AAA and Admission Control Framework for Multicasting

draft-ietf-mboned-multiaaa-framework-11

Abstract

IP multicast-based services, such as TV broadcasting or videoconferencing raise the issue of making sure that potential customers are fully entitled to access the corresponding contents. There is indeed a need for service and content providers to identify users (if not authenticate, especially within the context of enforcing electronic payment schemes) and to retrieve statistical information for accounting purposes, as far as content and network usage are concerned. This memo describes the framework for specifying the Authentication, Authorization and Accounting (AAA) capabilities that could be activated within the context of the deployment and the operation of IP multicast-based services. This framework addresses the requirements presented in "Requirements for Accounting, Authentication and Authorization in Well Managed IP Multicasting Services" [I-D.ietf-mboned-maccnt-req]. The memo provides a basic AAA enabled model as well as an extended fully enabled model with resource and admission control coordination.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Table of Contents

1. Introduction ... 3
 1.1. Purpose and Background 3
2. Definitions and Abbreviations 4
 2.1. Definitions .. 4
 2.2. Abbreviations .. 5
3. Common use models and network architecture implications ... 6
4. Framework and Roles of Entities 7
 4.1. AAA Framework in Multicast-Enabled Environments 7
 4.2. User ID ... 10
 4.3. Accounting ... 11
 4.4. Access Control and CP selection by NSP 12
 4.5. Admission Control Information by NSP 12
 4.6. Access Control and Distinguishing of Users by CP 13
 4.7. AAA proxy in NSP 13
5. Network Connection Model and Functional Components 14
 5.1. Basic Connection Model 14
 5.2. Constituent Logical Functional Components of the fully enabled AAA Framework 15
 5.3. Modularity of the framework 19
6. Acknowledgments ... 19
7. IANA Considerations ... 19
8. Security Considerations 19
9. Conclusion .. 20
10. Normative References .. 20
Authors’ Addresses ... 20
Intellectual Property and Copyright Statements 22
1. Introduction

1.1. Purpose and Background

IP multicasting is designed to serve cases of group communication schemes of any kind, such as one-to-many (case of TV broadcasting services for example) or many-to-many (case of videoconferencing services, for example).

In these environments, IP multicast provides a better resource optimization than using a unicast transmission scheme, where data need to be replicated as many times as there are receivers. Activation of IP multicast capabilities in networks yields the establishment and the maintenance of multicast distribution trees that are receiver-initiated by nature: multicast-formatted data are forwarded to receivers who explicitly request them. IP multicast-based services, such as TV broadcasting or videoconferencing raise the issue of making sure that potential customers are fully entitled to access the corresponding contents. There is indeed a need for service and content providers to identify (if not authenticate, especially within the context of enforcing electronic payment schemes) and to invoice such customers in a reliable and efficient manner. Solutions should consider a wide range of possible content delivery applications: content delivered over the multicast network may include video, audio, images, games, software and information such as financial data, etc.

This memo describes a framework for specifying the Authorization, Authentication and Accounting (AAA) capabilities that could be activated within the context of the deployment and the operation of IP multicast-based services. This memo also describes a framework to realize high-quality multicast transport using a Multicast Admission Control Function (MACF) with multicast Authorization.

Specifically, this framework addresses the requirements presented in "Requirements for Multicast AAA coordinated between Content Provider(s) and Network Service Provider(s)" which describes the requirements in CDN services using IP multicast. The requirements are derived from:

need for user tracking and billing capabilities

need for network access control to satisfy the requirements of the Network Service Provider (NSP) and/or content access control to satisfy the requirements of the Content Provider (CP)

methods for sharing information between the network service provider and content provider to make it possible to fulfill the
above two requirements. [I-D.mboned-maccnt-req]

Detailed requirements are presented in "Requirements for Accounting, Authentication and Authorization in Well Managed IP Multicasting Services" [I-D.ietf-mboned-maccnt-req]. These requirements include mechanisms for recording end-user requests and provider responses for content-delivery, sharing user information (possibly anonymously depending on the trust model) between content provider and network service provider, and protecting resources through the prevention of network and content access by unauthorized users, as well as other AAA related requirements.

The purpose of this memo is to provide a generalized framework for specifying multicast-inferred AAA capabilities that can meet these requirements. This framework is to provide a basis for future work of investigating the applicability of existing AAA protocols to provide these AAA capabilities in IP multicast specific context and/or if deemed necessary, the refining or defining of protocols to provide these capabilities.

2. Definitions and Abbreviations

2.1. Definitions

For the purpose of this memo the following definitions apply:

Accounting: The set of capabilities that allow the retrieval of a set of statistical data that can be defined on a per customer and/or a per service basis, within the context of the deployment of multicast-based services. Such data are retrieved for billing purposes, and can be retrieved on a regular basis or upon unsolicited requests. Such data include (but are not necessarily limited to) the volume of multicast-formatted data that have been forwarded to the receiver over a given period of time, the volume of multicast-formatted data that have been exchanged between a receiver (or set of) and a given source over a given period of time (e.g. the duration of a multicast session), etc.

Authentication: action for identifying a user as a genuine one.

Authorization: The set of capabilities that need to be activated to make sure an authenticated user is fully entitled to access a set of services.

Join: Signaling mechanism used by receivers to indicate they want to access a multicast group and receive the corresponding traffic.
Leave: Signaling mechanism used by receivers to indicate they want to leave a multicast group and not receive the corresponding traffic anymore.

Receiver: an end-host or end-client which receives content. A receiver may be identified by a network ID such as MAC address or IP address.

User: a human with a user account. A user may possibly use multiple reception devices. Multiple users may use the same reception device. (Note: The definition of a receiver (device) and a user (human) should not be confused.)

2.2. Abbreviations

For the purpose of this draft the following abbreviations apply:

AAA: Authentication, Authorization, and Accounting
ACL: Access Control List
AN: Access Node
CDN: Content Delivery Network
CDS: Content Delivery Services
CP: Content Provider
CP-AAA: Authentication, Authorization, and Accounting functions used by a Content Provider
CPE: Customer Premise Equipment
ID: Identifier
IF: network interface
mAAA: Authentication, Authorization, and Accounting functions activated in multicast-enabled environments
MACF: Multicast Admission Control Function
NAS: Network Access Server (RFC2881)
NSP: Network Service Provider
3. Common use models and network architecture implications

In some cases a single entity may design and be responsible for a system that covers the various common high-level requirements of a multicasting system such as 1) content serving, 2) the infrastructure to multicast it, 3) network and content access control mechanisms.

In many cases however the content provision and network provision roles are divided between separate entities. Commonly, Content Providers (CP) do not build and maintain their own multicast network infrastructure as this is not their primary business area. CP often purchase transport and management services from network service providers instead. Similarly Network Service Providers (NSP) may not make their business in providing content. [I-D.mboned-maccnt-req] provides more detail of the multiple versus single-entity Content Delivery Service (CDS) network models.

In the usage model where a single NSP provides multicast services to multiple CPs, the following general requirements from [I-D.ietf-mboned-maccnt-req] apply:

Need for user tracking and billing capabilities

Need for QoS control such as resource management and admission control

Need for conditional multicast access control satisfactory to the requirements of the CP

Methods for sharing information between the NSP and CP to make the above two possible

When the NSP and CP are the same single entity then the general requirements are as follows.

Need for user tracking and user-billing capabilities

Need for access control and/or content protection at level the entity deems appropriate
4. Framework and Roles of Entities

4.1. AAA Framework in Multicast-Enabled Environments

A general high-level framework is depicted in Figure 1.

```
+------------------------------+
|    user                     |
+------------------------------+
    |                           |
+------------------------------+
|    NSP                      |
+------------------------------+
    |                           |
+------------------------------+
|    CP                       |
+------------------------------+
```

Figure 1: High-level AAA framework in Multicast-Enabled Environments

For the sake of simplicity, the above diagram portrays a case where there is a single NSP entity and a single CP entity (one-to-one model), but multiple CPs can be connected to a single NSP (e.g. NSP may provide connections to multiple CPs to provide a wide selection of content categories: one-to-many model) It is also possible for a single CP to be connected to multiple NSP networks (e.g. network selection). Furthermore it is possible that the NSP and CP could be the same entity. A NSP and CP authenticate and authorize each other when they establish connectivity. Below the general case of multiple NSPs with multiple CPs is explained. Then, the various combinations of single and multiple CPs and NSPs are described in relation to the general case.

4.1.1. Multiple CPs are connected to multiple NSPs

The user subscribes to multiple NSPs and multiple CPs in this usage case. The user selects a CP and a NSP when the user requests content. The NSP may be automatically selected by a user terminal:
e.g. a fixed line NSP by a set top box or a mobile NSP by a mobile phone. In some usage cases it is possible that the NSP used by a certain user will not always be the same. For example a user may have contracted with more than one NSP: one for fixed line access and another for mobile roaming access.

The content may be associated with (or managed by) a specific CP. In this case, when the user selects content, the CP is automatically selected.

Requests for multicast sent by the user to a selected NSP should include enough information not only for authentication by the CP but also for CP selection and admission control by the NSP.

When an NSP receives a request for multicast from a user, the NSP requests the appropriate CP to make sure that the user is entitled to access the corresponding content as the NSP is responsible for managing its network resources, the NSP may perform admission control. The NSP will allow access to the multicast service, depending on both the response sent by the CP and the availability of resources operated by the NSP. That is, the NSP will forward multicast traffic towards the user only when the NSP has 1) made sure the user is entitled to access the network resources operated by the NSP, 2) received a confirmation from the CP that the user is entitled to access the content and (possibly) 3) determined that the network resources (e.g. bandwidth) are sufficient to deliver the multicast traffic to the user with the relevant level of quality. When neither of the first two conditions are met, the NSP will not forward multicast traffic to the user. Condition #3 may also be a showstopper. When the NSP already knows that network resources are insufficient or there is a network failure, the NSP may choose to not request the CP about the user’s ability to retrieve content. The NSP is also responsible for notifying the user whether he/she is eligible to receive content depending on the response sent by the CP. In cases where the NSP does not start multicasting because of its own network issues (e.g. lack of network resources or network failure), the NSP notifies the user with a reason for rejecting the request.

A CP receives an inquiry from the NSP. The CP authenticates the NSP’s identity and makes an authorization decision regarding the user’s eligibility to access the requested contents. The CP is responsible for the authentication and authorization of users so that they can access the content managed by the CP. The CP notifies the NSP accordingly. When the CP cannot (e.g. error or resource issues) or decides not (e.g. policy issues) to deliver content, the CP is responsible for notifying the NSP about the reason. It is up to the NSP to relay or translate the reasons for rejection to the user.
A CP may delegate AAA responsibility to a NSP. ‘AAA proxy in NSP’ is described in 4.7 for this case.

As defined in [I-D.ietf-mboned-maccnt-req], the CP may require the retrieval of accounting information related to the access of its content.

4.1.2. Multiple CPs are connected to a single NSP

The user subscribes to a single NSP which provides multicasting from multiple CPs in this usage case. In this case the user does not select an NSP. The user selects a CP when the user requests content. The content may be associated with (or managed by) the specific CP, so that when the user selects content, the CP is automatically selected.

The user should send a request for multicast to the specific NSP with enough information not only for authentication by the CP but also for CP selection and admission control by the NSP.

The role of the NSP is the same as that described in 4.1.1.

The role of a CP is the same as that described in 4.1.1.

4.1.3. A single CP is connected to multiple NSPs

In this usage case, a user subscribes to multiple NSPs but only a single CP. A user selects the NSP when the user requests multicast but the CP is fixed. The user should send a request for multicast to the selected NSP with enough information not only for authentication by the CP but also for admission control by the NSP.

The role of the NSP is similar to the description in 4.1.1, with the exception that when a NSP receives a request from a user, NSP makes an inquiry to the CP without CP selection.

The role of the CP is the same as that described in 4.1.1.

4.1.4. A single CP is connected to single NSP

In this case, a user subscribes to only one NSP and one CP. The user does not select a NSP and CP in this scenario. Requests for multicast sent by the user to a selected NSP should include enough information not only for authentication by the CP but also for admission control by the NSP.

The role for the NSP is the same as 4.1.3 The role of the CP is the same as the description in 4.1.1.
The NSP and CP could be the same entity. In this case, the roles of the NSP and CP may be combined.

4.2. User ID

Users may hold multiple user IDs: IDs which have been separately assigned for each subscription to various NSPs and CPs. The NSPs and CPs manage the user IDs for their respective domains. A CP identifies a user by a user ID assigned by the CP itself. A NSP identifies a user by a user ID assigned by the NSP itself. The user IDs are only meaningful within the context of each domain. Users may hold multiple user IDs which have been separately assigned for each subscription they may have for various NSPs and CPs.

4.2.1. CP-assigned user ID

CPs assign user IDs to their users. The user may have more than one CP-assigned user ID per specific CP. A user requests multicast to a NSP, the CP-assigned user ID should be indicated so that the CP can identify the user requesting content access. A NSP should notify the CP-assigned user ID to the CP. A NSP should not share a CP-assigned user ID with any CP except the one which assigned it and should not relay it at all if there is no appropriate CP that assigned the user ID.

4.2.2. NSP-assigned user ID

NSPs assign user IDs to their users. A user may have more than one NSP-assigned user ID per a specific NSP. A user requests for multicast to a NSP, the NSP-assigned user ID may be indicated in the request so that the NSP can identify the user. The NSP should not inform the NSP-assigned user ID to the CP for security reasons. The NSP may identify the multicast-access user by other methods than the NSP-assigned user ID, e.g. by the access port.

The actual mapping rules for NSP-assigned user IDs with CP-assigned IDs in account logs is a matter for the providers and out of the scope of this framework.

This memo assumes that the NSP identifies the user on L2 (such as VLAN or PPP) and that it would be problematic for the NSP if more than two receivers for the same user accessed the same channel and one is accepted but the other is rejected on L2 or L3. Prevention of unauthorized content sharing could be handled on the application layer by the CP: e.g. could distinguish among receivers and distribute encryption keys so that non-authorized receivers can not make use of the content.
4.3. Accounting

There are some accounting issues specific to multicasting. An (S,G) should be recorded as a channel identifier. The last hop device, such as an IGMP or MLD router or an IGMP or MLD proxy, notifies the NSP’s mAAA function of the (S,G) channel identifier. The NSP should notify the CP of the (S,G) information in the accounting report messages.

A NSP records an accounting start corresponding to only the first Join for a specific user-access session. A NSP should not treat a "Join" response to a Query as the accounting start. The accounting start assumes that the conditions for forwarding multicast traffic as defined in section 4.1.1 have been met: (1) user is entitled to access network, 2) user is entitled to access content, optionally 3) network resources are determined to be sufficient, and that the forwarding has actually begun. Optionally a NSP may record when a Join could not be granted because of insufficient network resources.

A NSP records an accounting stop triggered by any of the following: 1) a user requested Leave, 2) a timeout of a multicast state or 3) a re-authentication failure. A NSP may also record an accounting stop due to network availability reasons such as failure. The NSP logs the reason for each accounting stop.

Intermittent logs between the join and leave would allow for finer diagnostics and therefore could serve useful in billing discrepancies, and provide for a better estimation of the time-span that content was multicast, in the event that users disconnect without sending leave messages.

There are two levels of accounting report messaging. Messages in Accounting level 1 include a channel identifier, a user identifier, and the accounting start and stop time information. Accounting level 2 includes all information of Level 1, plus traffic volume information.

QoS class is an optional item for each accounting level. Whether to send, and at what interval to send intermittent log information is optional for both levels. CP and NSPs may also agree to include additional option information in accounting messages of either level.

The level of account report messaging between the NSP and CP may be either configured statically or can be dynamically requested by the CP in its response to the Access-Request relayed by the NSP to the CP. The determination of the actual level of report messaging is configured by the NSP at the NAS.
In case of very fast channel changes, the amount of items logged by the NSP could become high. In order to reduce the number of report messages sent to the CP, the NSP can consolidate multiple sets of accounting information inside a single accounting report message.

4.4. Access Control and CP selection by NSP

When a NSP receives an access request from a user, the NSP determines to which CP the request is to be directed. The NSP may select a CP based on CP-assigned userID with CP domain name or channel identifier (S,G). The user should include in the request sufficient information for CP selection.

4.5. Admission Control Information by NSP

After authorizing a user request, the NSP may have further conditions for determining its admission control decision.

The NSP receives parameters (such as QoS class, required bandwidth, burst-size, etc.) of multicast traffic. Such parameters serve as information to be considered in the admission control decision. The traffic parameters can be communicated as follows:

A CP may notify a mapping between the channel identifier (S,G) and traffic parameters in the Response message when the CP authorizes an access request. Such parameters may include required bandwidth, burst-size, QoS class downgrade policy, etc.

A user may indicate in the Request willingness to accept QoS class downgrade to best-effort streaming.

The NSP may maintain a mapping between channel identifier (S,G) and traffic parameters in advance, for example pre-configured by agreement between the CP and NSP on a per channel (S,G) basis.

The ultimate admission decision is made by the NSP based on required traffic parameters of the requested, and available resources. In a case that it cannot guarantee the required network resources for the requested multicast traffic, streaming the requested multicast traffic as best-effort is optional. The user may indicate in his/her Access Request whether he/she will accept best-effort grade streaming if guaranteed class is not available. The CP’s preference for accepting downgrading to best-effort streaming may be either configured statically or can be dynamically requested by the CP in its response to the Access-Request relayed by the NSP to the CP. In the case that it cannot be offered a guaranteed QoS stream, the NSP may decide either to decline admission or to stream the requested multicast traffic as best-effort. The NSP should not stream best-
effort traffic if either the user or CP has indicated against best-effort provision.

A NSP’s admission control may manage integrated network resources for unicast usage, such as VoIP or unicast streaming, and multicast usage. Alternatively, it may manage network resources separately for unicast and multicast usage. In either case, AAA and admission control framework for multicast usage is independent of unicast admission control.

Such QoS measurement and policy mechanisms themselves depend on NSP policies and are out of the scope of this memo.

4.6. Access Control and Distinguishing of Users by CP

The user ID and authentication information are forwarded transparently by the NSP so that the CP can distinguish the user, as well as authenticate and authorize the request.

4.7. AAA proxy in NSP

A NSP may act as AAA proxy of a CP based upon an agreement between the NSP and the CP. The AAA proxy would store information about permissions of a specific user to receive multicast data from specified channel(s) up to specified expiration date(s) and time(s).

If such proxying is implemented, the NSP may receive authorization conditions from a CP in advance and statically hold them, or a CP may send them dynamically in the Response message. In either case, the user has permission to receive multicast traffic and therefore the NSP starts the multicasting without querying the CP.

The CP may send unsolicited requests to the NSP to refresh or change the permissions for a user for specific group(s) or channel(s).

When a user is receiving multicast traffic while the permission is about to expire, the NSP may send a notification to the user client that his session is about to expire, and that he will need to re-authenticate. In such a case, the user will have to send the Access-Request. In the case that the user still has permission to the content, they should be able to continue to receive the multicast traffic without interruption.

When re-authentication fails, the NSP should stop the multicast traffic and record accounting stop.
5. Network Connection Model and Functional Components

Section 3.1 introduced the high-level AAA framework for multicasting. This section provides more detail on the network connection model and constituent functional components.

5.1. Basic Connection Model

Figure 2: Basic Connection Model

In the simple case represented in Figure 1 the NSP is the sole entity providing network resources including network access to the multicast receiver. First a receiver sends a request for multicast (e.g. an IGMP Report message) to an NSP which may then forward a mAAA request towards the appropriate CP for authentication and authorization purposes. The receiver gets information about a given multicast group (*,G) or channel (S,G) corresponding to the content beforehand for generating the request. The CP responds with either "success" or "failure". If "success", the NSP grants access to the receiver and forwards multicast traffic accordingly.

In this model the receiver selects the NSP to which the Join request will be sent. Based on this request the NSP selects an appropriate CP to which it forwards the corresponding mAAA request. The CP responds to the NSP’s mAAA request: it may not respond to another NSP in regards to the request.
In this model, as described in section 4.1, the relationship between NSP and CP can be one-to-one, one-to-many or many-to-many. Receivers may connect to multiple networks.

5.2. Constituent Logical Functional Components of the fully enabled AAA Framework

Requirements for "fully AAA and QoS enabled" IP multicasting networks were defined in MACCNT-REQ-draft. To allow for levels of enablement, this memo defines two models within the framework: "AAA enabled" multicasting and "Fully enabled AAA" multicasting which means "AAA enabled" with added admission control functions.

Section 3.1 introduces the high-level AAA framework for multicasting. Below is a diagram of a AAA enabled multicasting network with AAA, including the logical components within the various entities.
Figure 3: AAA enabled framework (basic model)

The user entity includes the CPE (Customer Premise Equipment) which connects the receiver(s).

The NSP (Network Service Provider) in the basic model includes the transport system and a logical element for multicast AAA functionality. The TS (transport system) is comprised of the access node and NAS (Network Access Server). An AN (Access Node) may be connected directly to mAAA or a NAS relays AAA information between an AN and a mAAA. Descriptions of AN and its interfaces are out of the scope for this memo. The multicast AAA function may be provided by a
mAAA which may include the function that downloads join access control lists to the NAS (this function is referred to conditional access policy control function.)

Interface between mAAA and NAS

The interface between mAAA and the NAS is labeled IFb in Figure 2. Over IFb the NAS sends an access request to the NSP-mAAA and the mAAA replies. The mAAA may push conditional access policy to the NAS.

CP-AAA

The content provider may have its own AAA server which has the authority over access policy for its contents.

Interface between user and NSP

The interface between the user and the NSP is labeled IFa in Figure 3. Over IFa the user makes a multicasting request to the NSP. The NSP may in return forward multicast traffic depending on the NSP and CP’s policy decisions.

Interface between NSP and CP

The interface between the NSP and CP is labeled IFc. Over IFc the NSP requests to the CP-AAA for access to contents and the CP replies. CP may also send conditional access policy over this interface for AAA-proxying.
In the fully enabled model the NSP also includes a component that provides network resource management (e.g. QoS management), as described in section 3.4, "Network Resource Management by NSP". In the fully enabled model (Figure 4) resource management and admission control is provided by MACF (Multicast Admission Control Function). This means that, before replying to the user’s multicast request, the mAAA queries the MACF for a network resource access decision over the interface IFd. The MACF is responsible for allocating network resources.
resources for forwarding multicast traffic. MACF also receives Leave information from NAS so that MACF releases corresponding reserved resources.

5.3. Modularity of the framework

In the interest of flexibility, this framework is modular so that it is possible that partially enabled versions of the models are supported. A AAA-enabled version provides AAA functionality without Network Resource management. A Network-Resource-Management-enabled (QoS-enabled) version provides Network Resource management without AAA functionality. Similarly, the possibility of one or more layers of transit provision between an NSP and CP is in the interest of modularity and extendibility.

6. Acknowledgments

The authors of this draft would like to express their appreciation to Susheela Vaidya of Cisco Systems whose contributions to the "Requirements for Multicast AAA coordinated between Content Provider(s) and Network Service Provider(s)" [I-D.ietf-mboned-maccnt-req] largely influenced this draft; Pekka Savola of Netcore Ltd.; Daniel Alvarez, and Toerless Eckert of Cisco Systems; Sam Sambasivan of AT&T; Sanjay Wadhwa, Greg Shepherd, and Leonard Giuliano of Juniper; Tom Anschutz and Steven Wright of BellSouth; Nicolai Leymann of T-Systems; Bill Atwood of Concordia University; Carlos Garcia Braschi of Telefonica Empresas; Mark Altom, Andy Huang, Tom Imburgia, Han Nguyen, Doug Nortz of ATT Labs; Marshall Eubanks in his role as mboned WG chair; Ron Bonica in his role as Director as the Operations and Management Area; Stephen Rife of Digital Garage and David Meyer in his former role as mboned WG chair as well as their thanks to the participants of the MBONED WG in general.

Funding for the RFC Editor function is currently provided by the Internet Society.

7. IANA Considerations

This memo does not raise any IANA consideration issues.

8. Security Considerations

The user information related to authentication with the CP and the information related to user accounting shared between the NSP and the CP.
CP must be protected in some way. Otherwise, this memo does not raise any new security issues which are not already addressed by the original protocols. Enhancement of multicast access control capabilities should enhance security performance.

9. Conclusion

This memo provides a generalized framework for solution standards to meet the requirements. Further work should be done to specify the interfaces between the user and NSP, NAS and mAAA, mAAA and MACF and NSP-mAAA and CP-AAA (presented in 5.2.)

10. Normative References

[I-D.ietf-ancp-framework]

[I-D.ietf-mboned-maccnt-req]
Hayashi, T., He, H., Satou, H., Ohta, H., and S. Vaidya, "Requirements for Multicast AAA coordinated between Content Provider(s) and Network Service Provider(s)"", draft-ietf-mboned-maccnt-req-08 (work in progress), July 2009.

Authors’ Addresses

Hiroaki Satou
Nippon Telegraph and Telephone Corporation
3-9-11 Midoricho
Musashino-shi, Tokyo 180-8585
Japan

Phone: +81 422 59 4683
Email: satou.hiroaki@lab.ntt.co.jp

Satou, et al. Expires September 6, 2010
Copyright and License Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.