +-rw value? wide-metric

rpcs:
 +---x clear-adjacency
 | +---w input
 | | +---w routing-protocol-instance-name ->
 /rt:routing/control-plane-protocols/control-plane-protocol/name
 | +---w level? level
 | | +---w interface? if:interface-ref
 +---x clear-database
 | +---w input
 | | +---w routing-protocol-instance-name ->
 /rt:routing/control-plane-protocols/control-plane-protocol/name
 +---w level? level

notifications:
 +---n database-overload
 | +---ro routing-protocol-name? ->
 /rt:routing/control-plane-protocols/control-plane-protocol/name
 | +---ro isis-level? level
 | +---ro overload? enumeration
 +---n lsp-too-large
 | +---ro routing-protocol-name? ->
 /rt:routing/control-plane-protocols/control-plane-protocol/name
 | +---ro isis-level? level
 | +---ro overload? enumeration
 | +---ro lsp-id? lsp-id
 +---n if-state-change
 | +---ro routing-protocol-name? ->
 /rt:routing/control-plane-protocols/control-plane-protocol/name
 | +---ro isis-level? level
 | +---ro interface-name? if:interface-ref
 | +---ro interface-level? level
 | +---ro extended-circuit-id? extended-circuit-id
 | +---ro pdu-size? uint32
 | +---ro lsp-id? lsp-id
 +---n corrupted-lsp-detected
 | +---ro routing-protocol-name? ->
 /rt:routing/control-plane-protocols/control-plane-protocol/name
 | +---ro isis-level? level
 | +---ro lsp-id? lsp-id
 +---n attempt-to-exceed-max-sequence
 | +---ro routing-protocol-name? ->
 /rt:routing/control-plane-protocols/control-plane-protocol/name
 | +---ro isis-level? level
 | +---ro lsp-id? lsp-id
 +---n id-len-mismatch
 | +---ro routing-protocol-name? ->
 /rt:routing/control-plane-protocols/control-plane-protocol/name
Internet-Draft isis-cfg January 2019

| +--ro isis-level? level
| +--ro interface-name? if:interface-ref
| +--ro interface-level? level
| +--ro extended-circuit-id? extended-circuit-id
| +--ro pdu-field-len? uint8
| +--ro raw-pdu? binary
++--n max-area-addresses-mismatch
| +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
| +--ro isis-level? level
| +--ro interface-name? if:interface-ref
| +--ro interface-level? level
| +--ro extended-circuit-id? extended-circuit-id
| +--ro max-area-addresses? uint8
| +--ro raw-pdu? binary
++--n own-lsp-purge
| +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
| +--ro isis-level? level
| +--ro interface-name? if:interface-ref
| +--ro interface-level? level
| +--ro extended-circuit-id? extended-circuit-id
| +--ro lsp-id? lsp-id
++--n sequence-number-skipped
| +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
| +--ro isis-level? level
| +--ro interface-name? if:interface-ref
| +--ro interface-level? level
| +--ro extended-circuit-id? extended-circuit-id
| +--ro lsp-id? lsp-id
++--n authentication-type-failure
| +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
| +--ro isis-level? level
| +--ro interface-name? if:interface-ref
| +--ro interface-level? level
| +--ro extended-circuit-id? extended-circuit-id
| +--ro raw-pdu? binary
++--n authentication-failure
| +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
| +--ro isis-level? level
| +--ro interface-name? if:interface-ref
| +--ro interface-level? level
| +--ro extended-circuit-id? extended-circuit-id
| +--ro raw-pdu? binary
++--n version-skew
| +--ro routing-protocol-name? ->
/rt:routing/control-plane-protocols/control-plane-protocol/name
| +--ro isis-level? level
| +--ro interface-name? if:interface-ref
| +--ro interface-level? level
| +--ro extended-circuit-id? extended-circuit-id
| +---ro protocol-version? uint8 |
| +---ro raw-pdu? binary |
| +---n area-mismatch |
	+---ro routing-protocol-name? ->
	/rt:routing/control-plane-protocols/control-plane-protocol/name
	+---ro isis-level? level
	+---ro interface-name? if:interface-ref
	+---ro interface-level? level
	+---ro extended-circuit-id? extended-circuit-id
	+---ro raw-pdu? binary
+---n rejected-adjacency	
	+---ro routing-protocol-name? ->
	/rt:routing/control-plane-protocols/control-plane-protocol/name
	+---ro isis-level? level
	+---ro interface-name? if:interface-ref
	+---ro interface-level? level
	+---ro extended-circuit-id? extended-circuit-id
	+---ro raw-pdu? binary
	+---ro reason? string
+---n protocols-supported-mismatch	
	+---ro routing-protocol-name? ->
	/rt:routing/control-plane-protocols/control-plane-protocol/name
	+---ro isis-level? level
	+---ro interface-name? if:interface-ref
	+---ro interface-level? level
	+---ro extended-circuit-id? extended-circuit-id
	+---ro raw-pdu? binary
	+---ro protocols* uint8
+---n lsp-error-detected	
	+---ro routing-protocol-name? ->
	/rt:routing/control-plane-protocols/control-plane-protocol/name
	+---ro isis-level? level
	+---ro interface-name? if:interface-ref
	+---ro interface-level? level
	+---ro extended-circuit-id? extended-circuit-id
	+---ro raw-pdu? binary
	+---ro error-offset? uint32
	+---ro tlv-type? uint8
+---n adjacency-state-change	
	+---ro routing-protocol-name? ->
	/rt:routing/control-plane-protocols/control-plane-protocol/name
	+---ro isis-level? level
	+---ro interface-name? if:interface-ref
	+---ro interface-level? level
	+---ro extended-circuit-id? extended-circuit-id
	+---ro lsp-id? lsp-id
	+---ro raw-pdu? binary
	+---ro state? adj-state-type
	+---ro reason? string
+---n lsp-received	
	+---ro routing-protocol-name? ->
	/rt:routing/control-plane-protocols/control-plane-protocol/name
	+---ro isis-level? level
	+---ro interface-name? if:interface-ref
	+---ro interface-level? level
	+---ro extended-circuit-id? extended-circuit-id
	+---ro neighbor? string
	+---ro neighbor-system-id? system-id
	+---ro state? adj-state-type
	+---ro reason? string
+---n lsp-received	
	+---ro routing-protocol-name? ->
	/rt:routing/control-plane-protocols/control-plane-protocol/name
	+---ro isis-level? level
2.5. Authentication Parameters

The module enables authentication configuration through the IETF key-chain module ([RFC8177]). The IS-IS module imports the "ietf-key-chain" module and reuses some groupings to allow global and per interface configuration of authentication. If a global authentication is configured, an implementation SHOULD authenticate PSNPs (Partial Sequence Number Packets), CSNPs (Complete Sequence Number Packets) and LSPs (Link State Packets) with the authentication parameters supplied. The authentication of HELLO PDUs (Protocol Data Units) can be activated on a per interface basis.

2.6. IGP/LDP synchronization

[RFC5443] defines a mechanism where IGP (Interior Gateway Protocol) needs to be synchronized with LDP (Label Distribution Protocol). An "ldp-igp-sync" feature has been defined in the model to support this mechanism. The "mpls/ldp/igp-sync" leaf under "interface" allows activation of the mechanism on a per interface basis. The "mpls/ldp/igp-sync" container in the global configuration is empty on purpose and is not required for the activation. The goal of this empty container is to allow easy augmentation with additional parameters like timers for example.

2.7. ISO parameters

As IS-IS protocol is based on ISO protocol suite, some ISO parameters may be required.

This module augments interface configuration model to support ISO configuration parameters.

The clns-mtu can be defined under the interface.
2.8. IP FRR

This YANG model supports LFA (Loop Free Alternates) ([RFC5286]) and remote LFA ([RFC7490]) as IP FRR techniques. The "fast-reroute" container may be augmented by other models to support other IPFRR flavors (MRT, TILFA ...).

The current version of the model supports activation of LFA and remote LFA at interface only. The global "lfa" container is present but kept empty to allow augmentation with vendor specific properties like policies.

Remote LFA is considered as a child of LFA. Remote LFA cannot be enabled if LFA is not enabled.

The "candidate-disabled" allows to mark an interface to not be used as a backup.

2.9. Operational States

Operational states are provided in the module in various places:

- system-counters: provides statistical informations about the global system.

- interface: provides configuration state informations for each interface.

- adjacencies: provides state informations about current IS-IS adjacencies.

- spf-log: provides informations about SPF events on the node. This SHOULD be implemented as a wrapping buffer.

- lsp-log: provides informations about LSP events on the node (reception of an LSP or modification of local LSP). This SHOULD be implemented as a wrapping buffer and an implementation MAY decide to log refresh LSPs or not.

- local-rib: provides the IS-IS internal routing table view.

- database: provides details on the current LSDB.

- hostnames: provides informations about system-id to hostname mappings (as defined in [RFC5301]).

- fast-reroute: provides informations about IP FRR.
3. RPC Operations

The "ietf-isis" module defines two RPC operations:

- clear-database: reset the content of a particular IS-IS database and restart database synchronization with the neighbors.
- clear-adjacency: restart a particular set of IS-IS adjacencies.

4. Notifications

The "ietf-isis" module introduces some notifications:

- database-overload: raised when overload condition is changed.
- lsp-too-large: raised when the system tries to propagate a too large PDU.
- if-state-change: raise when the state of an interface changes.
- corrupted-lsp-detected: raised when the system find that an LSP that was stored in memory has become corrupted.
- attempt-to-exceed-max-sequence: This notification is sent when the system wraps the 32-bit sequence counter of an LSP.
- id-len-mismatch: This notification is sent when we receive a PDU with a different value for the System ID length.
- max-area-addresses-mismatch: This notification is sent when we receive a PDU with a different value for the Maximum Area Addresses.
- own-lsp-purge: This notification is sent when the system receives a PDU with its own system ID and zero age.
- sequence-number-skipped: This notification is sent when the system receives a PDU with its own system ID and different contents. The system has to reissue the LSP with a higher sequence number.
- authentication-type-failure: This notification is sent when the system receives a PDU with the wrong authentication type field.
- authentication-failure: This notification is sent when the system receives a PDU with the wrong authentication information.
version-skew: This notification is sent when the system receives a PDU with a different protocol version number.

area-mismatch: This notification is sent when the system receives a Hello PDU from an IS that does not share any area address.

rejected-adjacency: This notification is sent when the system receives a Hello PDU from an IS but does not establish an adjacency for some reason.

protocols-supported-mismatch: This notification is sent when the system receives a non pseudonode LSP that has no matching protocol supported.

lsp-error-detected: This notification is sent when the system receives a LSP with a parse error.

adjacency-state-change: This notification is sent when an IS-IS adjacency moves to Up state or to Down state.

lsp-received: This notification is sent when a LSP is received.

lsp-generation: This notification is sent when a LSP is regenerated.

5. Interaction with Other YANG Modules

The "isis" configuration container augments the "/rt:routing/rt:control-plane-protocols/control-plane-protocol" container of the ietf-routing [RFC8349] module by defining IS-IS specific parameters.

The "isis" module augments "/if:interfaces/if:interface" defined by [RFC8343] with ISO specific parameters.

The "isis" operational state container augments the "/rt:routing-state/rt:control-plane-protocols/control-plane-protocol" container of the ietf-routing module by defining IS-IS specific operational states.

Some IS-IS specific routes attributes are added to route objects of the ietf-routing module by augmenting "/rt:routing-state/rt:ribs/rt:rib/rt:routes/rt:route".

The modules defined in this document use some groupings from ietf-keychain [RFC8177].

The module reuses types from [RFC6991] and [RFC8294].
To support BFD for fast detection, the module relies on [I-D.ietf-bfd-yang].

6. IS-IS YANG Module

<CODE BEGINS> file "ietf-isis@2019-01-18.yang"

module ietf-isis {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-isis";
 prefix isis;

 import ietf-routing {
 prefix "rt";
 reference "RFC 8349 - A YANG Data Model for Routing Management (NMDA Version)";
 }

 import ietf-inet-types {
 prefix inet;
 reference "RFC 6991 - Common YANG Data Types";
 }

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991 - Common YANG Data Types";
 }

 import ietf-interfaces {
 prefix "if";
 reference "RFC 8343 - A YANG Data Model for Interface Management (NDMA Version)";
 }

 import ietf-key-chain {
 prefix "key-chain";
 reference "RFC 8177 - YANG Data Model for Key Chains";
 }

 import ietf-routing-types {
 prefix "rt-types";
 reference "RFC 8294 - Common YANG Data Types for the Routing Area";
 }

 import iana-routing-types {
 prefix "iana-rt-types";
 }

<CODE ENDS>
This YANG module defines the generic configuration and operational state for the IS-IS protocol. It is intended that the module will be extended by vendors to define vendor-specific...
IS-IS configuration parameters and policies, for example route maps or route policies.

This YANG model conforms to the Network Management Datastore Architecture (NDMA) as described in RFC 8242.

Copyright (c) 2018 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices.

revision 2019-01-18 {
 description
 "Initial revision.";
 reference "RFC XXXX";
}

/* Identities */

identity isis {
 base rt:routing-protocol;
 description "Identity for the IS-IS routing protocol.";
}

identity lsp-log-reason {
 description "Base identity for an LSP change log reason.";
}

identity refresh {
 base lsp-log-reason;
 description
 "Identity used when the LSP log reason is a refresh LSP received.";
identity content-change {
 base lsp-log-reason;
 description
 "Identity used when the LSP log reason is
 a change in the content of the LSP."
}

/* Feature definitions */

feature poi-tlv {
 description "Support of Purge Originator Identification.";
 reference "RFC 6232 - Purge Originator Identification TLV
 for IS-IS";
}

feature ietf-spf-delay {
 description
 "Support for IETF SPF delay algorithm.";
 reference "RFC 8405 - SPF Back-off algorithm for link
 state IGPs";
}

feature bfd {
 description
 "Support for BFD detection of IS-IS neighbor reachability.";
 reference "RFC 5880 - Bidirectional Forwarding Detection (BFD)
 RFC 5881 - Bidirectional Forwarding Detection
 (BFD) for IPv4 and IPv6 (Single Hop)"
}

feature key-chain {
 description
 "Support of keychain for authentication.";
 reference "RFC8177 - YANG Data Model for Key Chains"
}

feature node-flag {
 description
 "Support for node-flag for IS-IS prefixes.";
 reference "RFC7794 - IS-IS Prefix Attributes for
 Extended IP and IPv6 Reachability"
}

feature node-tag {
 description
 "Support for node admin tag for IS-IS routing instances.";
 reference "RFC7917 - Advertising Node Administrative Tags
 in IS-IS"
}

feature ldp-igp-sync {

}
description
"LDP IGP synchronization.";
reference "RFC5443 - LDP IGP Synchronization.";
}

feature fast-reroute {
 description
 "Support for IP Fast Reroute (IP-FRR).";
}

feature nsr {
 description
 "Non-Stop-Routing (NSR) support.";
}

feature lfa {
 description
 "Support for Loop-Free Alternates (LFAs).";
 reference "RFC5286 - Basic Specification of IP Fast-Reroute: Loop-free Alternates";
}

feature remote-lfa {
 description
 "Support for Remote Loop-Free Alternates (R-LFAs).";
 reference "RFC7490 - Remote Loop-Free Alternate Fast Reroute";
}

feature overload-max-metric {
 description
 "Support of overload by setting all links to max metric.";
}

feature prefix-tag {
 description
 "Support for 32-bit prefix tags";
 reference "RFC5130 - A Policy Control Mechanism in IS-IS Using Administrative Tags";
}

feature prefix-tag64 {
 description
 "Support for 64-bit prefix tags";
 reference "RFC5130 - A Policy Control Mechanism in IS-IS Using Administrative Tags";
}

feature auto-cost {
 description
 "Calculate IS-IS interface metric according to reference bandwidth.";
}

feature te-rid {

}
typedef circuit-id {
type uint8;
description
"This type defines the circuit ID associated with an interface.";
}"}
typedef extended-circuit-id {
 type uint32;
 description
 "This type defines the extended circuit ID
 associated with an interface."
}

typedef interface-type {
 type enumeration {
 enum broadcast {
 description
 "Broadcast interface type.";
 }
 enum point-to-point {
 description
 "Point-to-point interface type.";
 }
 }
 description
 "This type defines the type of adjacency
 to be established on the interface.
 The interface-type determines the type
 of hello message that is used."
}

typedef level {
 type enumeration {
 enum "level-1" {
 description
 "This enum indicates L1-only capability.";
 }
 enum "level-2" {
 description
 "This enum indicates L2-only capability.";
 }
 enum "level-all" {
 description
 "This enum indicates capability for both levels.";
 }
 }
 default "level-all";
 description
 "This type defines IS-IS level of an object.";
}

typedef adj-state-type {
type enumeration {
 enum "up" {
 description "State indicates the adjacency is established.";
 }
 enum "down" {
 description "State indicates the adjacency is NOT established.";
 }
 enum "init" {
 description "State indicates the adjacency is establishing.";
 }
 enum "failed" {
 description "State indicates the adjacency is failed.";
 }
}
description "This type defines states of an adjacency";

typedef if-state-type {
 type enumeration {
 enum "up" {
 description "Up state.";
 }
 enum "down" {
 description "Down state";
 }
 }
 description "This type defines the state of an interface";
}

typedef level-number {
 type uint8 {
 range "1 .. 2";
 }
 description "This type defines the current IS-IS level.";
}

typedef lsp-id {
 type string {
 pattern '[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]'"
typedef area-address {
 type string {
 pattern '[0-9A-Fa-f]{2}(\.[0-9A-Fa-f]{4}){0,6}';
 }
 description "This type defines the area address format.";
}

typedef snpa {
 type string {
 length "0 .. 20";
 }
 description "This type defines the Subnetwork Point of Attachement (SNPA) format. The SNPA should be encoded according to the rules specified for the particular type of subnetwork being used. As an example, for an ethernet subnetwork, the SNPA is encoded as a MAC address like 00aa.bbcc.ddee";
}

typedef system-id {
 type string {
 pattern '([0-9A-Fa-f]{4})\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}';
 }
 description "This type defines IS-IS system-id using pattern, An example system-id is 0143.0438.AE0";
}

typedef extended-system-id {
 type string {
 pattern '([0-9A-Fa-f]{4})\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9][0-9]';
 }
 description "This type defines IS-IS system-id using pattern. The extended system-id contains the pseudonode number in addition to the system-id. An example system-id is 0143.0438.AE0.00";
}
typedef wide-metric {
 type uint32 {
 range "0 .. 16777215";
 }
 description "This type defines wide style format of IS-IS metric.";
}

typedef std-metric {
 type uint8 {
 range "0 .. 63";
 }
 description "This type defines old style format of IS-IS metric.";
}

typedef mesh-group-state {
 type enumeration {
 enum "mesh-inactive" {
 description "Interface is not part of a mesh group.";
 }
 enum "mesh-set" {
 description "Interface is part of a mesh group.";
 }
 enum "mesh-blocked" {
 description "LSPs must not be flooded over this interface.";
 }
 }
 description "This type describes mesh group state of an interface";
}

/* Grouping for notifications */
grouping notification-instance-hdr {
 description "Instance specific IS-IS notification data grouping";
 leaf routing-protocol-name {
 type leafref {
 path "/rt:routing/rt:control-plane-protocols/rt:control-plane-protocol/rt:name";
 }
 description "Name of the IS-IS instance.";
 }
 leaf isis-level {
type level;
description "IS-IS level of the instance.";
}
}

grouping notification-interface-hdr {
description "Interface specific IS-IS notification data grouping";
leaf interface-name {
 type if:interface-ref;
 description "IS-IS interface name";
}
leaf interface-level {
 type level;
 description "IS-IS level of the interface.";
}
leaf extended-circuit-id {
 type extended-circuit-id;
 description "Extended circuit-id of the interface.";
}
}

/* Groupings for IP Fast Reroute */

grouping instance-fast-reroute-config {
 description "This group defines global configuration of IP Fast ReRoute (FRR).";
 container fast-reroute {
 if-feature fast-reroute;
 description "This container may be augmented with global parameters for IP-FRR.";
 container lfa {
 if-feature lfa;
 description "This container may be augmented with global parameters for Loop-Free Alternatives (LFA). Container creation has no effect on LFA activation.";
 }
 }
}

grouping interface-lfa-config {
 leaf candidate-enable {
 type boolean;
 default true;
 }
}
description
 "Enable the interface to be used as backup.";
}
leaf enable {
 type boolean;
 default false;
 description
 "Activates LFA - Per-prefix LFA computation is assumed.";
}
container remote-lfa {
 if-feature remote-lfa;
 leaf enable {
 type boolean;
 default false;
 description
 "Activates Remote LFA (R-LFA).";
 }
 description
 "Remote LFA configuration.";
}
description "Grouping for LFA interface configuration";
}
grouping interface-fast-reroute-config {
 description
 "This group defines interface configuration of IP-FRR.";
 container fast-reroute {
 if-feature fast-reroute;
 container lfa {
 if-feature lfa;
 uses interface-lfa-config;
 container level-1 {
 uses interface-lfa-config;
 description
 "LFA level 1 config";
 }
 container level-2 {
 uses interface-lfa-config;
 description
 "LFA level 2 config";
 }
 description
 "LFA configuration.";
 }
 description
 "Interface IP Fast-reroute configuration.";
 }
}
grouping instance-fast-reroute-state {
 description "IPFRR state data grouping";
 container protected-routes {
 config false;
 list address-family-stats {
 key "address-family prefix alternate";

 leaf address-family {
 type iana-rt-types:address-family;
 description "Address-family";
 }

 leaf prefix {
 type inet:ip-prefix;
 description "Protected prefix.";
 }

 leaf alternate {
 type inet:ip-address;
 description "Alternate nexthop for the prefix.";
 }

 leaf alternate-type {
 type enumeration {
 enum equal-cost {
 description "ECMP alternate.";
 }

 enum lfa {
 description "LFA alternate.";
 }

 enum remote-lfa {
 description "Remote LFA alternate.";
 }

 enum tunnel {
 description "Tunnel based alternate (like RSVP-TE or GRE).";
 }

 enum ti-lfa {
 description "TI-LFA alternate.";
 }

 enum mrt {
 description "MRT alternate.";
 }
 }
 }
 }
 }
}
enum other {
 description
 "Unknown alternate type.";
}

leaf best {
 type boolean;
 description
 "Is set when the alternate is the preferred one,
 is unset otherwise.";
}

leaf non-best-reason {
 type string {
 length "1..255";
 }
 description
 "Information field to describe why the alternate
 is not best. The length should be limited to 255 unicode
 characters. The expected format is a single line text.";
}

leaf protection-available {
 type bits {
 bit node-protect {
 position 0;
 description
 "Node protection available.";
 }
 bit link-protect {
 position 1;
 description
 "Link protection available.";
 }
 bit srlg-protect {
 position 2;
 description
 "SRLG protection available.";
 }
 bit downstream-protect {
 position 3;
 description
 "Downstream protection available.";
 }
 bit other {
 position 4;
 }
 }
}
description "Other protection available."
}
}
description "Protection provided by the alternate."

leaf alternate-metric1 {
 type uint32;
 description "Metric from Point of Local Repair (PLR) to destination through the alternate path."
}

leaf alternate-metric2 {
 type uint32;
 description "Metric from PLR to the alternate node"
}

leaf alternate-metric3 {
 type uint32;
 description "Metric from alternate node to the destination"
}

description "Per-AF protected prefix statistics."

description "List of prefixes that are protected."

container unprotected-routes {
 config false;
 list address-family-stats {
 key "address-family prefix";

 leaf address-family {
 type iana-rt-types:address-family;

 description "Address-family"
 }

 leaf prefix {
 type inet:ip-prefix;
 description "Unprotected prefix."
 }

 description "Per AF unprotected prefix statistics."
 }

 description "List of prefixes that are not protected."
}
list protection-statistics {
 key frr-protection-method;
 config false;
 leaf frr-protection-method {
 type string;
 description "Protection method used.
The expected format is a single word.
As example: LFA, rLFA, MRT, RSVP-TE...";
 }
}

list address-family-stats {
 key address-family;
 leaf address-family {
 type iana-rt-types:address-family;
 description "Address-family";
 }
 leaf total-routes {
 type uint32;
 description "Total prefixes.";
 }
 leaf unprotected-routes {
 type uint32;
 description "Total prefixes that are not protected.";
 }
 leaf protected-routes {
 type uint32;
 description "Total prefixes that are protected.";
 }
 leaf linkprotected-routes {
 type uint32;
 description "Total prefixes that are link protected.";
 }
 leaf nodeprotected-routes {
 type uint32;
 description "Total prefixes that are node protected.";
 }
 description "Per AF protected prefix statistics.";
}

description "Global protection statistics.";
grouping local-rib {
 description "Local-rib - RIB for Routes computed by the local IS-IS routing instance.";
 container local-rib {
 config false;
 description "Local-rib.";
 list route {
 key "prefix";
 description "Routes";
 leaf prefix {
 type inet:ip-prefix;
 description "Destination prefix.";
 }
 container next-hops {
 description "Next hops for the route.";
 list next-hop {
 key "next-hop";
 description "List of next hops for the route";
 leaf outgoing-interface {
 type if:interface-ref;
 description "Name of the outgoing interface.";
 }
 leaf next-hop {
 type inet:ip-address;
 description "Next hop address.";
 }
 }
 }
 leaf metric {
 type uint32;
 description "Metric for this route.";
 }
 leaf level {
 type level-number;
 description "Level number for this route.";
 }
 leaf route-tag {
 type uint32;
 description "Route tag for this route.";
 }
 }
 }
}
grouping route-content {
 description
 "IS-IS protocol-specific route properties grouping.";
 leaf metric {
 type uint32;
 description "IS-IS metric of a route.";
 }
 leaf-list tag {
 type uint64;
 description
 "List of tags associated with the route. The leaf
describes both 32-bit and 64-bit tags.";
 }
 leaf route-type {
 type enumeration {
 enum l2-up-internal {
 description "Level 2 internal route
 and not leaked to a lower level";
 }
 enum l1-up-internal {
 description "Level 1 internal route
 and not leaked to a lower level";
 }
 enum l2-up-external {
 description "Level 2 external route
 and not leaked to a lower level";
 }
 enum l1-up-external {
 description "Level 1 external route
 and not leaked to a lower level";
 }
 enum l2-down-internal {
 description "Level 2 internal route
 and leaked to a lower level";
 }
 enum l1-down-internal {
 description "Level 1 internal route
 and leaked to a lower level";
 }
 enum l2-down-external {
 description "Level 2 external route
 and leaked to a lower level";
 }
 enum l1-down-external {
 description "Level 1 external route
 and leaked to a lower level";
 }
 }
 }
}
grouping adjacency-state {
 container adjacencies {
 config false;
 list adjacency {
 leaf neighbor-sys-type {
 type level;
 description "Level capability of neighboring system";
 }
 leaf neighbor-sysid {
 type system-id;
 description "The system-id of the neighbor";
 }
 leaf neighbor-extended-circuit-id {
 type extended-circuit-id;
 description "Circuit ID of the neighbor";
 }
 leaf neighbor-snpa {
 type snpa;
 description "SNPA of the neighbor";
 }
 leaf usage {
 type level;
 description "Define the level(s) activated on the adjacency.
 On a p2p link this might be level 1 and 2,
 but on a LAN, the usage will be level 1
 between peers at level 1 or level 2 between
 peers at level 2.";
 }
 leaf hold-timer {
 type rt-types:timer-value-seconds16;
 units seconds;
 description "The holding time in seconds for this

adjacency. This value is based on
received hello PDUs and the elapsed
time since receipt.

leaf neighbor-priority {
 type uint8 {
 range "0 .. 127";
 }
 description
 "Priority of the neighboring IS for becoming
 the DIS."
}

leaf lastuptime {
 type yang:timestamp;
 description
 "When the adjacency most recently entered
 state ‘up’, measured in hundredths of a
 second since the last reinitialization of
 the network management subsystem.
 The value is 0 if the adjacency has never
 been in state ‘up’.
 }

leaf state {
 type adj-state-type;
 description
 "This leaf describes the state of the interface."
}

description
 "List of operational adjacencies."
}

decription
 "This container lists the adjacencies of
 the local node."
}

description
 "Adjacency state"
}

grouping admin-control {
 leaf enable {
 if-feature admin-control;
 type boolean;
 default true;
 description
 "Enable/Disable the protocol."
 }

description
"Grouping for admin control."
}

grouping ietf-spf-delay {
 leaf initial-delay {
 type rt-types:timer-value-milliseconds;
 units msec;
 description
 "Delay used while in QUIET state (milliseconds)."
 }
 leaf short-delay {
 type rt-types:timer-value-milliseconds;
 units msec;
 description
 "Delay used while in SHORT_WAIT state (milliseconds)."
 }
 leaf long-delay {
 type rt-types:timer-value-milliseconds;
 units msec;
 description
 "Delay used while in LONG_WAIT state (milliseconds)."
 }
 leaf hold-down {
 type rt-types:timer-value-milliseconds;
 units msec;
 description
 "Timer used to consider an IGP stability period
 (milliseconds)."
 }
 leaf time-to-learn {
 type rt-types:timer-value-milliseconds;
 units msec;
 description
 "Duration used to learn all the IGP events
 related to a single component failure (milliseconds)."
 }
 leaf current-state {
 type enumeration {
 enum "quiet" {
 description "QUIET state"
 }
 enum "short-wait" {
 description "SHORT_WAIT state"
 }
 enum "long-wait" {
 description "LONG_WAIT state"
 }
 }
 }
}
leaf remaining-time-to-learn {
 type rt-types:timer-value-milliseconds;
 units "msec";
 config false;
 description
 "Remaining time until time-to-learn timer fires.";
}

leaf remaining-hold-down {
 type rt-types:timer-value-milliseconds;
 units "msec";
 config false;
 description
 "Remaining time until hold-down timer fires.";
}

leaf last-event-received {
 type yang:timestamp;
 config false;
 description
 "Time of last IGP event received";
}

leaf next-spf-time {
 type yang:timestamp;
 config false;
 description
 "Time when next SPF has been scheduled.";
}

leaf last-spf-time {
 type yang:timestamp;
 config false;
 description
 "Time of last SPF computation.";
}

description
"Grouping for IETF SPF delay configuration and state.";

grouping node-tag-config {
 description
 "IS-IS node tag config state.";
 container node-tags {
 if-feature node-tag;
list node-tag {
 key tag {
 leaf tag {
 type uint32;
 description
 "Node tag value.";
 }
 description
 "List of tags.";
 }
 description
 "List of tags.";
 } container for node admin tags.";
}

grouping authentication-global-cfg {
 choice authentication-type {
 case key-chain {
 if-feature key-chain;
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "Reference to a key-chain.";
 }
 }
 case password {
 leaf key {
 type string;
 description
 "This leaf specifies the authentication key. The
 length of the key may be dependent on the
 cryptographic algorithm. In cases where it is
 not, a key length of at least 32 octets should be
 supported to allow for interoperability with
 strong keys.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Cryptographic algorithm associated with key.";
 }
 description
 "Choice of authentication.";
 }
 description
 "Choice of authentication.";
 }
 description
 "Grouping for global authentication config.";
}

grouping metric-type-global-cfg {
 leaf value {
 type enumeration {
 enum wide-only {
 description "Advertise new metric style only (RFC5305)";
 }
 enum old-only {
 description "Advertise old metric style only (RFC1195)";
 }
 enum both {
 description "Advertise both metric styles";
 }
 }
 default wide-only;
 description "Type of metric to be generated:
 - wide-only means only new metric style is generated,
 - old-only means that only old style metric is generated,
 - both means that both are advertised.
 This leaf is only affecting IPv4 metrics.";
 }
 description "Grouping for global metric style config.";
}

grouping default-metric-global-cfg {
 leaf value {
 type wide-metric;
 default "10";
 description "Value of the metric";
 }
 description "Global default metric config grouping.";
}

grouping overload-global-cfg {
 leaf status {
 type boolean;
 default false;
 description "This leaf specifies the overload status.";
 }
 description "Grouping for overload bit config.";
}
grouping overload-max-metric-global-cfg {
 leaf timeout {
 type rt-types:timer-value-seconds16;
 units "seconds";
 description "Timeout (in seconds) of the overload condition.";
 } description "Overload maximum metric configuration grouping";
}

grouping route-preference-global-cfg {
 choice granularity {
 case detail {
 leaf internal {
 type uint8;
 description "Protocol preference for internal routes.";
 }
 leaf external {
 type uint8;
 description "Protocol preference for external routes.";
 }
 }
 case coarse {
 leaf default {
 type uint8;
 description "Protocol preference for all IS-IS routes.";
 }
 }
 } description "Choice for implementation of route preference.";
} description "Global route preference grouping";

grouping hello-authentication-cfg {
 choice authentication-type {
 case key-chain {
 if-feature key-chain;
 leaf key-chain {
 type key-chain:key-chain-ref;
 description "Reference to a key-chain.";
 }
 }
 }
}

leaf key {
 type string;
 description "Authentication key specification - The length of the key may be dependent on the cryptographic algorithm. In cases where it is not, a key length of at least 32 octets should be supported to allow for interoperability with strong keys.";
}
leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description "Cryptographic algorithm associated with key.";
}

description "Choice of authentication.";

description "Grouping for hello authentication.";

grouping hello-interval-cfg {
 leaf value {
 type rt-types:timer-value-seconds16;
 units "seconds";
 default 10;
 description "Interval (in seconds) between successive hello messages.";
 }

description "Interval between hello messages.";
}

grouping hello-multiplier-cfg {
 leaf value {
 type uint16;
 default 3;
 description "Number of missed hello messages prior to declaring the adjacency down.";
 }

description "Number of missed hello messages prior to
adjacency down grouping.

} grouping priority-cfg {
 leaf value {
 type uint8 {
 range "0 .. 127";
 }
 default 64;
 description "Priority of interface for DIS election."
 }
 description "Interface DIS election priority grouping"
}

} grouping metric-cfg {
 leaf value {
 type wide-metric;
 default "10";
 description "Metric value."
 }
 description "Interface metric grouping"
}

grouping metric-parameters {
 container metric-type {
 uses metric-type-global-cfg;
 container level-1 {
 uses metric-type-global-cfg;
 description "level-1 specific configuration"
 }
 container level-2 {
 uses metric-type-global-cfg;
 description "level-2 specific configuration"
 }
 description "Metric style global configuration"
 }
 container default-metric {
 uses default-metric-global-cfg;
 container level-1 {
 uses default-metric-global-cfg;
 description "level-1 specific configuration"
 }
 container level-2 {
 uses default-metric-global-cfg;
 }
 }
}
description "level-2 specific configuration";
}
description "Default metric global configuration";
}
container auto-cost {
 if-feature auto-cost;
 description
 "Interface Auto-cost configuration state."
 leaf enable {
 type boolean;
 description
 "Enable/Disable interface auto-cost.";
 }
 leaf reference-bandwidth {
 when "./enable = 'true'" {
 description "Only when auto cost is enabled";
 type uint32 {
 range "1..4294967";
 units Mbits;
 description
 "Configure reference bandwidth used to automatically
determine interface cost (Mbits). The cost is the
reference bandwidth divided by the interface speed
with 1 being the minimum cost.";
 }
 }
}
description "Grouping for global metric parameters.";
}

grouping high-availability-parameters {
 container graceful-restart {
 if-feature graceful-restart;
 leaf enable {
 type boolean;
 default false;
 description "Enable graceful restart.";
 }
 leaf restart-interval {
 type rt-types:timer-value-seconds16;
 units "seconds";
 description
 "Interval (in seconds) to attempt graceful restart prior
to failure.";
 }
 leaf helper-enable {

type boolean;
default true;
description "Enable local IS-IS router as graceful restart helper."
}
description "Graceful-Restart Configuration."
}
container nsr {
 if-feature nsr;
description "Non-Stop Routing (NSR) configuration."
 leaf enable {
 type boolean;
default false;
description "Enable/Disable Non-Stop Routing (NSR)."
 }
}
description "Grouping for High Availability parameters."
}
grouping authentication-parameters {
 container authentication {
 uses authentication-global-cfg;

cneter level-1 {
 uses authentication-global-cfg;
description "level-1 specific configuration"
 }
 container level-2 {
 uses authentication-global-cfg;
description "level-2 specific configuration"
 }

description "Authentication global configuration for both LSPs and SNPs."
}
description "Grouping for authentication parameters."
}
grouping address-family-parameters {
 container address-families {
 if-feature nlpid-control;
 list address-family-list {
 key address-family;
 leaf address-family {
 type iana-rt-types:address-family;
description "Address-family"
 }
 leaf enable {
 type boolean;
description "Activate the address family."
 }
 }
}
grouping mpls-parameters {
 container mpls {
 container te-rid {
 if-feature te-rid;
 description "Stable ISIS Router IP Address used for Traffic Engineering";
 leaf ipv4-router-id {
 type inet:ipv4-address;
 description "Router ID value that would be used in TLV 134."
 }
 leaf ipv6-router-id {
 type inet:ipv6-address;
 description "Router ID value that would be used in TLV 140."
 }
 }
 container ldp {
 container igp-sync {
 if-feature ldp-igp-sync;
 description "This container may be augmented with global parameters for igp-ldp-sync."
 }
 description "LDP configuration."
 }
 description "MPLS configuration";
 }
 description "Grouping for address family parameters.";
}

grouping lsp-parameters {
 leaf lsp-mtu {
 type uint16;
 units "bytes";
 default 1492;
 description "";
 }
 description "List of address families and whether or not they are activated.";
}

description "Address Family configuration";

description "Grouping for address family parameters.";
"Maximum size of an LSP PDU in bytes."
}
leaf lsp-lifetime {
 type uint16 {
 range "1..65535";
 }
 units "seconds";
 description
 "Lifetime of the router’s LSPs in seconds.";
}
leaf lsp-refresh {
 if-feature lsp-refresh;
 type rt-types:timer-value-seconds16;
 units "seconds";
 description
 "Refresh interval of the router’s LSPs in seconds.";
}
leaf poi-tlv {
 if-feature poi-tlv;
 type boolean;
 default false;
 description
 "Enable advertisement of IS-IS purge TLV.";
}

description "Grouping for LSP global parameters."
}
grouping spf-parameters {
 container spf-control {
 leaf paths {
 if-feature max-ecmp;
 type uint16 {
 range "1..32";
 }
 description
 "Maximum number of Equal-Cost Multi-Path (ECMP) paths.";
 }
 container ietf-spf-delay {
 if-feature ietf-spf-delay;
 uses ietf-spf-delay;
 description "IETF SPF delay algorithm configuration.";
 }
 description
 "SPF calculation control.";
 }
 description "Grouping for SPF global parameters.";
}
grouping instance-config {
 description "IS-IS global configuration grouping";
uses admin-control;

leaf level-type {
 type level;
 default "level-all";
 description "Level of an IS-IS node - can be level-1, level-2 or level-all."
}

leaf system-id {
 type system-id;
 description "system-id of the node."
}

leaf maximum-area-addresses {
 if-feature maximum-area-addresses;
 type uint8;
 default 3;
 description "Maximum areas supported."
}

leaf-list area-address {
 type area-address;
 description "List of areas supported by the protocol instance."
}

uses lsp-parameters;
uses high-availability-parameters;
uses node-tag-config;
uses metric-parameters;
uses authentication-parameters;
uses address-family-parameters;
uses mpls-parameters;
uses spf-parameters;
uses instance-fast-reroute-config;

container preference {
 uses route-preference-global-cfg;
 description "Router preference configuration for IS-IS protocol instance route installation";
}

container overload {
 uses overload-global-cfg;
 description "Router protocol instance overload state configuration";
}
container overload-max-metric {
 if-feature overload-max-metric;
 uses overload-max-metric-global-cfg;
 description
 "Router protocol instance overload maximum metric advertisement configuration."
 }
}

grouping instance-state {
 description
 "IS-IS instance operational state."
 uses spf-log;
 uses lsp-log;
 uses hostname-db;
 uses lsdb;
 uses local-rib;
 uses system-counters;
 uses instance-fast-reroute-state;
}

grouping multi-topology-config {
 description "Per-topology configuration";
 container default-metric {
 uses default-metric-global-cfg;
 container level-1 {
 uses default-metric-global-cfg;
 description "level-1 specific configuration";
 }
 container level-2 {
 uses default-metric-global-cfg;
 description "level-2 specific configuration";
 }
 description "Default metric per-topology configuration";
 }
 uses node-tag-config;
}

grouping interface-config {
 description "Interface configuration grouping";
 leaf level-type {
 type level;
 default "level-all";
 description "IS-IS level of the interface."
 }
 leaf lsp-pacing-interval {

leaf lsp-retransmit-interval {
 type rt-types:timer-value-seconds16;
 units "seconds";
 description
 "Interval (in seconds) between LSP retransmissions.";
}

leaf passive {
 type boolean;
 default "false";
 description
 "Indicates whether the interface is in passive mode (IS-IS not running but network is advertised).";
}

leaf csnp-interval {
 type rt-types:timer-value-seconds16;
 units "seconds";
 default 10;
 description
 "Interval (in seconds) between CSNP messages.";
}

container hello-padding {
 leaf enable {
 type boolean;
 default "true";
 description
 "IS-IS Hello-padding activation - enabled by default.";
 }
 description "IS-IS hello padding configuration.";
}

leaf mesh-group-enable {
 type mesh-group-state;
 description "IS-IS interface mesh-group state";
}

leaf mesh-group {
 when ".../mesh-group-enable = 'mesh-set'" {
 description
 "Only valid when mesh-group-enable equals meshset";
 }
 type uint8;
 description "IS-IS interface mesh-group ID.";
leaf interface-type {
 type interface-type;
 default "broadcast";
 description
 "Type of adjacency to be established on the interface. This
dictates the type of hello messages that are used.";
}

uses admin-control;

leaf-list tag {
 if-feature prefix-tag;
 type uint32;
 description
 "List of tags associated with the interface.";
}

leaf-list tag64 {
 if-feature prefix-tag64;
 type uint64;
 description
 "List of 64-bit tags associated with the interface.";
}

leaf node-flag {
 if-feature node-flag;
 type boolean;
 default false;
 description
 "Set prefix as a node representative prefix.";
}

container hello-authentication {
 uses hello-authentication-cfg;
 container level-1 {
 uses hello-authentication-cfg;
 description "level-1 specific configuration";
 }
 container level-2 {
 uses hello-authentication-cfg;
 description "level-2 specific configuration";
 }
 description
 "Authentication type to be used in hello messages.";
}

container hello-interval {
 uses hello-interval-cfg;
 container level-1 {
 uses hello-interval-cfg;
 description "level-1 specific configuration";
 }
}
) container level-2 {
 uses hello-interval-cfg;
 description "level-2 specific configuration";
}
}
description "Interval between hello messages.";
}
container hello-multiplier {
 uses hello-multiplier-cfg;
 container level-1 {
 uses hello-multiplier-cfg;
 description "level-1 specific configuration";
 }
 container level-2 {
 uses hello-multiplier-cfg;
 description "level-2 specific configuration";
 }

description "Hello multiplier configuration.";
}
}
container priority {
 must '../interface-type = "broadcast"' {
 error-message
 "Priority only applies to broadcast interfaces.";
 description "Check for broadcast interface.";
 }
 uses priority-cfg;
 container level-1 {
 uses priority-cfg;
 description "level-1 specific configuration";
 }
 container level-2 {
 uses priority-cfg;
 description "level-2 specific configuration";
 }

description "Priority for DIS election.";
}
}
container metric {
 uses metric-cfg;
 container level-1 {
 uses metric-cfg;
 description "level-1 specific configuration";
 }
 container level-2 {
 uses metric-cfg;
 description "level-2 specific configuration";
 }

description "Metric configuration.";
}
container bfd {
 if-feature bfd;
 description "BFD Client Configuration.";
 uses bfd-types:client-cfg-parms;

 reference "RFC YYYY - YANG Data Model for Bidirectional Forwarding Detection (BFD)."

 -- Note to RFC Editor Please replace YYYY with published RFC number for draft-ietf-bfd-yang.";
}

container address-families {
 if-feature nlpid-control;
 list address-family-list {
 key address-family;
 leaf address-family {
 type iana-rt-types:address-family;
 description "Address-family";
 }
 description "List of AFs.";
 }
 description "Interface address-families";
}

container mpls {
 container ldp {
 leaf igp-sync {
 if-feature ldp-igp-sync;
 type boolean;
 default false;
 description "Enables IGP/LDP synchronization";
 }
 description "LDP protocol related configuration.";
 }
 description "MPLS configuration for IS-IS interfaces";
}

uses interface-fast-reroute-config;
}

grouping multi-topology-interface-config {
 description "IS-IS interface topology configuration.";
 container metric {
 uses metric-cfg;
 container level-1 {
 uses metric-cfg;
 description "level-1 specific configuration";
 }
 container level-2 {
 uses metric-cfg;
 }
 }
}
description "level-2 specific configuration";
}
description "Metric IS-IS interface configuration.";
}

/* Grouping for IS-IS interface operational state */

grouping interface-state {

description "IS-IS interface operational state.";
uses adjacency-state;
uses event-counters;
uses packet-counters;
}

/* Grouping for the hostname database */

grouping hostname-db {

container hostnames {
config false;
list hostname {
key system-id;
leaf system-id {
 type system-id;
 description "system-id associated with the hostname.";
}
leaf hostname {
 type string {
 length "1..255";
 }
 description "Hostname associated with the system-id as defined in RFC5301.";
}
}

description "List of system-id/hostname associations.";
}

description "Hostname to system-id mapping database.";
}

description "Grouping for hostname to system-id mapping database.";
}

/* Groupings for counters */

grouping system-counters {

container system-counters {
config false;
 }
list level {
 key level;
}

leaf level {
 type level-number;
 description "IS-IS level.";
}

leaf corrupted-lsps {
 type uint32;
 description
 "Number of corrupted in-memory LSPs detected.
 LSPs received from the wire with a bad
 checksum are silently dropped and not counted.
 LSPs received from the wire with parse errors
 are counted by lsp-errors.";
}

leaf authentication-type-fails {
 type uint32;
 description
 "Number of authentication type mismatches.";
}

leaf authentication-fails {
 type uint32;
 description
 "Number of authentication key failures.";
}

leaf database-overload {
 type uint32;
 description
 "Number of times the database has become
 overloaded.";
}

leaf own-lsp-purge {
 type uint32;
 description
 "Number of times a zero-aged copy of the system's
 own LSP is received from some other IS-IS node.";
}

leaf manual-address-drop-from-area {
 type uint32;
 description
 "Number of times a manual address
 has been dropped from the area.";
}

leaf max-sequence {
 type uint32;
 description
 "Number of times the system has attempted
to exceed the maximum sequence number."
}
leaf sequence-number-skipped {
 type uint32;
 description
 "Number of times a sequence number skip has occurred.";
}
leaf id-len-mismatch {
 type uint32;
 description
 "Number of times a PDU is received with a different value for the ID field length than that of the receiving system.";
}
leaf partition-changes {
 type uint32;
 description
 "Number of partition changes detected.";
}
leaf lsp-errors {
 type uint32;
 description
 "Number of LSPs with errors we have received.";
}
leaf spf-runs {
 type uint32;
 description
 "Number of times we ran SPF at this level.";
}
description
 "List of supported levels.";
}
description
 "List counters for the IS-IS protocol instance";
}
description "System counters grouping.";
}
grouping event-counters {
 container event-counters {
 config false;
 leaf adjacency-changes {
 type uint32;
 description
 "The number of times an adjacency state change has occurred on this interface.";
 }
 }
}
leaf adjacency-number {
 type uint32;
 description
 "The number of adjacencies on this interface."
}
leaf init-fails {
 type uint32;
 description
 "The number of times initialization of this interface has failed. This counts events such as PPP NCP failures. Failures to form an adjacency are counted by adjacency-rejects."
}
leaf adjacency-rejects {
 type uint32;
 description
 "The number of times an adjacency has been rejected on this interface."
}
leaf id-len-mismatch {
 type uint32;
 description
 "The number of times an IS-IS PDU with an ID field length different from that for this system has been received on this interface."
}
leaf max-area-addresses-mismatch {
 type uint32;
 description
 "The number of times an IS-IS PDU has been received on this interface with the max area address field differing from that of this system."
}
leaf authentication-type-fails {
 type uint32;
 description
 "Number of authentication type mismatches."
}
leaf authentication-fails {
 type uint32;
 description
 "Number of authentication key failures."
}
leaf lan-dis-changes {
 type uint32;
 description
 "The number of times the DIS has changed on this
interface at this level. If the interface type is point-to-point, the count is zero.
}

description "IS-IS interface event counters."

description "Grouping for IS-IS interface event counters"

grouping packet-counters {
 container packet-counters {
 config false;
 list level {
 key level;

 leaf level {
 type level-number;
 description "IS-IS level.";
 }

 container iih {
 leaf in {
 type uint32;
 description "Received IIH PDUs.";
 }

 leaf out {
 type uint32;
 description "Sent IIH PDUs.";
 }

 description "Number of IIH PDUs received/sent.";
 }

 container ish {
 leaf in {
 type uint32;
 description "Received ISH PDUs.";
 }

 leaf out {
 type uint32;
 description "Sent ISH PDUs.";
 }

 description "ISH PDUs received/sent.";
 }

 container esh {
 leaf in {
 type uint32;
 description "Received ESH PDUs.";
 }

 leaf out {
 type uint32;
 description "Sent ESH PDUs.";
 }

 description "ESH PDUs received/sent.";
 }
 }
}
type uint32;
 description "Sent ESH PDUs."
}
 description "Number of ESH PDUs received/sent."
}
carrier lsp {
 leaf in {
 type uint32;
 description "Received LSP PDUs."
 }
 leaf out {
 type uint32;
 description "Sent LSP PDUs."
 }
 description "Number of LSP PDUs received/sent."
}
carrier psnp {
 leaf in {
 type uint32;
 description "Received PSNP PDUs."
 }
 leaf out {
 type uint32;
 description "Sent PSNP PDUs."
 }
 description "Number of PSNP PDUs received/sent."
}
carrier csnp {
 leaf in {
 type uint32;
 description "Received CSNP PDUs."
 }
 leaf out {
 type uint32;
 description "Sent CSNP PDUs."
 }
 description "Number of CSNP PDUs received/sent."
}
carrier unknown {
 leaf in {
 type uint32;
 description "Received unknown PDUs."
 }
 leaf out {
 type uint32;
 description "Sent unknown PDUs."
 }
 description "Number of unknown PDUs received/sent.";
/* Groupings for various log buffers */
grouping spf-log {
 container spf-log {
 config false;
 list event {
 key id;

 leaf id {
 type uint32;
 description
 "Event identifier - purely internal value.";
 }
 leaf spf-type {
 type enumeration {
 enum full {
 description "Full SPF computation.";
 }
 enum route-only {
 description
 "Route reachability only SPF computation";
 }
 }
 description "Type of SPF computation performed.";
 }
 leaf level {
 type level-number;
 description
 "IS-IS level number for SPF computation";
 }
 leaf schedule-timestamp {
 type yang:timestamp;
 description
 "Timestamp of when the SPF computation was scheduled.";
 }
 leaf start-timestamp {
 type yang:timestamp;
 description
 "Timestamp of when the SPF computation started.";
 }
 }
 }
}
"Timestamp of when the SPF computation started.";
}
leaf end-timestamp {
 type yang:timestamp;
 description
 "Timestamp of when the SPF computation ended.";
}
list trigger-lsp {
 key "lsp";
 leaf lsp {
 type lsp-id;
 description
 "LSP ID of the LSP triggering SPF computation.";
 }
 leaf sequence {
 type uint32;
 description
 "Sequence number of the LSP triggering SPF computation";
 }
 description
 "This list includes the LSPs that triggered the SPF computation.";
}
list event {
 key id;
 leaf id {
 type uint32;
 description
 "Event identifier - purely internal value.";
 }
 leaf level {
 type level-number;
 description
 "Level number of the event - used for sorting events within the same SPF computation.";
 }
 description
 "List of computation events - implemented as a wrapping buffer.";
}

grouping lsp-log {
 container lsp-log {
 config false;
 list event {
 key id;
 leaf id {
 type uint32;
 description
 "Event identifier - purely internal value.";
 }
 leaf level {
 type level-number;
 description
 "Level number of the event - used for sorting events within the same SPF computation.";
 }
 }
 }
 description
 "Grouping for spf-log events.";
}

description
 "IS-IS level number for LSP";
}
}

leaf lsp {
 type lsp-id;
 description
 "LSP ID of the LSP.";
}

leaf sequence {
 type uint32;
 description
 "Sequence number of the LSP.";
}

description
 "LSP identification container - either the received
 LSP or the locally generated LSP.";
}

leaf received-timestamp {
 type yang:timestamp;
 description
 "This is the timestamp when the LSA was received.
 In case of local LSA update, the timestamp refers
 to the LSA origination time.";
}

leaf reason {
 type identityref {
 base lsp-log-reason;
 }
 description "Type of LSP change.";
}

description
 "List of LSP events - implemented as a
 wrapping buffer.";
}

description
 "This container lists the LSP log.
 Local LSP modifications are also included
 in the list.";
}

description "Grouping for LSP log.";
/* Groupings for the LSDB description */

/* Unknown TLV and subTLV description */
grouping tlv {
 description
 "Type-Length-Value (TLV)";
 leaf type {
 type uint16;
 description "TLV type.";
 }
 leaf length {
 type uint16;
 description "TLV length (octets).";
 }
 leaf value {
 type yang:hex-string;
 description "TLV value.";
 }
}

grouping unknown-tlvs {
 description
 "Unknown TLVs grouping - Used for unknown TLVs or unknown sub-TLVs.";
 container unknown-tlvs {
 description "All unknown TLVs.";
 list unknown-tlv {
 description "Unknown TLV.";
 uses tlv;
 }
 }
}

/* TLVs and subTLVs for prefixes */
grouping prefix-reachability-attributes {
 description
 "Grouping for extended reachability attributes of an IPv4 or IPv6 prefix.";

 leaf external-prefix-flag {
 type boolean;
 description "External prefix flag.";
 }
 leaf readvertisement-flag {
 type boolean;
 description "Readvertisement flag.";
 }
}
leaf node-flag {
 type boolean;
 description "Node flag.";
}

grouping prefix-ipv4-source-router-id {
 description "Grouping for the IPv4 source router ID of a prefix advertisement.";

 leaf ipv4-source-router-id {
 type inet:ipv4-address;
 description "IPv4 Source router ID address.";
 }
}

grouping prefix-ipv6-source-router-id {
 description "Grouping for the IPv6 source router ID of a prefix advertisement.";

 leaf ipv6-source-router-id {
 type inet:ipv6-address;
 description "IPv6 Source router ID address.";
 }
}

grouping prefix-attributes-extension {
 description "Prefix extended attributes as defined in RFC7794.";

 uses prefix-reachability-attributes;
 uses prefix-ipv4-source-router-id;
 uses prefix-ipv6-source-router-id;
}

grouping prefix-ipv4-std {
 description "Grouping for attributes of an IPv4 standard prefix as defined in RFC1195.";

 leaf ip-prefix {
 type inet:ipv4-address;
 description "IPv4 prefix address";
 }

 leaf prefix-len {
 type uint8;
 description "IPv4 prefix length (in bits)";
 }
}
leaf i-e {
 type boolean;
 description "Internal or External (I/E) Metric bit value.";
}

container default-metric {
 leaf metric {
 type std-metric;
 description "Default IS-IS metric for IPv4 prefix";
 }
 description "IS-IS default metric container.";
}

container delay-metric {
 leaf metric {
 type std-metric;
 description "IS-IS delay metric for IPv4 prefix";
 }
 leaf supported {
 type boolean;
 default "false";
 description "Indicates whether IS-IS delay metric is supported.";
 }
 description "IS-IS delay metric container.";
}

container expense-metric {
 leaf metric {
 type std-metric;
 description "IS-IS expense metric for IPv4 prefix";
 }
 leaf supported {
 type boolean;
 default "false";
 description "Indicates whether IS-IS delay metric is supported.";
 }
 description "IS-IS expense metric container.";
}

container error-metric {
 leaf metric {
 type std-metric;
 description "This leaf describes the IS-IS error metric value";
 }
 leaf supported {
 type boolean;
 default "false";
 description "IS-IS error metric for IPv4 prefix";
 }
}
grouping prefix-ipv4-extended {

description "Grouping for attributes of an IPv4 extended prefix as defined in RFC5305.";

leaf up-down {
 type boolean;
 description "Value of up/down bit.";
}

leaf ip-prefix {
 type inet:ipv4-address;
 description "IPv4 prefix address";
}

leaf prefix-len {
 type uint8;
 description "IPv4 prefix length (in bits)";
}

leaf metric {
 type wide-metric;
 description "IS-IS wide metric value";
}

leaf-list tag {
 type uint32;
 description "List of 32-bit tags associated with the IPv4 prefix.";
}

leaf-list tag64 {
 type uint64;
 description "List of 32-bit tags associated with the IPv4 prefix.";
}

uses prefix-attributes-extension;
}

grouping prefix-ipv6-extended {

description "Grouping for attributes of an IPv6 prefix as defined in RFC5308.";

leaf up-down {
 type boolean;
 description "Value of up/down bit.";
}

leaf ip-prefix {
 type inet:ipv6-address;
 description "IPv6 prefix address";
}
leaf prefix-len {
 type uint8;
 description "IPv4 prefix length (in bits)";
}
leaf metric {
 type wide-metric;
 description "IS-IS wide metric value";
}
leaf-list tag {
 type uint32;
 description "List of 32-bit tags associated with the IPv4 prefix.";
}
leaf-list tag64 {
 type uint64;
 description "List of 32-bit tags associated with the IPv4 prefix.";
}
uses prefix-attributes-extension;
}

/* TLVs and subTLVs for neighbors */

grouping neighbor-link-attributes {
 description "Grouping for link attributes as defined in RFC5029";
 leaf link-attributes-flags {
 type uint16;
 description "Flags for the link attributes";
 }
}

grouping neighbor-gmpls-extensions {
 description "Grouping for GMPLS attributes of a neighbor as defined in RFC5307";
 leaf link-local-id {
 type uint32;
 description "Local identifier of the link.";
 }
 leaf remote-local-id {
 type uint32;
 description "Remote identifier of the link.";
 }
}
leaf protection-capability {
 type uint8;
 description
 "Describes the protection capabilities of the link. This is the value of the first octet of the sub-TLV type 20 value.";
}

container interface-switching-capability {
 description
 "Interface switching capabilities of the link.";
 leaf switching-capability {
 type uint8;
 description
 "Switching capability of the link.";
 }
 leaf encoding {
 type uint8;
 description
 "Type of encoding of the LSP being used.";
 }
}

container max-lsp-bandwidths {
 description "Per priority max LSP bandwidths.";
 list max-lsp-bandwidth {
 leaf priority {
 type uint8 {
 range "0 .. 7";
 }
 description "Priority from 0 to 7.";
 }
 leaf bandwidth {
 type rt-types:bandwidth-ieee-float32;
 description "max LSP bandwidth.";
 }
 description
 "List of max LSP bandwidths for different priorities.";
 }
}

container tdm-specific {
 when ".../switching-capability = 100";
 description
 "Switching Capability-specific information applicable when switching type is TDM.";

 leaf minimum-lsp-bandwidth {
 type rt-types:bandwidth-ieee-float32;
 description "minimum LSP bandwidth.";
 }
}
leaf indication {
 type uint8;
 description
 "The indication whether the interface supports Standard
 or Arbitrary SONET/SDH."
}
}

container psc-specific {
 when ".../switching-capability >= 1 and/switching-capability <= 4";
 description
 "Switching Capability-specific information applicable
 when switching type is PSC1,PSC2,PSC3 or PSC4.";

 leaf minimum-lsp-bandwidth {
 type rt-types:bandwidth-ieee-float32;
 description "minimum LSP bandwidth."
 }

 leaf mtu {
 type uint16;
 units bytes;
 description "Interface MTU"
 }
}
}

grouping neighbor-extended-te-extensions {
 description
 "Grouping for TE attributes of a neighbor as defined
 in RFC7810"

 container unidirectional-link-delay {
 description
 "Container for the average delay
 from the local neighbor to the remote one."

 leaf flags {
 type bits {
 bit A {
 position 7;
 description
 "The A bit represents the Anomalous (A) bit.
 The A bit is set when the measured value of
 this parameter exceeds its configured
 maximum threshold.
 The A bit is cleared when the measured value
 falls below its configured reuse threshold.
 If the A bit is clear,
the value represents steady-state link performance."

leaf value {
 type uint32;
 units usec;
 description
 "Delay value expressed in microseconds.";
}

container min-max-unidirectional-link-delay {
 description
 "Container for the min and max delay from the local neighbor to the remote one.";
 leaf flags {
 type bits {
 bit A {
 position 7;
 description
 "The A bit represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the value represents steady-state link performance."
 }
 }
 description
 "Flags.";
 }
 leaf min-value {
 type uint32;
 units usec;
 description
 "Minimum delay value expressed in microseconds.";
 }
 leaf max-value {
 type uint32;
 units usec;
 description
 "Maximum delay value expressed in microseconds.";
 }
}
container unidirectional-link-delay-variation {
 description "Container for the average delay variation from the local neighbor to the remote one.";
 leaf value {
 type uint32;
 units usec;
 description "Delay variation value expressed in microseconds.";
 }
}

container unidirectional-link-loss{
 description "Container for the packet loss from the local neighbor to the remote one.";
 leaf flags {
 type bits {
 bit A {
 position 7;
 description "The A bit represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the value represents steady-state link performance.";
 }
 }
 description "Flags.";
 }
 leaf value {
 type uint32;
 units percent;
 description "Link packet loss expressed as a percentage of the total traffic sent over a configurable interval.";
 }
}

container unidirectional-link-residual-bandwidth {
 description "Container for the residual bandwidth from the local neighbor to the remote one.";
 leaf value {
 type rt-types:bandwidth-ieee-float32;
 units Bps;
 }
}
container unidirectional-link-available-bandwidth {
 description
 "Container for the available bandwidth from the local neighbor to the remote one.";
 leaf value {
 type rt-types:bandwidth-ieee-float32;
 units Bps;
 description
 "Available bandwidth.";
 }
}

container unidirectional-link-utilized-bandwidth {
 description
 "Container for the utilized bandwidth from the local neighbor to the remote one.";
 leaf value {
 type rt-types:bandwidth-ieee-float32;
 units Bps;
 description
 "Utilized bandwidth.";
 }
}

grouping neighbor-te-extensions {
 description
 "Grouping for TE attributes of a neighbor as defined in RFC5305";
 leaf admin-group {
 type uint32;
 description
 "Administrative group/Resource Class/Color.";
 }
 container local-if-ipv4-addrs {
 description
 "All local interface IPv4 addresses.";
 leaf-list local-if-ipv4-addr {
 type inet:ipv4-address;
 description
 "List of local interface IPv4 addresses.";
 }
 }
 container remote-if-ipv4-addrs {
 description
 "All remote interface IPv4 addresses.";
 leaf-list remote-if-ipv4-addr {

type inet:ipv4-address;

description
"List of remote interface IPv4 addresses."
}
}
leaf te-metric {

type uint32;

description "TE metric."
}
leaf max-bandwidth {

type rt-types:bandwidth-ieee-float32;

description "Maximum bandwidth."
}
leaf max-reservable-bandwidth {

type rt-types:bandwidth-ieee-float32;

description "Maximum reservable bandwidth."
}
container unreserved-bandwidths {

description "All unreserved bandwidths."

list unreserved-bandwidth {

leaf priority {

type uint8 {

range "0 .. 7";

}

description "Priority from 0 to 7."
}
leaf unreserved-bandwidth {

type rt-types:bandwidth-ieee-float32;

description "Unreserved bandwidth."
}

description
"List of unreserved bandwidths for different priorities."
}
}

grouping neighbor-extended {

description
"Grouping for attributes of an IS-IS extended neighbor."

leaf neighbor-id {

type extended-system-id;

description "system-id of the extended neighbor."
}
}
container instances {

description "List of all adjacencies between the local system and the neighbor system-id."

list instance {

}
key id;

leaf id {
 type uint32;
 description "Unique identifier of an instance of a
 particular neighbor.";
}

leaf metric {
 type wide-metric;
 description "IS-IS wide metric for extended neighbor";
}

uses neighbor-gmpls-extensions;
uses neighbor-te-extensions;
uses neighbor-extended-te-extensions;
uses neighbor-link-attributes;
uses unknown-tlvs;
description "Instance of a particular adjacency.";
}

}

grouping neighbor {
 description "IS-IS standard neighbor grouping.";
 leaf neighbor-id {
 type extended-system-id;
 description "IS-IS neighbor system-id";
 }

 container instances {
 description "List of all adjacencies between the local
 system and the neighbor system-id.";

 list instance {
 key id;

 leaf id {
 type uint32;
 description "Unique identifier of an instance of a
 particular neighbor.";
 }

 leaf i-e {
 type boolean;
 description "Internal or External (I/E) Metric bit value";
 }

 container default-metric {
 leaf metric {
 type std-metric;
 description "IS-IS default metric value";
 }
 }
 }
 }
}
description "IS-IS default metric container";
}
container delay-metric {
 leaf metric {
 type std-metric;
 description "IS-IS delay metric value";
 }
 leaf supported {
 type boolean;
 default "false";
 description "IS-IS delay metric supported";
 }
 description "IS-IS delay metric container";
}
container expense-metric {
 leaf metric {
 type std-metric;
 description "IS-IS delay expense metric value";
 }
 leaf supported {
 type boolean;
 default "false";
 description "IS-IS delay expense metric supported";
 }
 description "IS-IS delay expense metric container";
}
container error-metric {
 leaf metric {
 type std-metric;
 description "IS-IS error metric value";
 }
 leaf supported {
 type boolean;
 default "false";
 description "IS-IS error metric supported";
 }
 description "IS-IS error metric container";
 description "Instance of a particular adjacency
as defined in ISO10589.";
}

/* Top level TLVs */

grouping tlv132-ipv4-addresses {
 leaf-list ipv4-addresses {
type inet:ipv4-address;
description "List of IPv4 addresses of the IS-IS node - IS-IS reference is TLV 132."
}
description "Grouping for TLV132."
}
grouping tlv232-ipv6-addresses {
leaf-list ipv6-addresses {
 type inet:ipv6-address;
description "List of IPv6 addresses of the IS-IS node - IS-IS reference is TLV 232."
}
description "Grouping for TLV232."
}
grouping tlv134-ipv4-te-rid {
 leaf ipv4-te-routerid {
 type inet:ipv4-address;
description "IPv4 Traffic Engineering router ID of the IS-IS node - IS-IS reference is TLV 134."
 }
description "Grouping for TLV134."
}
grouping tlv140-ipv6-te-rid {
 leaf ipv6-te-routerid {
 type inet:ipv6-address;
description "IPv6 Traffic Engineering router ID of the IS-IS node - IS-IS reference is TLV 140."
 }
description "Grouping for TLV140."
}
grouping tlv129-protocols {
 leaf-list protocol-supported {
 type uint8;
description "List of supported protocols of the IS-IS node - IS-IS reference is TLV 129."
 }
description "Grouping for TLV129."
}
grouping tlv137-hostname {
 leaf dynamic-hostname {
 type string;
description "Host Name of the IS-IS node - IS-IS reference"
is TLV 137."
} description "Grouping for TLV137."
}
grouping tlv10-authentication {
 container authentication {
 leaf authentication-type {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 }
 }
 leaf authentication-key {
 type string;
 description
 "Authentication type to be used with IS-IS node."
 }
}
description "IS-IS node authentication information container - IS-IS reference is TLV 10."
}
description "Grouping for TLV10."
}
grouping tlv229-mt {
 container mt-entries {
 list topology {
 description
 "List of topologies supported"
 }
 leaf mt-id {
 type uint16 {
 range "0 .. 4095"
 }
 }
 leaf attributes {
 type bits {
 bit overload {
 description
 "If set, the originator is overloaded, and must be avoided in path calculation."
 }
 }
 }
 }
}
bit attached {
 description
 "If set, the originator is attached to
 another area using the referred metric."
}
}
}
description
 "Attributes of the LSP for the associated
topology.";
}
}
description
 "IS-IS node topology information container -
 IS-IS reference is TLV 229."
} description "Grouping for TLV229.";
}

grouping tlv242-router-capabilities {
 container router-capabilities {
 list router-capability {
 leaf flags {
 type bits {
 bit flooding {
 position 0;
 description
 "If the S bit is set, the IS-IS Router CAPABILITY
 TLV MUST be flooded across the entire routing
domain. If the S bit is clear, the TLV MUST NOT
 be leaked between levels. This bit MUST NOT
 be altered during the TLV leaking.";
 }
 bit down {
 position 1;
 description
 "When the IS-IS Router CAPABILITY TLV is leaked
 from level-2 to level-1, the D bit MUST be set.
 Otherwise, this bit MUST be clear. IS-IS Router
capability TLVs with the D bit set MUST NOT be
 leaked from level-1 to level-2 in to prevent
TLV looping.";
 }
 }
 description "Router Capability Flags";
 }
 container node-tags {
 if-feature node-tag;
 list node-tag {

leaf tag {
 type uint32;
 description "Node tag value.";
}
 description "List of tags.";
}
 description "Container for node admin tags";
}

uses unknown-tlvs;

leaf binary {
 type binary;
 description "Binary encoding of the IS-IS node capabilities";
}
 description "IS-IS node capabilities. This list element may be extended with detailed information - IS-IS reference is TLV 242.";
}
 description "List of router capability TLVs.";
}
 description "Grouping for TLV242.";
}

grouping tlvl38-srlg {
 description "Grouping for TLV138.";
 container links-srlgs {
 list links {
 leaf neighbor-id {
 type extended-system-id;
 description "system-id of the extended neighbor.";
 }
 leaf flags {
 type uint8;
 description "Flags associated with the link.";
 }
 leaf link-local-id {
 type union {
 type inet:ip-address;
 type uint32;
 }
 description "Local identifier of the link.
It could be an IPv4 address or a local identifier.";
 }
 }
 }
}
leaf link-remote-id {
 type union {
 type inet:ip-address;
 type uint32;
 }
 description "Remote identifier of the link. It could be an IPv4 address or a remotely learned identifier.";
}

container srlgs {
 description "List of SRLGs.";
 leaf-list srlg {
 type uint32;
 description "SRLG value of the link.";
 }
 description "SRLG attribute of a link.";
 description "List of links with SRLGs";
}

/* Grouping for LSDB description */

grouping lsp-entry {
 description "IS-IS LSP database entry grouping";

 leaf decoded-completed {
 type boolean;
 description "IS-IS LSP body fully decoded.";
 }
 leaf raw-data {
 type yang:hex-string;
 description "The hexadecimal representation of the complete LSP in network-byte order (NBO) as received or originated.";
 }
 leaf lsp-id {
 type lsp-id;
 description "LSP ID of the LSP";
 }
 leaf checksum {
 type uint16;
 }
description "LSP checksum";
}
leaf remaining-lifetime {
 type uint16;
 units "seconds";
 description
 "Remaining lifetime (in seconds) until LSP expiration.";
}
leaf sequence {
 type uint32;
 description
 "This leaf describes the sequence number of the LSP.";
}
leaf attributes {
 type bits {
 bit partitioned {
 description "Originator partition repair supported";
 }
 bit attached-error {
 description
 "If set, the originator is attached to another area using the referred metric.";
 }
 bit attached-expense {
 description
 "If set, the originator is attached to another area using the referred metric.";
 }
 bit attached-delay {
 description
 "If set, the originator is attached to another area using the referred metric.";
 }
 bit attached-default {
 description
 "If set, the originator is attached to another area using the referred metric.";
 }
 bit overload {
 description
 "If set, the originator is overloaded, and must be avoided in path calculation.";
 }
 }
 description "LSP attributes";
}
uses tlv132-ipv4-addresses;
uses tlv232-ipv6-addresses;
uses tlv134-ipv4-te-rid;
uses tlv140-ipv6-te-rid;
uses tlv129-protocols;
uses tlv137-hostname;
uses tlv10-authentication;
uses tlv229-mt;
uses tlv242-router-capabilities;
uses tlv138-srlg;
uses unknown-tlvs;

container is-neighbor {
 list neighbor {
 key neighbor-id;

 uses neighbor;
 description "List of neighbors.";
 }
 description "Standard IS neighbors container - IS-IS reference is TLV 2.";
}

caracter extended-is-neighbor {
 list neighbor {
 key neighbor-id;

 uses neighbor-extended;
 description "List of extended IS neighbors";
 }
 description "Standard IS extended neighbors container - IS-IS reference is TLV 22";
}

caracter ipv4-internal-reachability {
 list prefixes {
 uses prefix-ipv4-std;
 description "List of prefixes.";
 }
 description "IPv4 internal reachability information container - IS-IS reference is TLV 128.";
}

caracter ipv4-external-reachability {
 list prefixes {

uses prefix-ipv4-std;
description "List of prefixes.";
}
description
"IPv4 external reachability information container -
IS-IS reference is TLV 130.";
}

class extended-ipv4-reachability {
 list prefixes {
 uses prefix-ipv4-extended;
 uses unknown-tlvs;
 description "List of prefixes.";
 }
description
"IPv4 extended reachability information container -
IS-IS reference is TLV 135.";
}

class mt-is-neighbor {
 list neighbor {
 leaf mt-id {
 type uint16 {
 range "0 .. 4095";
 }
 description "Multi-topology (MT) identifier";
 }
 uses neighbor-extended;
 description "List of neighbors.";
 }
description
"IS-IS multi-topology neighbor container - IS-IS
reference is TLV 223.";
}

class mt-extended-ipv4-reachability {
 list prefixes {
 leaf mt-id {
 type uint16 {
 range "0 .. 4095";
 }
 description "Multi-topology (MT) identifier";
 }
 uses prefix-ipv4-extended;
 uses unknown-tlvs;
 description "List of extended prefixes.";
 }
description
"IPv4 multi-topology (MT) extended reachability information container - IS-IS reference is TLV 235."
}

container mt-ipv6-reachability {
 list prefixes {
 leaf MT-ID {
 type uint16 {
 range "0 .. 4095";
 }
 description "Multi-topology (MT) identifier";
 }
 uses prefix-ipv6-extended;
 uses unknown-tlvs;
 description "List of IPv6 extended prefixes.";
 }
 description
 "IPv6 multi-topology (MT) extended reachability information container - IS-IS reference is TLV 237.";
}

container ipv6-reachability {
 list prefixes {
 uses prefix-ipv6-extended;
 uses unknown-tlvs;
 description "List of IPv6 prefixes.";
 }
 description
 "IPv6 reachability information container - IS-IS reference is TLV 236.";
}

grouping lsdb {
 description "Link State Database (LSDB) grouping";
 container database {
 config false;
 list levels {
 key level;
 leaf level {
 type level-number;
 description "LSDB level number (1 or 2)";
 }
 list lsp {
 key lsp-id;
 uses lsp-entry;
 description "List of LSPs in LSDB";
 }
 }
 }
}
augment "/rt:routing/"
 +"rt:ribs/rt:rib/rt:routes/rt:route" {
 when "rt:source-protocol = 'isis:isis'" {
 description "IS-IS-specific route attributes.";
 }
 uses route-content;
 description
 "This augments route object in RIB with IS-IS-specific attributes.";
 }

augment "/if:interfaces/if:interface" {
 leaf clns-mtu {
 type uint16;
 description "CLNS MTU of the interface";
 }
 description "ISO specific interface parameters.";
}

augment "/rt:routing/rt:control-plane-protocols/"
 +"rt:control-plane-protocol" {
 when "rt:type = 'isis:isis'" {
 description
 "This augment is only valid when routing protocol instance type is 'isis'";
 }
 description
 "This augments a routing protocol instance with IS-IS specific parameters.";
 container isis {
 must "count(area-address) > 0" {
 error-message
 "At least one area-address must be configured.";
 description
 "Enforce configuration of at least one area.";
 }
 }
 }
uses instance-config;
uses instance-state;

container topologies {
 if-feature multi-topology;
 list topology {
 key "name";
 leaf enable {
 type boolean;
 description "Topology enable configuration";
 }
 leaf name {
 type leafref {
 path "../../../../../../rt:ribs/rt:rib/rt:name";
 }
 description "Routing Information Base (RIB) corresponding to topology.";
 }
 }
 uses multi-topology-config;
 description "List of topologies";
} description "Multi-topology container";

container interfaces {
 list interface {
 key "name";
 leaf name {
 type if:interface-ref;
 description "Reference to the interface within the routing-instance.";
 }
 }
 uses interface-config;
 uses interface-state;
 container topologies {
 if-feature multi-topology;
 list topology {
 key name;
 leaf name {
 type leafref {
 path "../../../../../../rt:ribs/rt:rib/rt:name";
 }
 }
 }
 }
}
"rt:ribs/rt:rib/rt:name";
}

description
"Routing Information Base (RIB) corresponding to topology.";
}
uses multi-topology-interface-config;

description "List of interface topologies";

description "Multi-topology container";

description "List of IS-IS interfaces.";

description "IS-IS interface specific configuration container";
}

description
"IS-IS configuration/state top-level container";
}

/* RPC methods */

rpc clear-adjacency {

description
"This RPC request clears a particular set of IS-IS adjacencies. If the operation fails due to an internal reason, then the error-tag and error-app-tag should be set indicating the reason for the failure.";

input {

leaf routing-protocol-instance-name {

type leafref {

path "/rt:routing/rt:control-plane-protocols/" + "rt:control-plane-protocol/rt:name";
}

mandatory "true";

description
"Name of the IS-IS protocol instance whose IS-IS adjacency is being cleared.

If the corresponding IS-IS instance doesn’t exist, then the operation will fail with an error-tag of 'data-missing' and an error-app-tag of 'routing-protocol-instance-not-found'.";

leaf level {
 type level;
 description
 "IS-IS level of the adjacency to be cleared. If the IS-IS level is level-1-2, both level 1 and level 2 adjacencies would be cleared.

 If the value provided is different from the one authorized in the enum type, then the operation SHALL fail with an error-tag of 'data-missing' and an error-app-tag of 'bad-isis-level'.";
}

leaf interface {
 type if:interface-ref;
 description
 "IS-IS interface name.

 If the corresponding IS-IS interface doesn’t exist, then the operation SHALL fail with an error-tag of 'data-missing' and an error-app-tag of 'isis-interface-not-found'.";
}
}

rpc clear-database {
 description
 "This RPC request clears a particular IS-IS database. If the operation fails for an IS-IS internal reason, then the error-tag and error-app-tag should be set indicating the reason for the failure.";
 input {
 leaf routing-protocol-instance-name {
 type leafref {
 path "/rt:routing/rt:control-plane-protocols/" + "rt:control-plane-protocol/rt:name";
 }
 mandatory "true";
 description
 "Name of the IS-IS protocol instance whose IS-IS database(s) is/are being cleared.

 If the corresponding IS-IS instance doesn’t exist, then the operation will fail with an error-tag of 'data-missing' and an error-app-tag of 'routing-protocol-instance-not-found'.";
 }
 }
}
leaf level {
 type level;
 description
 "IS-IS level of the adjacency to be cleared. If the
 IS-IS level is level-1-2, both level 1 and level 2
 databases would be cleared.

 If the value provided is different from the one
 authorized in the enum type, then the operation
 SHALL fail with an error-tag of 'data-missing' and
 an error-app-tag of 'bad-isis-level'.";
}

/* Notifications */

notification database-overload {
 uses notification-instance-hdr;

 leaf overload {
 type enumeration {
 enum off {
 description
 "Indicates IS-IS instance has left overload state";
 }
 enum on {
 description
 "Indicates IS-IS instance has entered overload state";
 }
 }
 description "New overload state of the IS-IS instance";
 }
 description "This notification is sent when an IS-IS instance
 overload state changes.";
}

notification lsp-too-large {
 uses notification-instance-hdr;
 uses notification-interface-hdr;

 leaf pdu-size {
 type uint32;
 description "Size of the LSP PDU";
 }
}
leaf lsp-id {
 type lsp-id;
 description "LSP ID";
}

description
 "This notification is sent when we attempt to propagate
 an LSP that is larger than the dataLinkBlockSize for the
circuit. The notification generation must be throttled
 with at least 5 seconds between successive
 notifications.";
}

notification if-state-change {
 uses notification-instance-hdr;
 uses notification-interface-hdr;

 leaf state {
 type if-state-type;
 description "Interface state.";
 }

description
 "This notification is sent when an interface
 state change is detected.";
}

notification corrupted-lsp-detected {
 uses notification-instance-hdr;
 leaf lsp-id {
 type lsp-id;
 description "LSP ID";
 }

description
 "This notification is sent when we find that
 an LSP that was stored in memory has become
 corrupted.";
}

notification attempt-to-exceed-max-sequence {
 uses notification-instance-hdr;
 leaf lsp-id {
 type lsp-id;
 description "LSP ID";
 }

description
 "This notification is sent when the system
 wraps the 32-bit sequence counter of an LSP.";
notification id-len-mismatch {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf pdu-field-len {
 type uint8;
 description "Size of the ID length in the received PDU";
 }
 leaf raw-pdu {
 type binary;
 description "Received raw PDU.";
 }
 description
 "This notification is sent when we receive a PDU
 with a different value for the system-id length.
 The notification generation must be throttled
 with at least 5 seconds between successive
 notifications.";
}

notification max-area-addresses-mismatch {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf max-area-addresses {
 type uint8;
 description "Received number of supported areas";
 }
 leaf raw-pdu {
 type binary;
 description "Received raw PDU.";
 }
 description
 "This notification is sent when we receive a PDU
 with a different value for the Maximum Area Addresses.
 The notification generation must be throttled
 with at least 5 seconds between successive
 notifications.";
}

notification own-lsp-purge {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf lsp-id {
 type lsp-id;
 description "LSP ID";
 }
 description
 "This notification is sent when we receive an LSP
 "}
"This notification is sent when the system receives a PDU with its own system-id and zero age."
}

notification sequence-number-skipped {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf lsp-id {
 type lsp-id;
 description "LSP ID";
 }
 description
 "This notification is sent when the system receives a PDU with its own system-id and different contents. The system has to reoriginate the LSP with a higher sequence number.";
}

notification authentication-type-failure {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf raw-pdu {
 type binary;
 description "Received raw PDU.";
 }
 description
 "This notification is sent when the system receives a PDU with the wrong authentication type field. The notification generation must be throttled with at least 5 seconds between successive notifications.";
}

notification authentication-failure {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf raw-pdu {
 type binary;
 description "Received raw PDU.";
 }
 description
 "This notification is sent when the system receives a PDU with the wrong authentication information. The notification generation must be throttled with at least 5 seconds between successive notifications.";
}
notification version-skew {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf protocol-version {
 type uint8;
 description "Protocol version received in the PDU.";
 }
 leaf raw-pdu {
 type binary;
 description "Received raw PDU.";
 }
 description
 "This notification is sent when the system receives a
 PDU with a different protocol version number. The
 notification generation must be throttled with at least 5 seconds between successive
 notifications.";
}

notification area-mismatch {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf raw-pdu {
 type binary;
 description "Received raw PDU.";
 }
 description
 "This notification is sent when the system receives a
 Hello PDU from an IS that does not share any area
 address. The notification generation must be throttled with at least 5 seconds between successive
 notifications.";
}

notification rejected-adjacency {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf raw-pdu {
 type binary;
 description "Received raw PDU.";
 }
 leaf reason {
 type string {
 length "1..255";
 }
 description
 "The system may provide a reason to reject the
adjacency. If the reason is not available, an empty string will be returned. The expected format is a single line text.
}

description
"This notification is sent when the system receives a Hello PDU from an IS but does not establish an adjacency for some reason. The notification generation must be throttled with at least 5 seconds between successive notifications."
}

notification protocols-supported-mismatch {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf raw-pdu {
 type binary;
 description "Received raw PDU."
 }
 leaf-list protocols {
 type uint8;
 description "List of protocols supported by the remote system."
 }

description
"This notification is sent when the system receives a non-pseudonode LSP that has no matching protocols supported. The notification generation must be throttled with at least 5 seconds between successive notifications."
}

notification lsp-error-detected {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf lsp-id {
 type lsp-id;
 description "LSP ID."
 }
 leaf raw-pdu {
 type binary;
 description "Received raw PDU."
 }
 leaf error-offset {
 type uint32;
 description "If the problem is a malformed TLV, the error-offset

points to the start of the TLV. If the problem is with the LSP header, the error-offset points to the errant byte;}
leaf tlv-type {
 type uint8;
 description
 "If the problem is a malformed TLV, the tlv-type is set to the type value of the suspicious TLV. Otherwise, this leaf is not present.";
}

description
 "This notification is sent when the system receives an LSP with a parse error. The notification generation must be throttled with at least 5 seconds between successive notifications.";
}

notification adjacency-state-change {
 uses notification-instance-hdr;
 uses notification-interface-hdr;
 leaf neighbor {
 type string {
 length "1..255";
 }
 description
 "Name of the neighbor. It corresponds to the hostname associated with the system-id of the neighbor in the mapping database (RFC5301). If the name of the neighbor is not available, it is not returned.";
 }
 leaf neighbor-system-id {
 type system-id;
 description "Neighbor system-id";
 }
 leaf state {
 type adj-state-type;
 description "New state of the IS-IS adjacency.";
 }
 leaf reason {
 type string {
 length "1..255";
 }
 description
 "If the adjacency is going to DOWN, this leaf provides
a reason for the adjacency going down. The reason is
provided as a text. If the adjacency is going to UP, no
reason is provided. The expected format is a single line
text.
}
description
"This notification is sent when an IS-IS adjacency
moves to Up state or to Down state."
}

notification lsp-received {
 uses notification-instance-hdr;
 uses notification-interface-hdr;

 leaf lsp-id {
 type lsp-id;
 description "LSP ID";
 }
 leaf sequence {
 type uint32;
 description "Sequence number of the received LSP.";
 }
 leaf received-timestamp {
 type yang:timestamp;
 description "Timestamp when the LSP was received.";
 }
 leaf neighbor-system-id {
 type system-id;
 description "Neighbor system-id of LSP sender";
 }

description
"This notification is sent when an LSP is received.
The notification generation must be throttled with at
least 5 seconds between successive notifications."
}

notification lsp-generation {
 uses notification-instance-hdr;

 leaf lsp-id {
 type lsp-id;
 description "LSP ID";
 }
 leaf sequence {
 type uint32;
 description "Sequence number of the received LSP.";
 }

leaf send-timestamp {
 type yang:timestamp;

description "Timestamp when our LSP was regenerated.";
}

description
"This notification is sent when an LSP is regenerated. The notification generation must be throttled with at least 5 seconds between successive notifications."

7. Security Considerations

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. For IS-IS, the ability to modify IS-IS configuration will allow the entire IS-IS domain to be compromised including creating adjacencies with unauthorized routers to misroute traffic, isolate routers, or mount a massive Denial-of-Service (DoS) attack. A user should consider all the configuration nodes are sensible.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. The exposure of the Link State Database (LSDB) will expose the detailed topology of the network including authentication parameters. Implementations MUST NOT
provide a configured authentication key in a clear text format in response to any request (e.g., via get, get-config).

For IS-IS authentication, configuration is supported via the specification of key-chain [RFC8177] or the direction specification of key and authentication algorithm. Hence, authentication configuration using the "auth-table-trailer" case in the "authentication" container inherits the security considerations of [RFC8177]. This includes the considerations with respect to the local storage and handling of authentication keys.

Some of the RPC operations in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control access to these operations. The OSPF YANG module support the "clear-adjacency" and "clear-database" RPCs. If access too either of these is compromised, they can result in temporary network outages be employed to mount DoS attacks.

8. Contributors

Authors would like to thank Kiran Agrahara Sreenivasa, Dean Bogdanovic, Yingzhen Qu, Yi Yang, Jeff Tanstura for their major contributions to the draft.

9. IANA Considerations

The IANA is requested to assign two new URIs from the IETF XML registry ([RFC3688]). Authors are suggesting the following URI:

```
Registrant Contact: IS-IS WG
XML: N/A, the requested URI is an XML namespace
```

This document also requests one new YANG module name in the YANG Module Names registry ([RFC6020]) with the following suggestion:

```
name: ietf-isis
prefix: isis
reference: RFC XXXX
```

10. Change log for ietf-isis YANG module

10.1. From version -29 to version -30

- Set a maximum-length of 255 for the non-best-reason leaf.
- Updated some descriptions.
o Renamed "level-db" container to "levels" for consistency reasons.

o Added some RFC references in the YANG model.

o Leaf default-metric of container prefix-ipv4-std is now a container.

o Changed the description of the authentication and removed the reference to MD5 as a possible way to hide the password.

o Changed leaf type for authentication type within tlv10-authentication container. Moved from string to keychain:crypto-algorithm identity.

o Some admin strings are now limited to a range of 1..255.

o Hostname string in hostname DB is limited to 255 as per RFC5301.

o In FRR stats, "prefix" is now encoded as inet:ip-prefix rather than a string. "alternate" is now encoded as ip-address.

10.2. From version -28 to version -29

o Fixed area-address type pattern. The authorized number of bytes was wrong.

10.3. From version -27 to version -28

o Fixed non accurate description of level-type leaf.

10.4. From version -26 to version -27

o Fixed XPATH to switching-capability leaf in "when" statement of psc-specific and tdm-specific containers.

10.5. From version -25 to version -26

o Modify BFD reference descriptions.

o Fix indentation.

o "uses interface-state" was missing.

10.6. From version -24 to version -25

o RPC clear-adjacency uses now an interface reference instead of a string.
- Use expanded "address-family" rather than "af" in the model.
- Fix pattern for area-address.
- Removed unnecessary identities.
- Added an instances container and list in the modeling of neighbors in the LSDB. This is to manage the case where there are parallel links between two neighbors.
- Notification instance header: removed routing-instance leaf (alignment with OSPF).
- Notification instance header: changed routing-protocol-name to a reference.
- Notification interface header: changed interface to a reference.
- RPCs: changed instance-state-ref typedef to a leafref. Removed associated typedef.
- Revised some groupings and their names (alignment with OSPF).
- Some description alignment with OSPF.
- auto-cost container alignment with OSPF.
- MT-ID leaf in database description renamed (lower-case) mt-id.
- In lsp-log grouping, leaf change is renamed reason to align with OSPF.
- Added some link attributes (GMPLS, TE, extended TE, SRLGs) in the LSDB.
- Added extended-system-id typedef which contains the systemid plus the pseudonode number.
- Add support of POI Purge Originator Identification.

10.7. From version -22 to version -24
- Fix revision date of the module.
10.8. From version -21 to version -22
 o TE router-id modeling alignment with OSPF.
 o Add max-ecmp + feature in spf-control container (alignment with OSPF).

10.9. From version -20 to version -21
 o Model revision date fix

10.10. From version -19 to version -20
 o Moved to Yang 1.1
 o Lower case enumerations
 o Add RFC references to features
 o Remove segment-routing feature
 o Modified BFD activation modeling

10.11. From version -18 to version -19
 o Align with draft-ietf-netmod-rfc8022bis.
 o Modify address family types as per draft-ietf-rtgwg-routing-types-17.

10.12. From version -17 to version -18
 o NMDA compliancy.
 o Set some default values.
 o Align with iana-rt-types module.

10.13. From version -16 to version -17
 o Cosmetic fixes.
 o Use of rt-types model.
10.14. From version -15 to version -16

- Alignment with last IETF key chain model.
- lsp-log "change" leaf moved as an identity.
- Incremental SPF removed from spf-log types.

10.15. From version -14 to version -15

- Alignment with OSPF model done:
 * Added spf-control container with IETF SPF delay algorithm as a feature.
 * Added graceful-restart options.
 * Added nsr as a feature.
 * Removed per topology FRR. Need to be augmented if necessary.
 * Created an ldp container within mpls.
 * Renamed igp-ldp-sync to igp-sync.
 * Added auto-cost container.
 * Moved reference-bandwidth under auto-cost container.
 * Added IS-IS local RIB as operational state.
 * Added decode-completed and raw-data leaves in the LSDB model.
 * Modified the notification header.

10.16. From version -13 to version -14

- Segment Routing extensions are now in a separate document.

10.17. From version -12 to version -13

- Move feature nlpid-control to container rather than list.
- Rename multi-topology to topologies to align with OSPF.
- Rename bfd/enabled to bfd/enable for consistency reason.
- Add support for NSR with a feature.
10.18. From version -09 to version -12
 o Rename node-tag container to node-tags.

10.19. From version -08 to version -09
 o Added container before af list.
 o Added container before topology list.
 o Aligned LFA if per level cfg.
 o Align to draft-ietf-netmod-routing-cfg-23.

10.20. From version -07 to version -08
 o Remove selector from system-id type.
 o Add some default values.
 o Moved lists to containers+groupings for per level configuration.
 o remove routing-instance as per core routing model v21.
 o added BFD leaf (no more BFD protocol model).
 o changed keychain module reference.

10.21. From version -05 to version -07
 o Move Overload config from list to container.
 o Move Overload-max-metric config from list to container.
 o Move preference config from list to container.
 o Add Node flag in config.
 o Removed BFD config => moved to isis-bfd module.
 o Remove call to routing policy model.

10.22. From version -03 to version -05
 o Correct invalid references to previous versions of core routing model.
 o Remove BFD config and replace by groupings from ietf-bfd.
10.23. From version -02 to version -03

- Adding routing-policy support through routing-policy model.
- Reviewed config and op state groupings.
- Add default value to lfa candidate-disabled.
- Add enable leaf to isis container to reflect admin state.
- Move to VRF centric only.
- Segment routing is part os a separate module.

10.24. From version -01 to version -02

- Adding IPFRR.
- Adding igp-ldp-sync.
- Adding segment-routing.
- Adding instance reference to operational states.
- Move AF type from string to identity.
- Updated router-capability in LSDB description.
- Packet counters moved to interface-packet-counters.
- Added modification information in lsp-log.
- Removing igp-ldp-sync timer in IS-IS.
- Defining hierarchy for operational states.
- Adding clns-mtu.
- Adding key-chain.

10.25. From version -00 to version -01

- Interface metric move from af container to interface container.
- Hello-padding on interface moved to hello-padding-disable with empty type.
- Three-way-handshake removed.
- route preference changed to a choice.
- csnp-authentication/psnp-authentication merged to authentication container.
- lsp-gen-interval-exp-delay removed.
- Added overload-max-metric feature.
- overload-max-metric is in a separate container.
- Change hello-padding to container.
- Change bfd to container.
- Make BFD a feature.
- Create mpls-te container and put router-id inside.
- Remove GR helper disable and timers.

11. References

11.1. Normative References

[I-D.ietf-bfd-yang]

[ISO-10589]

[RFC1195]

[RFC2119]

11.2. Informative References

Appendix A. Example of IS-IS configuration in XML

This section gives an example of configuration of an IS-IS instance on a device. The example is written in XML.

```xml
<?xml version="1.0" encoding="utf-8"?>
<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <name>SLI</name>
    <router-id>1.1.1.1</router-id>
    <control-plane-protocols>
      <control-plane-protocol>
        <description/>  
        <type>
          <type xmlns:isis="urn:ietf:params:xml:ns:yang:ietf-isis">isis:isis</type>
        </type>
        <isis xmlns="urn:ietf:params:xml:ns:yang:ietf-isis">
          <enable>true</enable>
          <level-type>level-2</level-type>
          <system-id>87FC.FCDF.4432</system-id>
          <area-address>49.0001</area-address>
          <mpls>
            <te-rid>
              <ipv4-router-id>192.0.2.1</ipv4-router-id>
            </te-rid>
          </mpls>
        </isis>
      </control-plane-protocol>
    </control-plane-protocols>
  </routing>
</data>
```
<value>wide-only</value>
</metric-type>
<default-metric>
 <value>111111</value>
</default-metric>
<address-families>
 <address-family-list>
 <address-family>ipv4</address-family>
 <enable>true</enable>
 </address-family-list>
 <address-family-list>
 <address-family>ipv6</address-family>
 <enable>true</enable>
 </address-family-list>
</address-families>
<interfaces>
 <interface>
 <name>Loopback0</name>
 <tag>200</tag>
 <metric>
 <value>0</value>
 </metric>
 <passive>true</passive>
 </interface>
 <interface>
 <name>Eth1</name>
 <level-type>level-2</level-type>
 <interface-type>point-to-point</interface-type>
 <metric>
 <value>167890</value>
 </metric>
 </interface>
</interfaces>
</isis>
</control-plane-protocol>
</control-plane-protocols>
</routing>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <name>Loopback0</name>
 <description/>
 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 ianaift:softwareLoopback
 </type>
 <link-up-down-trap-enable>enabled</link-up-down-trap-enable>
 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
 <address>
 <ip>192.0.2.1</ip>
 </address>
 </ipv4>
 </interface>
</interfaces>
<prefix-length>32</prefix-length>
</address>
</ipv4>
<ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
<address>
<ip>2001:DB8::1</ip>
<prefix-length>128</prefix-length>
</address>
</ipv6>
</interface>
</interface>
<name>Eth1</name>
<description/>
?type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
ianaift:ethernetCsmacd</type>
<link-up-down-trap-enable>enabled</link-up-down-trap-enable>
<ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
<address>
<ip>198.51.100.1</ip>
<prefix-length>30</prefix-length>
</address>
</ipv4>
<ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
<address>
<ip>2001:DB8:0:0:FF::1</ip>
<prefix-length>64</prefix-length>
</address>
</ipv6>
</interface>
</interfaces>
</data>

Authors’ Addresses

Stephane Litkowski
Orange
Email: stephane.litkowski@orange.com

Derek Yeung
Arrcus, Inc
Email: derek@arrcus.com
Acee Lindem
Cisco Systems

Email: acee@cisco.com

Jeffrey Zhang
Juniper Networks

Email: zzhang@juniper.net

Ladislav Lhotka
CZ.NIC

Email: lhotka@nic.cz