Container Authenticated by Multiple MACs
draft-ietf-krb-wg-cammac-02

Abstract

Abstract: This document proposes a Kerberos Authorization Data container that supersedes AD-KDC-ISSUED. It allows for multiple MACs or signatures on the contained Authorization Data elements.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 24, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction ... 3
2. Requirements Language 3
3. Validation ... 3
4. Encoding .. 4
 4.1. AD-CAMMAC ... 4
5. Assigned numbers ... 6
6. IANA Considerations .. 6
7. Security Considerations 6
8. Acknowledgements .. 6
9. References .. 6
 9.1. Normative References 6
 9.2. Informative References 6
Appendix A. Additional Stuff 7
Authors’ Addresses ... 7
1. Introduction

This draft proposes a Authorization Data container for Kerberos that identifies a base set of MAC and other elements necessary to authenticate the authorization data being carried in such a way that not only the KDC but also services can independently verify that the data has been authenticated by the KDC and has not been tampered with.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Validation

Authorization data is highly sensitive and must be validated to insure no tampering has occurred.

In order to validate any information the receiving application server needs to be able to cryptographically verify the data. This is done by introducing a new AuthorizationData element called AD-CAMMAC that contains enough information to bind the contents to a principal in a way that a receiving application server can verify autonomously without further contact with the KDC.

The following information is needed:

- The KDC MAC.
- The Service MAC.
- Optional Trusted Service Key MAC.

The KDC MAC is required to allow the KDC to validate the data without requiring to recompute the contents at every TGS request.

The SVC MAC is required so that the Service can verify that the authorization data has been validated by the KDC.

The Trusted Service MAC is useful to verify the authenticity of the contents on the same host, when the data is received by a less trusted service and passed to a more trusted service on the same host without the need for additional roundtrips to the KDC.
The ad-type for AD-CAMMAC is (TBD).

4. Encoding

The Kerberos protocol is defined in [RFC4120] using Abstract Syntax Notation One (ASN.1) [X680]. As such, this specification also uses the ASN.1 syntax for specifying both the abstract layout of the AD-CAMMAC attributes, as well as its encoding.

4.1. AD-CAMMAC
AD-CAMMAC ::= SEQUENCE {
 elements [0] AuthorizationData,
 kdc-verifier [1] Verifier-MAC,
 svc-verifier [2] Verifier-MAC OPTIONAL,
 other-verifiers [3] SEQUENCE OF Verifier
}

Verifier ::= CHOICE {
 mac Verifier-MAC
}

Verifier-MAC ::= SEQUENCE {
 identifier [0] PrincipalName OPTIONAL,
 kvno [1] UInt32,
 enctype [2] Int32,
 mac [3] Checksum
}

elements
 A sequence of authorization data elements issued by the KDC.

kdc-verifier
 A container that includes a cryptographic checksum computed over
 the encoding of the elements field, keyed with the krbtgt key.
 Checksum type TBD.

svc-verifier
 A container that includes a cryptographic checksum computed over
 the encoding of the elements field, keyed with the service long
 term key.
 This field is marked OPTIONAL and can be omitted when the CAMMAC
 is attached to a local TGT. It MUST be present in all other cases,
 including cross-realm TGTs.
 Checksum type TBD.

other-verifiers
 A container including a principal name and a cryptographic
 checksum computed over the encoding of the elements field, keyed
 with the long term key of the principal name specified in the
 identifier field. The PrincipalName MUST be present and a valid
 principal in the REALM for additional verifiers.
 KDCs MAY add one or more ‘trusted service’ verifiers. Unless
 otherwise explicitly administratively configured, the ‘trusted
 service’ SHOULD be found by substituting the service identifier
 component of the principal name of the svc-verifier with ‘host’.
 Checksum type TBD.
5. Assigned numbers

TBD

6. IANA Considerations

TBD.

7. Security Considerations

Although generally authorization data are conveyed within a ticket and are thereby protected using the existing encryption methods on the ticket, some authorization data requires the additional protection provided by the CAMMAC.

8. Acknowledgements

TBD.

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Additional Stuff

This becomes an Appendix.

Authors’ Addresses

Simo Sorce (editor)
Red Hat

Email: ssorce@redhat.com

Tom Yu (editor)
MIT Kerberos Consortium

Email: tlyu@mit.edu

Thomas Hardjono (editor)
MIT Kerberos Consortium

Email: hardjono@mit.edu