Definition of Managed Objects for the DYMO Manet Routing Protocol
draft-ietf-manet-dymo-mib-04

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes objects for configuring aspects of the DYMO routing process. The DYMO-MIB also reports state information, performance information, and notifications. In addition to configuration, this additional state, performance and notification information is useful to management operators troubleshooting DYMO routing problems.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on July 23, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. The Internet-Standard Management Framework 3
3. Conventions .. 3
4. Overview .. 3
 4.1. DYMO Management Model 4
 4.2. Terms .. 5
5. Structure of the MIB Module 5
 5.1. Textual Conventions 6
 5.2. The Configuration Group 6
 5.3. The State Group 7
 5.3.1. Routing Table 7
 5.4. The Performance Group 7
 5.5. The Notifications Group 8
6. Relationship to Other MIB Modules 8
 6.1. Relationship to the SNMPv2-MIB 9
6.2. MIB modules required for IMPORTS 9
7. Definitions .. 9
8. Security Considerations 35
9. IANA Considerations 37
10. Contributors .. 37
11. Acknowledgements 38
12. References ... 38
 12.1. Normative References 38
 12.2. Informative References 38
Appendix A. Change Log 39
Appendix B. Open Issues 40
Appendix C. .. 40
1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes objects for configuring aspects of a Dynamic MANET On-demand (DYMO) routing \[I-D.ietf-manet-dymo] process. The DYMO-MIB also reports state information, performance metrics, and notifications. In addition to configuration, this additional state, performance and notification information is useful to management stations troubleshooting routing problems.

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

4. Overview

The Dynamic MANET On-demand (DYMO) routing protocol \[I-D.ietf-manet-dymo] is intended for use by mobile nodes in wireless, multihop networks. DYMO determines unicast routes among DYMO routers within the network in an on-demand fashion, offering improved convergence in dynamic topologies.

A DYMO router’s MIB contains DYMO process configuration parameters (e.g. interfaces), state information (e.g. sequence number), performance counters (e.g. number of control messages), and notifications.
4.1. DYMO Management Model

This section describes the management model for the DYMO routing protocol.

The MIB is comprised of four groups, i.e., Notifications, Configuration, State and Performance. The configuration of the managed devices is controlled by the objects in the Configuration Group. These are divided into Nodal and Interface objects. The bulk of the DYMO configuration is in the Nodal objects which control protocol behavior. The Interface objects merely identify/configure interfaces to enable DYMO routing over their interface. The Nodal objects are further divided into routing (or protocol) objects and Gateway objects. Gateway objects define other routing prefixes for which the node acts as a routing proxy on behalf of these non-local prefixes.

The Configuration Objects drive the behavior of the managed DYMO device and hence determines the information in the remaining groups, i.e., State, Performance and Notifications. The State objects primarily present the resulting forwarding table objects. The Performance group primarily is comprised of counters for monitoring the number of DYMO routing messages received locally, per node and per interface. The Notifications group contains objects which monitor changes to the interface configuration and the gateway prefixes configuration.

See the below diagram outlining the DYMO-MIB device management model.
4.2. Terms

The following definitions apply throughout this document:

- **Configuration Objects** - switches, tables, objects which are initialized to default settings or set through the management interface defined by this MIB.

- **Tunable Configuration Objects** - objects whose values affect timing or attempt bounds on the DYMO protocol.

- **State Objects** - automatically generated values which define the current operating state of the DYMO protocol process in the router.

- **Performance Objects** - automatically generated values which help an operator or automated tool to assess the performance of the DYMO protocol process on the router and the overall routing performance within the DYMO routing domain.

5. Structure of the MIB Module

This section presents the structure of the DYMO MIB module. The objects are arranged into the following groups:

- **dymoMIBNotifications** - defines the notifications associated with the DYMO-MIB. These are currently limited to notifications of interface state changes and gateway prefix changes.
o dymoMIBObjects - defines the objects forming the basis for the DYMO-MIB. These objects are divided up by function into the following groups:

- Configuration Group - This group contains the DYMO objects that configure specific options that determine the overall performance and operation of the routing protocol for the router device and its interfaces.

- State Group - Contains information describing the current state of the DYMO process such as the DYMO routing table.

- Performance Group - Contains objects which help to characterize the performance of the DYMO process, typically statistics counters. There are two types of DYMO statistics: global counters and per interface counters.

o dymoMIBConformance - defines minimal and full conformance of implementations to this DYMO-MIB.

5.1. Textual Conventions

The textual conventions used in the DYMO-MIB are as follows. The RowStatus and TruthValue textual conventions are imported from RFC 2579 [RFC2579]. The DymoInterfaceOperStatus is defined within the DYMO-MIB. This contains the current operational status of the DYMO interface.

5.2. The Configuration Group

The DYMO device is configured with a set of controls. The list of configuration controls for the DYMO device follow.

Protocol Configuration Parameters:

- DID

- MSG_HOPLIMIT

- ROUTE_TIMEOUT

- ROUTE_AGE_MIN_TIMEOUT

- ROUTE_SEQNUM_AGE_MAX_TIMEOUT
5.3. The State Group

The State Subtree reports current state information. State information from the DYMO-MIB is primarily contained in the 'Routing' Table.

5.3.1. Routing Table

The DYMO routing table contains information related to IP forwarding entries found by the node’s DYMO processes.

5.4. The Performance Group

The Performance subtree reports primarily counters that relate to DYMO protocol activity. The DYMO performance objects consists of per node and per interface objects:

- OwnSequenceNumber
- RREQ initiated
- RREQ sent
- RREQ received
5.5. The Notifications Group

The Notifications Subtree contains the list of notifications supported within the DYMO-MIB and their intended purpose or utility. This group is currently contains two notification objects, one related to status changes in DYMO interfaces and one related to changes in the gateway prefixes table.

6. Relationship to Other MIB Modules

The text of this section specifies the relationship of the MIB modules contained in this document to other standards, particularly to standards containing other MIB modules. Definitions imported from other MIB modules and other MIB modules that SHOULD be implemented in
conjunction with the MIB module contained within this document are identified in this section.

6.1. Relationship to the SNMPv2-MIB

The 'system' group in the SNMPv2-MIB [RFC3418] is defined as being mandatory for all systems, and the objects apply to the entity as a whole. The 'system' group provides identification of the management entity and certain other system-wide data. The DYMO-MIB does not duplicate those objects.

6.2. MIB modules required for IMPORTS

The DYMO-MIB module IMPORTS objects from SNMPv2-SMI [RFC2578], SNMPv2-TC [RFC2579], SNMPv2-CONF [RFC2580], INET-ADDRESS-MIB [RFC4001] and IF-MIB [RFC2863].

7. Definitions

MANET-DYMO-MIB DEFINITIONS ::= BEGIN

IMPORTS

 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Counter32, Integer32, Unsigned32, mib-2
 FROM SNMPv2-SMI -- [RFC2578]

 TEXTUAL-CONVENTION, RowStatus, TruthValue
 FROM SNMPv2-TC -- [RFC2579]

 MODULE-COMPLIANCE, OBJECT-GROUP,
 NOTIFICATION-GROUP
 FROM SNMPv2-CONF -- [RFC2580]

 InetAddress, InetAddressType,
 InetAddressPrefixLength
 FROM INET-ADDRESS-MIB -- [RFC4001]

 InterfaceIndexOrZero
 FROM IF-MIB -- [RFC2863]

;

manetDymoMIB MODULE-IDENTITY
 LAST-UPDATED "201101191200Z" -- January 19, 2011
 ORGANIZATION "IETF MANET Working Group"
 CONTACT-INFO
 "WG E-Mail: manet@ietf.org"
DESCRIPTION

Copyright (C) The IETF Trust (2008). This version of this MIB module is part of RFC xxxx; see the RFC itself for full legal notices."

-- Revision History

REVISION "201101191200Z" -- January 19, 2011

DESCRIPTION

"Fifth draft of this MIB module published as draft-ietf-manet-dymo-mib-04.txt.

Changes include:
- Incorporated the DYMO ID by adding Instance Table.
- Added dymoSetNotification for improved control of DYMO Notifications."
- Updated various object names to be consistent with current draft-ietf-manet-dymo-21.

REVISION "200910251200Z" -- October 25, 2009
DESCRIPTION
"Fourth draft of this MIB module published as draft-ietf-manet-dymo-mib-03.txt.
- Minor changes to textual material, including additions to the IMPORTS text.
- Added DEFVAL clauses to all read-write configuration objects with defaults identified in the DYMO draft."

REVISION "200902241200Z" -- February 24, 2009
DESCRIPTION
"Third draft of this MIB module published as draft-ietf-manet-dymo-mib-02.txt.
- Minor changes to dymoInterfacesTable and dymoResponsibleAddrTable.
- Added global dymoAdminStatus and interface specific dymoIfAdminStatus.
- Imported InterfaceIndexOrZero type from IF-MIB."

REVISION "200811031200Z" -- November 03, 2008
DESCRIPTION
"Second draft of this MIB module published as draft-ietf-manet-dymo-mib-01.txt. Minor changes to dymoInterfacesTable and dymoResponsibleAddrTable."

REVISION "200805141200Z" -- May 14, 2008
DESCRIPTION
"Initial draft of this MIB module published as draft-ietf-manet-dymo-mib-00.txt."

-- RFC-Editor assigns XXXX
::= { mib-2 999 } -- to be assigned by IANA

--
-- TEXTUAL CONVENTIONS
--

Status ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"An indication of the operability of a DYMO function or feature. For example, the status of an interface: 'enabled' indicates that it is willing to communicate with other DYMO routers, and 'disabled' indicates that it is not."
SYNTAX INTEGER { enabled (1), disabled (2) }
-- Top-Level Object Identifier Assignments
--
dymoMIBNotifications OBJECT IDENTIFIER ::= { manetDymoMIB 0 }
dymoMIBObjects OBJECT IDENTIFIER ::= { manetDymoMIB 1 }
dymoMIBConformance OBJECT IDENTIFIER ::= { manetDymoMIB 2 }

--
-- dymoConfigurationGroup
--
-- This group contains the DYMO objects that configure specific
-- options that determine the overall performance and operation
-- of the routing protocol for the router device and its
-- interfaces.
--
dymoConfigurationGroup OBJECT IDENTIFIER ::= { dymoMIBObjects 1 }

--
-- DYMO Global Router Configuration Group
--

dymoRouterConfigGroup OBJECT IDENTIFIER ::= {dymoConfigurationGroup 1}

dymoInstanceTable OBJECT-TYPE
SYNTAX SEQUENCE OF DymoInstanceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The DYMO Instance Table describes the DYMO
"
REFERENCE
 "Dynamic MANET On-demand (DYMO) Routing, Chakeres,
 I., and C. Perkins, July 2010. The DID."
 ::= { dymoRouterConfigGroup 1 }

dymoInstanceEntry OBJECT-TYPE
SYNTAX DymoInstanceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The DYMO instance entry describes one DYMO
 process as indexed by its DID."
INDEX { dymoInstanceIndex }
 ::= { dymoInstanceTable 1 }

DymoInstanceEntry ::=

SEQUENCE {
 dymoInstanceIndex
 Integer32,
 dymoInstanceDid
 Integer32,
 dymoInstanceAdminStatus
 Status,
 dymoInstanceRowStatus
 RowStatus
}

dymoInstanceIndex OBJECT-TYPE
SYNTAX Integer32 (0..255)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The instance index for this DYMO process."
::= { dymoInstanceEntry 1 }

dymoInstanceDid OBJECT-TYPE
SYNTAX Integer32 (0..255)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The DYMO ID of this instance of the
 DYMO process."
::= { dymoInstanceEntry 2 }

dymoInstanceAdminStatus OBJECT-TYPE
SYNTAX Status
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The administrative status of this DYMO
 process in the router. Multiple processes are
 allowed. The value ‘enabled’ denotes that the
 DYMO Process is active on at least one interface;
 ‘disabled’ disables it on all interfaces.

 This object is persistent and when written
 the entity SHOULD save the change to non-volatile storage."
::= { dymoInstanceEntry 3 }

dymoInstanceRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified."
::= { dymoInstanceEntry 4 }

dymoMaxHopLimit OBJECT-TYPE
SYNTAX Unsigned32 (0..255)
UNITS "hops"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The maximum number of hops. The suggested default is 10 hops. This is the DYMO MSG_HOPLIMIT parameter value."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
DEFVAL { 10 }
 ::= { dymoRouterConfigGroup 2 }

dymoRouteTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
UNITS "milliseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The route timeout value. The suggested default value is 5000 milliseconds. This is the DYMO ROUTE_TIMEOUT parameter value."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
DEFVAL { 5000 }
 ::= { dymoRouterConfigGroup 3 }

dymoRouteAgeMinTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
UNITS "milliseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The minimum route age timeout value. The
suggested default value is 1000 milliseconds.
This is the DYMO ROUTE_AGE_MIN_TIMEOUT parameter value."

REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
DEFVAL { 1000 }
 ::= { dymoRouterConfigGroup 4 }

dymoRouteSeqnumAgeMaxTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
UNITS "milliseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The maximum route age timeout value. The suggested default value is 60,000 milliseconds. This is the DYMO ROUTE_SEQNUM_AGE_MAX_TIMEOUT parameter value."

REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
DEFVAL { 60000 }
 ::= { dymoRouterConfigGroup 5 }

dymoRouteUsedTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
UNITS "milliseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The route used timeout value. The suggested default value is to set this to the dymoRouteTimeout object value (whose default is 5000 milliseconds). This is the DYMO ROUTE_USED_TIMEOUT parameter value."

REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
DEFVAL { 5000 }
 ::= { dymoRouterConfigGroup 6 }

dymoRouteDeleteTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
UNITS "milliseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The route delete timeout value. The suggested default value is 2 * dymoRouteTimeout value (which is equal to 10000 milliseconds if using the default value for the dymoRouteTimeout value). This is the DYMO ROUTE_DELETE_TIMEOUT parameter value."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
DEFVAL { 10000 }
 ::= { dymoRouterConfigGroup 7 }
dymoRouteRreqWaitTime OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
UNITS "milliseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The Route Request wait time. The suggested default value is 2000 milliseconds. This is the DYMO ROUTE_RREQ_WAIT_TIME parameter value."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
DEFVAL { 2000 }
 ::= { dymoRouterConfigGroup 8 }
dymoDiscoveryAttemptsMax OBJECT-TYPE
SYNTAX Unsigned32 (1..16)
UNITS "attempts"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The number of Route Request retry attempts. The suggested default value is 3. This is the DYMO DISCOVERY_ATTEMPTS_MAX parameter value."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
DEFVAL { 3 }
 ::= { dymoRouterConfigGroup 9 }
dymoUnicastMsgSentTimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
UNITS "milliseconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The message sent timeout value for unicast packets. The suggested default value is 1000 milliseconds. This is the DYMO UNICAST_MESSAGE_SENT_TIMEOUT parameter value."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
DEFVAL { 1000 }
::= { dymoRouterConfigGroup 10 }

--
-- DYMO Interfaces Configuration Table
--

dymoInterfaceTable OBJECT-TYPE
SYNTAX SEQUENCE OF DymoInterfaceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The DYMO Interface Table describes the DYMO interfaces that are participating in the DYMO routing protocol. The ifIndex is from the interfaces group defined in the Interfaces Group MIB."
REFERENCE
"RFC 2863 - The Interfaces Group MIB, McCloghrie, K., and F. Kastenholtz, June 2000."
::= { dymoConfigurationGroup 2 }
dymoInterfaceEntry OBJECT-TYPE
SYNTAX DymoInterfaceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The DYMO interface entry describes one DYMO interface as indexed by its ifIndex."
INDEX { dymoIfIndex }
::= { dymoInterfaceTable 1 }
DymoInterfaceEntry ::=
SEQUENCE {
dymoIfIndex
 InterfaceIndexOrZero,
dymoIfAdminStatus
 Status,
dymoIfRowStatus
 RowStatus
 }

dymoIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The ifIndex for this DYMO interface."
::= { dymoInterfaceEntry 1 }

dymoIfAdminStatus OBJECT-TYPE
SYNTAX Status
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The DYMO interface’s administrative status.
The value ‘enabled’ denotes that the interface
is running the DYMO routing protocol.
The value ‘disabled’ denotes that the interface is
external to DYMO."
::= { dymoInterfaceEntry 2 }

dymoIfRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object permits management of the table
by facilitating actions such as row creation,
construction, and destruction. The value of
this object has no effect on whether other
objects in this conceptual row can be
modified."
::= { dymoInterfaceEntry 3 }

--

-- DYMO Responsible Address Table
--
dymoResponsibleAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF DymoResponsibleAddrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The DYMO Responsible Address Table is a list of IP address prefixes, and their associated prefix length for which the DYMO router is responsible."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 3 Important Settings."
::= { dymoConfigurationGroup 3 }

DymoResponsibleAddrEntry OBJECT-TYPE
SYNTAX DymoResponsibleAddrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A single host address range. Information in this table is persistent and when this object is written, the entity SHOULD save the change to non-volatile storage."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 3 Important Settings."
INDEX { dymoResponsibleAddrIndex }
::= { dymoResponsibleAddrTable 1 }

DymoResponsibleAddrEntry ::= SEQUENCE {
 dymoResponsibleAddrIndex Unsigned32,
 dymoResponsibleAddrType InetAddrType,
 dymoResponsibleAddr InetAddress,
 dymoResponsibleAddrPrefixLen InetAddressPrefixLength,
 dymoResponsibleAddrRowStatus RowStatus
}

DymoResponsibleAddrIndex OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS not-accessible
dymoResponsibleAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The type of the dymoResponsibleAddr, as defined in the InetAddress MIB [RFC 4001]."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 3 Important Settings."
::= { dymoResponsibleAddrEntry 2 }

dymoResponsibleAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The destination IP address of this route. The type of this address is determined by the value of the dymoResponsibleAddrType object."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 3 Important Settings."
::= { dymoResponsibleAddrEntry 3 }

dymoResponsibleAddrPrefixLen OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Indicates the number of leading one bits that form the mask to be logical-AND’d with the destination address before being compared to the value in the dymoResponsibleAddr field."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 3 Important Settings."
::= { dymoResponsibleAddrEntry 4 }

dymoResponsibleAddrRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified."
::= { dymoResponsibleAddrEntry 5 }

--
-- dymoStateGroup
--
-- Contains information describing the current state of the DYMO process such as the DYMO routing table.
--

dymoStateGroup OBJECT IDENTIFIER ::= { dymoMIBObjects 2 }

dymoCurrentSeqNum OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current DYMO sequence number. The DYMO sequence numbers allow nodes to judge the freshness of routing information and ensures loop freedom. If the sequence number has been assigned to be the largest possible number representable as a 16-bit unsigned integer (i.e., 65,535), then the sequence number is set to 256 when incremented. Setting the sequence number to 256 allows other nodes to detect that the number has rolled over and the node has not lost its sequence number (e.g., via reboot)."
::= { dymoStateGroup 1 }

--
-- DYMO Routing Table
--

dymoRoutingTable OBJECT-TYPE
SYNTAX SEQUENCE OF DymoRoutingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The DYMO Routing Table describes the current routing information learned via DYMO control messages."

REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 2 Suggested Parameter Values."
 ::= { dymoStateGroup 2 }

dymoRoutingEntry OBJECT-TYPE
SYNTAX DymoRoutingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The DYMO routing entry contains a piece of routing information for a particular set of addresses."
INDEX { dymoRoutingIpAddrType,
 dymoRoutingIpAddr,
 dymoRoutingPrefixLen }
 ::= { dymoRoutingTable 1 }

DymoRoutingEntry ::==
SEQUENCE {
 dymoRoutingIpAddrType
 InetAddressType,
 dymoRoutingIpAddr
 InetAddress,
 dymoRoutingPrefixLen
 InetAddressPrefixLength,
 dymoRoutingSeqNum
 Unsigned32,
 dymoRoutingNextHopIpAddrType
 InetAddressType,
 dymoRoutingNextHopIpAddress
 InetAddress,
 dymoRoutingNextHopInterface
 InterfaceIndexOrZero,
 dymoRoutingForwardingFlag
 TruthValue,
 dymoRoutingBrokenFlag
 TruthValue,
 dymoRoutingDist
 Unsigned32
}

dymoRoutingIpAddrType OBJECT-TYPE
SYNTAX InetAddressType
dymoRoutingIpAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The routing table Inet IPv4 or IPv6 address."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 3 Important Settings."
::= { dymoRoutingEntry 2 }

dymoRoutingPrefixLen OBJECT-TYPE
SYNTAX InetAddressPrefixLength
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The prefix length. This is a decimal value that indicates the number of contiguous, higher-order bits of the address that make up the network portion of the address."
REFERENCE
"Dynamic MANET On-demand (DYMO) Routing, Chakeres, I., and C. Perkins, July 2010. Table 3 Important Settings."
::= { dymoRoutingEntry 3 }

dymoRoutingSeqNum OBJECT-TYPE
SYNTAX Unsigned32 (1..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The interface sequence number. This is the DYMO SeqNum associated with this routing information."
::= { dymoRoutingEntry 4 }

dymoRoutingNextHopIpAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The IP address type of the next hop."
::= { dymoRoutingEntry 5 }

dymoRoutingNextHopIpAddress OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The IP address of the next hop."
::= { dymoRoutingEntry 6 }

dymoRoutingNextHopInterface OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The interface ifIndex for sending
packets toward the destination route
address."
::= { dymoRoutingEntry 7 }

dymoRoutingForwardingFlag OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Forwarding Flag indicates whether
this route can be used for forwarding
data packets. A value 'true(1)'
indicates that this route is being used
for forwarding of data packets, while
a value 'false(2)' indicates that it is
not being used for forwarding."
::= { dymoRoutingEntry 8 }

dymoRoutingBrokenFlag OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Broken Flag indicates whether
this Route is broken. This flag is set
if the next-hop becomes unreachable or
in response to processing a RERR. A value
'true(1)' indicates that this route is
broken, while a value 'false(2)'
indicates that it is not broken.
::= { dymoRoutingEntry 9 }

dymoRoutingDist OBJECT-TYPE
SYNTAX Unsigned32 (0..65535)
UNITS "hops"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The distance to the destination address’s
DYMO router. This is a metric of the
distance a message or piece of information
has traversed. The minimum value of distance
is the number of IP hops traversed. The
maximum value is 65,535.

This parameter is an optional field in the
DYMO routing table. If the DYMO Route.Dist
is not supported by this device, then this
object should be set to ‘0’.
"
REFERENCES
"Dynamic MANET On-demand (DYMO) Routing,
Chakeres, I., and C. Perkins, April
2008. Section 3 Terminology."
::= { dymoRoutingEntry 10 }
dymoRreqForwarded OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A counter of the number of RREQ messages that this DYMO device has forwarded, i.e., this device neither originated or terminated the RREQ message."
 ::= { dymoGlobalPerfGroup 2 }

dymoRreqReceived OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A counter of the number of RREQ messages that this DYMO device has received as the target of the message."
 ::= { dymoGlobalPerfGroup 3 }

dymoRrepOriginated OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A counter of the number of RREP messages that this DYMO device has initiated."
 ::= { dymoGlobalPerfGroup 4 }

dymoRrepForwarded OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A counter of the number of RREP messages that this DYMO device has forwarded, i.e, this
device neither originated or
terminated the RREP message."
 ::= { dymoGlobalPerfGroup 5 }

dymoRrepReceived OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A counter of the number of
RREP messages that this DYMO
device has received as the
target of the message."
 ::= { dymoGlobalPerfGroup 6 }

dymoRrerOriginated OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A counter of the number of
RRER messages that this DYMO
device has initiated."
 ::= { dymoGlobalPerfGroup 7 }

dymoRrerForwarded OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A counter of the number of
RRER messages that this DYMO
device has forwarded, i.e., this
device neither originated or
terminated the RRER message."
 ::= { dymoGlobalPerfGroup 8 }

dymoRrerReceived OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A counter of the number of
RRER messages that this DYMO
device has received as the
target of the message."
 ::= { dymoGlobalPerfGroup 9 }
dymoInterfacePerfGroup OBJECT IDENTIFIER ::= {dymoPerformanceGroup 2}

dymoInterfacePerfTable OBJECT-TYPE
SYNTAX SEQUENCE OF DymoInterfacePerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The DYMO Interface Performance Table describes the DYMO statistics per interface."
 ::= { dymoInterfacePerfTable 1 }

dymoInterfacePerfEntry OBJECT-TYPE
SYNTAX DymoInterfacePerfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The DYMO Interface Performance entry describes the statistics for a particular Dymo interface."
INDEX { dymoIfPerfIfIndex }
 ::= { dymoInterfacePerfTable 1 }

DymoInterfacePerfEntry ::=
SEQUENCE {
 dymoIfPerfIfIndex
 InterfaceIndexOrZero,
 dymoIfRreqOriginated
 Counter32,
 dymoIfRreqForwarded
 Counter32,
 dymoIfRreqReceived
 Counter32,
 dymoIfRrepOriginated
 Counter32,
 dymoIfRrepForwarded
 Counter32,
 dymoIfRrepReceived
 Counter32,
 dymoIfRrerOriginated
 Counter32,
 dymoIfRrerForwarded
 Counter32,
 dymoIfRrerReceived
 Counter32,
 dymoIfRrerRecei
Counter32

dymoIfPerfIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The ifIndex for this DYMO interface
 that is collecting this set of
 performance management statistics."
::= { dymoInterfacePerfEntry 1 }

dymoIfRreqOriginated OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A counter of the number of
 RREQ messages that this DYMO
 interface has initiated."
::= { dymoInterfacePerfEntry 2 }

dymoIfRreqForwarded OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A counter of the number of
 RREQ messages that this DYMO
 interface has forwarded, i.e., this
 interface neither originated nor
 terminated the RREQ message."
::= { dymoInterfacePerfEntry 3 }

dymoIfRreqReceived OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A counter of the number of
 RREQ messages that this DYMO
 interface has received as the
 target of the message."
::= { dymoInterfacePerfEntry 4 }

dymoIfRrepOriginated OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A counter of the number of
RREP messages that this DYMO
interface has initiated."
::= { dymoInterfacePerfEntry 5 }

dymoIfRrepForwarded OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A counter of the number of
RREP messages that this DYMO
interface has forwarded, i.e., this
interface neither originated nor
terminated the RREP message."
::= { dymoInterfacePerfEntry 6 }

dymoIfRrepReceived OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A counter of the number of
RREP messages that this DYMO
interface has received as the
target of the message."
::= { dymoInterfacePerfEntry 7 }

dymoIfRrerOriginated OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A counter of the number of
RRER messages that this DYMO
interface has initiated."
::= { dymoInterfacePerfEntry 8 }

dymoIfRrerForwarded OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A counter of the number of
RRER messages that this DYMO
interface has forwarded, i.e., this interface neither originated nor terminated the RRER message.

::= { dymoInterfacePerfEntry 9 }

dymoIfRrerReceived OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A counter of the number of RRER messages that this DYMO interface has received as the target of the message."

::= { dymoInterfacePerfEntry 10 }

-- Notifications

--

-- Notifications

dymoMIBNotifControl OBJECT IDENTIFIER ::= { dymoMIBNotifications 1 }
dymoMIBNotifObjects OBJECT IDENTIFIER ::= { dymoMIBNotifications 2 }

-- dymoMIBNotifControl

dymoSetNotification OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(4))
MAX-ACCESS read-write
STATUS current
DESCRIPTION "A 4-octet string serving as a bit map for the notification events defined by the DYMO notifications. This object is used to enable and disable specific DYMO notifications where a 1 in the bit field represents enabled. The right-most bit (least significant) represents notification 0.

This object is persistent and when written the entity SHOULD save the change to non-volatile storage.
"

::= { dymoMIBNotifControl 1 }
-- dymoMIBNotifObjects

dymoInstanceAdminStatusChange NOTIFICATION-TYPE
 OBJECTS { dymoInstanceAdminStatus,
 dymoInstanceDid }
 STATUS current
 DESCRIPTION
 "This notification is generated when the
 administrative status of a DYMO process changes."
 ::= { dymoMIBNotifObjects 1 }

dymoInterfaceAdminStatusChange NOTIFICATION-TYPE
 OBJECTS { dymoIfAdminStatus }
 STATUS current
 DESCRIPTION
 "This notification is generated when the
 administrative status of a DYMO interface changes."
 ::= { dymoMIBNotifObjects 2 }

dymoResponsibleAddrEntryChange NOTIFICATION-TYPE
 OBJECTS { dymoResponsibleAddrRowStatus }
 STATUS current
 DESCRIPTION
 "This notification is generated when the status
 of an entry in the DYMO Responsible Address
 Table changes. This includes the creation or
 deletion of a row."
 ::= { dymoMIBNotifObjects 3 }

--
-- Compliance Statements
--

dymoCompliances OBJECT IDENTIFIER ::= { dymoMIBConformance 1 }
dymoMIBGroups OBJECT IDENTIFIER ::= { dymoMIBConformance 2 }

dymoBasicCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The basic implementation requirements for
 managed network entities that implement
 the DYMO routing protocol."
 MODULE -- this module
 MANDATORY-GROUPS { dymoConfigObjectsGroup }
 ::= { dymoCompliances 1 }

dymoFullCompliance MODULE-COMPLIANCE
 STATUS current
DESCRIPTION "The full implementation requirements for managed
network entities that implement the DYMO routing
protocol."

MODULE -- this module
MANDATORY-GROUPS { dymoConfigObjectsGroup,
dymoStateObjectsGroup,
dymoPerfObjectsGroup,
dymoNotifObjectsGroup,
dymoNotificationGroup }
 ::= { dymoCompliances 2 }

--
-- Units of Conformance
--
dymoConfigObjectsGroup OBJECT-GROUP
 OBJECTS {
 dymoInstanceAdminStatus,
dymoInstanceDid,
dymoInstanceRowStatus,
dymoMaxHopLimit,
dymoRouteTimeout,
dymoRouteAgeMinTimeout,
dymoRouteSeqnumAgeMaxTimeout,
dymoRouteUsedTimeout,
dymoRouteDeleteTimeout,
dymoRouteRreqWaitTime,
dymoDiscoveryAttemptsMax,
dymoUnicastMsgSentTimeout,
dymoIfAdminStatus,
dymoIfRowStatus,
dymoResponsibleAddrType,
dymoResponsibleAddr,
dymoResponsibleAddrPrefixLen,
dymoResponsibleAddrRowStatus
 }
 STATUS current
DESCRIPTION
"Set of DYMO configuration objects implemented
in this module."
 ::= { dymoMIBGroups 1 }
dymoStateObjectsGroup OBJECT-GROUP
 OBJECTS {
 dymoCurrentSeqNum,
dymoRoutingSeqNum,
dymoRoutingNextHopIpAddrType,
dymoRoutingNextHopIpAddress,
dymoRoutingNextHopInterface,
dymoRoutingForwardingFlag,
dymoRoutingBrokenFlag,
dymoRoutingDist
)
STATUS current
DESCRIPTION "Set of DYMO state objects implemented
 in this module."
 ::= { dymoMIBGroups 2 }

dymoPerfObjectsGroup OBJECT-GROUP
OBJECTS {
 dymoRreqOriginated,
dymoRreqForwarded,
dymoRreqReceived,
dymoRrepOriginated,
dymoRrepForwarded,
dymoRrepReceived,
dymoRrerOriginated,
dymoRrerForwarded,
dymoRrerReceived,
dymoIfRreqOriginated,
dymoIfRreqForwarded,
dymoIfRreqReceived,
dymoIfRrepOriginated,
dymoIfRrepForwarded,
dymoIfRrepReceived,
dymoIfRrerOriginated,
dymoIfRrerForwarded,
dymoIfRrerReceived
}
STATUS current
DESCRIPTION "Set of DYMO statistic objects implemented
 in this module for performance management."
 ::= { dymoMIBGroups 3 }

dymoNotifObjectsGroup OBJECT-GROUP
OBJECTS {
 dymoSetNotification
}
STATUS current
DESCRIPTION "Set of DYMO notifications objects implemented
 in this module."
 ::= { dymoMIBGroups 4 }
dymoNotificationGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
 dymoInstanceAdminStatusChange,
 dymoInterfaceAdminStatusChange,
 dymoResponsibleAddrEntryChange
 }
STATUS current
DESCRIPTION
 "Set of DYMO notifications implemented in this
 module."
::= { dymoMIBGroups 5 }
END

8. Security Considerations

[TODO] Each specification that defines one or more MIB modules MUST
contain a section that discusses security considerations relevant to
those modules. This section MUST be patterned after the latest
approved template (available at
http://www.ops.ietf.org/mib-security.html). Remember that the
objective is not to blindly copy text from the template, but rather
to think and evaluate the risks/vulnerabilities and then state/
document the result of this evaluation.

[TODO] if you have any read-write and/or read-create objects, please
include the following boilerplate paragraph.

There are a number of management objects defined in this MIB module
with a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection can have a negative effect on
network operations. These are the tables and objects and their
sensitivity/vulnerability:

- [TODO] writable MIB objects that could be especially disruptive if
 abused MUST be explicitly listed by name and the associated
 security risks MUST be spelled out; RFC 2669 has a very good
 example.

- [TODO] list the writable tables and objects and state why they are
 sensitive.

[TODO] else if there are no read-write objects in your MIB module,
use the following boilerplate paragraph.

There are no management objects defined in this MIB module that have
a MAX-ACCESS clause of read-write and/or read-create. So, if this
MIB module is implemented correctly, then there is no risk that an
intruder can alter or create any management objects of this MIB
module via direct SNMP SET operations.

[TODO] if you have any sensitive readable objects, please include the
following boilerplate paragraph.

Some of the readable objects in this MIB module (i.e., objects with a
MAX-ACCESS other than not-accessible) may be considered sensitive or
vulnerable in some network environments. It is thus important to
control even GET and/or NOTIFY access to these objects and possibly
to even encrypt the values of these objects when sending them over
the network via SNMP. These are the tables and objects and their
sensitivity/vulnerability:

- [TODO] you must explicitly list by name any readable objects that
 are sensitive or vulnerable and the associated security risks MUST
 be spelled out (for instance, if they might reveal customer
 information or violate personal privacy laws such as those of the
 European Union if exposed to unauthorized parties)

- [TODO] list the tables and objects and state why they are
 sensitive.

[TODO] discuss what security the protocol used to carry the
information should have. The following three boilerplate paragraphs
should not be changed without very good reason. Changes will almost
certainly require justification during IESG review.

SNMP versions prior to SNMPv3 did not include adequate security.
Even if the network itself is secure (for example by using IPSec),
even then, there is no control as to who on the secure network is
allowed to access and GET/SET (read/change/create/delete) the objects
in this MIB module.

It is RECOMMENDED that implementers consider the security features as
provided by the SNMPv3 framework (see [RFC3410], section 8),
including full support for the SNMPv3 cryptographic mechanisms (for
authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT
RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
enable cryptographic security. It is then a customer/operator
responsibility to ensure that the SNMP entity giving access to an
instance of this MIB module is properly configured to give access to
the objects only to those principals (users) that have legitimate
rights to indeed GET or SET (change/create/delete) them.
9. IANA Considerations

[TODO] In order to comply with IESG policy as set forth in http://www.ietf.org/ID-Checklist.html, every Internet-Draft that is submitted to the IESG for publication MUST contain an IANA Considerations section. The requirements for this section vary depending what actions are required of the IANA. See RFC4181 section 3.5 for more information on writing an IANA clause for a MIB module document.

[TODO] select an option and provide the necessary details.

Option #1:

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>OBJECT IDENTIFIER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sampleMIB</td>
<td>mib-2 XXX</td>
</tr>
</tbody>
</table>

Option #2:

Editor’s Note (to be removed prior to publication): the IANA is requested to assign a value for "XXX" under the 'mib-2' subtree and to record the assignment in the SMI Numbers registry. When the assignment has been made, the RFC Editor is asked to replace "XXX" (here and in the MIB module) with the assigned value and to remove this note.

Note well: prior to official assignment by the IANA, a draft document MUST use place-holders (such as "XXX" above) rather than actual numbers. See RFC4181 Section 4.5 for an example of how this is done in a draft MIB module.

Option #3:

This memo includes no request to IANA.

10. Contributors

This MIB document uses the template authored by D. Harrington which is based on contributions from the MIB Doctors, especially Juergen Schoenwaelder, Dave Perkins, C.M.Heard and Randy Presuhn.
11. Acknowledgements

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Change Log

This section identifies the changes that have been made from draft-ietf-manet-dymo-mib-00.

These changes were made from draft-ietf-manet-dymo-mib-00 to draft-ietf-manet-dymo-mib-01.

1. Only minor changes of a typographic nature, e.g., read-only to read-write on MAX_ACCESS clauses of a few configuration objects.

These changes were made from draft-ietf-manet-dymo-mib-01 to draft-ietf-manet-dymo-mib-02.

1. Added the ForwardingFlag and BrokenFlag objects to the DYMO Routing Table.

2. Added the TruthValue Textual Convention to handle the new Routing Table objects.

3. Added the DYMO device management model to the introductory sections of this draft.

4. General clean up of the introductory sections of this draft.

These changes were made from draft-ietf-manet-dymo-mib-02 to draft-ietf-manet-dymo-mib-03.

1. Minor changes to the textual material and added to the IMPORTS text in the introductory material.

2. Added DEFVAL clauses to all read-write configuration objects having default values identified in the DYMO specification.

These changes were made from draft-ietf-manet-dymo-mib-03 to draft-ietf-manet-dymo-mib-04.

1. Incorporated the DID into the Configuration Group by changing the dymoAdminStatus object to an Instance Table. This allows for the presence of multiple DYMO processes concurrent on the same router.

2. Added the dymoNotifObjectsGroup and its dymoSetNotifications object to allow for individual control of the DYMO Notifications. Updated the Conformance sections accordingly.

3. Renamed several of the Configuration Objects to be consistent with the naming within the current draft-ietf-manet-dymo-21.
Appendix B. Open Issues

This section contains the set of open issues related to the development and design of the DYMO-MIB. This section will not be present in the final version of the MIB and will be removed once all the open issues have been resolved.

1. Work on the Security Section. This MIB does have settable objects, but not sensitive objects (true?).

2. Work on the relationship to other MIBs, IF-MIB, NHDP-MIB.

3. Cleanup all the [TODOs] from the MIB template.

Appendix C.

* Note to the RFC Editor (to be removed prior to publication) *
* 1) The reference to RFCXXXX within the DESCRIPTION clauses *
* of the MIB module point to this draft and are to be *
* assigned by the RFC Editor. *
* 2) The reference to RFCXXX2 throughout this document point *
* to the current draft-ietf-manet-dymo-xx.txt. This *
* need to be replaced with the XXX RFC number. *

Authors’ Addresses

Sean Harnedy
Booz Allen Hamilton
333 City Boulevard West
Orange, California 92868
USA

Phone: +1 714 938-3898
EMail: harnedy_sean@bah.com