This document outlines a solution for the Mobile IPv4 and IPsec coexistence problem for enterprise users. The solution consists of an applicability statement for using Mobile IPv4 and IPsec for session mobility in corporate remote access scenarios, and a required mechanism for detecting the trusted internal network securely. The solution requires only changes to the mobile node; changes to Mobile IPv4 or IPsec protocols, the VPN gateway, or the home agent are not
required.

Table of Contents

1. Introduction ... 4
 1.1. Overview .. 4
 1.2. Scope .. 5
 1.3. Related work ... 6
 1.4. Terms and abbreviations 6
 1.5. Requirement levels 7
 1.6. Assumptions and rationale 7
 1.7. Why IPsec lacks mobility 9
2. The network environment 11
 2.1. Access mode: 'c' 14
 2.2. Access mode: 'f' 14
 2.3. Access mode: 'cvc' 14
 2.4. Access mode: 'fvc' 15
 2.5. NAT traversal .. 15
3. Internal network detection 17
 3.1. Assumptions .. 18
 3.2. Implementation requirements 18
 3.2.1. Connection status change 18
 3.2.2. Registration-based internal network detection 18
 3.2.3. Registration-based internal network monitoring ... 19
 3.3. Proposed algorithm 20
 3.4. Implementation issues 21
 3.5. Rationale for design choices 22
 3.5.1. Firewall configuration requirements 22
 3.5.2. Registration-based internal network monitoring 22
 3.5.3. No encryption when inside 23
 3.6. Improvements .. 23
4. Requirements ... 24
 4.1. Mobile node requirements 24
 4.2. VPN device requirements 24
 4.3. Home agent requirements 24
5. Analysis .. 25
 5.1. Comparison against guidelines 25
 5.2. Packet overhead 26
 5.3. Latency considerations 27
 5.4. Firewall state considerations 28
 5.5. Intrusion detection systems (IDSs) 28
 5.6. Implementation of mobile node 28
 5.7. Non-IPsec VPN protocols 29
6. Security considerations 30
 6.1. Internal network detection 30
 6.2. Mobile IPv4 versus IPsec 30
7. Acknowledgements .. 32
1. Introduction

The Mobile IP working group set out to explore the problem and solution spaces of IPsec and Mobile IP coexistence. The problem statement and solution requirements for Mobile IPv4 case was first documented in [1]. The current version of this document outlines the proposed solution for IPv4.

The document contains two parts:

- a basic solution which is an applicability statement of Mobile IPv4 and IPsec to provide session mobility between enterprise Intranets and other external networks, intended for enterprise mobile users; and
- a technical specification and a set of requirements for secure detection of the internal and the external networks.

There are many useful ways to combine Mobile IPv4 and IPsec. The solution specified in this document is most applicable when the assumption documented in the problem statement [1] are valid; among others that the solution:

- must minimize changes to existing firewall/VPN/DMZ deployments;
- must ensure that traffic is not routed through the DMZ when the mobile node is inside (to avoid scalability and management issues);
- must support foreign networks with only foreign agent access;
- should not require changes to existing IPsec or key exchange protocols;
- must comply with the Mobile IPv4 protocol (but may require new extensions or multiple instances of Mobile IPv4); and
- must propose a mechanism to avoid or minimize IPsec re-negotiation when mobile node moves.

1.1. Overview

Typical corporate networks consist of three different domains: the Internet (untrusted external network), the intranet (trusted internal network), and the DMZ, which connects the two networks. Access to the internal network is guarded both by a firewall and a VPN device; access is only allowed if both firewall and VPN security policies are respected.
Enterprise mobile users benefit from unrestricted seamless session mobility between subnets, regardless of whether the subnets are part of the internal or the external network. Unfortunately the current Mobile IPv4 and IPsec standards alone do not provide such a service [11].

The proposed solution is to use standard Mobile IPv4 when the mobile node is in the internal network, and to use the VPN tunnel endpoint address for the Mobile IPv4 registration when outside. IPsec-based VPN tunnels require re-negotiation after movement. To overcome this limitation, another layer of Mobile IPv4 is used underneath IPsec, in effect making IPsec unaware of movement. Thus, the mobile node can freely move in the external network without disrupting the VPN connection.

Briefly, when outside, the mobile node:

- detects that it is outside (Section 3);
- registers its co-located or foreign agent care-of address with the external home agent;
- establishes a VPN tunnel using e.g. IKE (or IKEv2) if security associations are not already available;
- registers the VPN tunnel address as its co-located care-of address with the internal home agent; this registration request is sent inside the IPsec tunnel.

The solution requires control over the protocol layers in the mobile node. It must be capable of (1) detecting whether it is inside or outside in a secure fashion, and (2) control the protocol layers accordingly. For instance, if the mobile node is inside, the IPsec layer needs to become dormant.

Current Mobile IPv4 and IPsec standards, when used in a suitable combination, are sufficient to implement the solution; no changes are required to existing VPN devices, home agents, or foreign agents.

1.2. Scope

This document describes a solution for IPv4 only. The downside of the described approach is that an external home agent is required, and that the packet overhead (see Section 5) and overall complexity increase. Optimizations would require changes to Mobile IPv4 and/or IPsec, and are out of scope of this document.

VPN, in this document, refers to an IPsec-based remote access VPN.
Other types of VPNs are out of scope.

1.3. Related work

Related work has been done on Mobile IPv6 in [12] which discusses the interaction of IPsec and Mobile IPv6 in protecting Mobile IPv6 signaling. The draft also discusses dynamic updating of the IPsec endpoint based on Mobile IP signaling packets.

The "transient pseudo-NAT" attack, described in [13] and [6], affects any approach which attempts to provide security of mobility signaling in conjunction with NAT devices. In many cases, one cannot assume any co-operation from NAT devices which thus have to be treated as any other networking entity.

The IETF MOBIKE working group is defining a mechanism to provide mobility for IPsec. This would allow the external Mobile IPv4 layer described in this specification to be removed. However, deploying MOBIKE requires changes to VPN devices, and is thus out of scope of this specification.

1.4. Terms and abbreviations

co-CoA: co-located care-of address

DMZ: (DeMilitarized Zone) A small network inserted as a "neutral zone" between a company’s private network and the outside public network to prevent outside users from getting direct access to the company’s private network

external network: the untrusted network (i.e. Internet). Note that a private network (e.g. another corporate network) other than the mobile node’s internal network is considered an external network.

FA: Mobile IPv4 foreign agent

FA-CoA: foreign agent care-of address

FW: Firewall

internal network: the trusted network; for instance, a physically secure corporate network where the i-HA is located.

i-FA: Mobile IPv4 foreign agent residing in the internal network
i-HA: Mobile IPv4 home agent residing in the internal network; typically has a private address [7]
i-HoA: home address of the mobile node in the internal home agent
MN: Mobile Node
NAI: Network Access Identifier [4]
R: Router
VPN: Virtual Private Network based on IPsec
VPN-TIA: VPN tunnel inner address, the address(es) negotiated during IKE phase 2 (quick mode), assigned manually, using IPsec-DHCP, using mode config, or by some other means. Some VPN clients use their current care-of address as their TIA for architectural reasons.
VPN tunnel: an IPsec-based tunnel; for instance, IPsec tunnel mode IPsec connection, or L2TP combined with IPsec transport connection.
x-FA: Mobile IPv4 foreign agent residing in the external network
x-HA: Mobile IPv4 home agent residing in the external network
x-HoA: home address of the mobile node in the external home agent

1.5. Requirement levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [2].

1.6. Assumptions and rationale

The proposed solution is an attempt to solve the problem described in [1]. The major assumptions and their rationale is summarized below.

Changes to existing firewall and VPN deployments should be minimized:

- The current deployment of firewalls and IPsec-based VPNs is much larger than corresponding Mobile IPv4 elements. Thus, a solution should work within the existing VPN infrastructure.
- Current enterprise network deployments typically centralize management of security and network access into a compact DMZ.
When the mobile node is inside, traffic should not go through the DMZ network:

- Routing all mobile node traffic through the DMZ is seen as a performance problem in existing deployments of firewalls. The more sophisticated firewall technology is used (e.g. content scanning), the more serious the performance problem is.

- Current deployments of firewalls and DMZs in general have been optimized for the case where only a small minority of total enterprise traffic goes through the DMZ. Furthermore, users of current VPN remote access solutions do not route their traffic through the DMZ when connected to an internal network.

An home agent inside the enterprise cannot be reached directly from outside, even if the home agent contains IPsec functionality:

- Deployment of current combined IPsec/MIPv4 solutions are not common in large installations.

- Doing decryption in the home agents "deep inside" the enterprise effectively means having a security perimeter much larger than the typical, compact DMZ used by a majority of enterprises today.

- In order to maintain a security level equal to current firewall/DMZ deployments, every home agent decapsulating IPsec would need to do the same firewalling as the current DMZ firewalls (content scanning, connection tracking, etc).

Traffic cannot be encrypted when the mobile node is inside:

- There is a considerable performance impact on home agents (which currently do rather light processing), and mobile nodes (especially for small devices). Note that traffic throughput inside the enterprise is typically order(s) of magnitude larger than the remote access traffic through a VPN.

- Encryption consumes processing power and has a significant impact on device battery life.

- There is also a usability issue involved; the user needs to authenticate connection to the IPsec layer in the home agent to gain access. For interactive authentication mechanisms (e.g. SecurID) this always means user interaction.

- Furthermore, if there is a separate VPN device in the DMZ for remote access, the user needs to authenticate to both devices, and might need to have separate credentials for both.
Current Mobile IPv4 home agents do not typically incorporate IPsec functionality, which is relevant for the proposed solution when we assume zero or minimal changes to existing Mobile IPv4 nodes.

Note, however, that the assumption (no encryption when inside) does not necessarily apply to all solutions in the solution space; if the abovementioned problems were resolved there is no fundamental reason why encryption could not be applied when inside.

1.7. Why IPsec lacks mobility

IPsec, as currently specified [3] requires that a new IKE negotiation be done whenever an IPsec peer moves, i.e. changes care-of address. The main reason is that a security association is uni-directional and identified by a triplet consisting of (1) the destination address (which is the outer address when tunnel mode is used), (2) the security protocol (ESP or AH), and (3) the Security Parameter Index (SPI) ([3], Section 4.1). Although an implementation is not required to use all of these for its own SAs, an implementation cannot assume that a peer does not.

When a mobile IPsec peer sends packets to a stationary IPsec peer, there is no problem; the SA is "owned" by the stationary IPsec peer, and therefore the destination address does not need to change. The (outer) source address should be ignored by the stationary peer (although some implementations do check the source address as well).

The problem arises when packets are sent from the stationary peer to the mobile peer. The destination address of this SA (SAs are unidirectional) is established during IKE negotiation, and is effectively the care-of address of the mobile peer at time of negotiation. Therefore the packets will be sent to the original care-of address, not a changed care-of address.

The IPsec NAT traversal mechanism can also be used for limited mobility, but UDP tunneling needs to be used even when there is no NAT in the route between the mobile and the stationary peers. Furthermore, support for changes in current NAT mapping is not required by the NAT traversal specification (draft)[8].

In summary, although the IPsec standard does not as such prevent mobility (in the sense of updating security associations on-the-fly), there is no standardized mechanism (explicit or implicit) for doing so. Therefore it is assumed throughout this document that any change in the addresses comprising the identity of an SA requires IKE renegotiation, which implies too heavy computation and too large latency for useful mobility.
The MOBIKE working group is defining a mechanism to provide mobility for IPsec, thus eliminating this limitation. However, deploying MOBIKE requires changes to VPN devices, and is thus out of scope of this specification.
2. The network environment

Enterprise users will access both the internal and external networks using different networking technologies. In some networks, the MN will use FAs and in others it will anchor at the HA using co-located mode. The following figure describes an example network topology illustrating the relationship between the internal and external networks, the possible locations of the mobile node (i.e. (MN)).

In every possible location described in the figure, the mobile node can establish a connection to the corresponding HA(s) by using a suitable "access mode". An access mode is here defined to consist of:

1. a composition of the mobile node networking stack (i-MIP or x-MIP/VPN/i-MIP); and
2. registration mode(s) of i-MIP and x-MIP (if used); i.e. co-located care-of address or foreign agent care-of address.

Each possible access mode is encoded as "xyz", where:

- "x" indicates whether the x-MIP layer is used, and if used, the mode ("f" indicates FA-CoA, "c" indicates co-CoA, absence indicates not used);
- "y" indicates whether the VPN layer is used ("v" indicates VPN used, absence indicates not used);
- "z" indicates mode of i-MIP layer ("f" indicates FA-CoA, "c" indicates co-CoA).

This results in four access modes:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c:</td>
<td>i-MIP w/ co-CoA</td>
</tr>
<tr>
<td>f:</td>
<td>i-MIP w/ FA-CoA</td>
</tr>
<tr>
<td>cvc:</td>
<td>x-MIP w/ co-CoA, VPN-TIA as i-MIP co-CoA</td>
</tr>
<tr>
<td>fvc:</td>
<td>x-MIP w/ FA-CoA, VPN-TIA as i-MIP co-CoA</td>
</tr>
</tbody>
</table>

This notation is more useful when optimizations to protocol layers are considered. The notation is preserved here so that work on the optimizations can refer to a common notation.
The internal network is typically a multi-subnetted network using private addressing [7]. Subnets may contain internal home agent(s), DHCP server(s), and/or foreign agent(s). Current IEEE 802.11 wireless LANs are typically deployed in the external network or the DMZ because of security concerns.

The figure leaves out a few details worth noticing:

- There may be multiple NAT devices anywhere in the diagram.

 * When the MN is outside, the NAT devices may be placed between the MN and the x-HA or the x-HA and the VPN.

 * There may be also be NAT(s) between the VPN and the i-HA, or a NAT integrated into the VPN. In essence, any router in the figure may be considered to represent zero or more routers, each possibly performing NAT and/or ingress filtering.

 * When the MN is inside, there may be NAT devices between the MN and the i-HA.
Site-to-site VPN tunnels are not shown. Although mostly transparent, IPsec endpoints may perform ingress filtering as part of enforcing their policy.

The figure represents a topology where each functional entity is illustrated as a separate device. However, it is possible that several network functions are co-located in a single device. In fact, all three server components (x-HA, VPN, and i-HA) may be co-located in a single physical device.

The following issues are also important when considering enterprise mobile users:

- Some firewalls are configured to block ICMP messages and/or fragments. Such firewalls (routers) cannot be detected reliably.
- Some networks contain transparent application proxies, especially for the HTTP protocol. Like firewalls, such proxies cannot be detected reliably in general. IPsec and Mobile IPv4 are incompatible with such networks.

Whenever a mobile node obtains either a co-CoA or a FA-CoA, the following conceptual steps take place:

- The mobile node detects whether the subnet where the care-of address was obtained belongs to the internal or the external network using the method described in Section 3 (or a vendor specific mechanism fulfilling the requirements described).
- The mobile node performs necessary registrations and other connection setup signaling for the protocol layers (in the following order):
 * x-MIP (if used);
 * VPN (if used); and
 * i-MIP.

Note that these two tasks are intertwined to some extent: detection of the internal network results in a successful registration to the i-HA using the proposed network detection algorithm. An improved network detection mechanism not based on Mobile IPv4 registration messages might not have this side-effect.

The following subsections describe the different access modes and the requirements for registration and connection setup phase.
2.1. Access mode: ’c’

This access mode is standard Mobile IPv4 [5] with a co-located address, except that:

- the mobile node MUST detect that it is in the internal network;
- and
- the mobile node MUST re-register periodically (with a configurable interval) to ensure it is still inside the internal network (see Section 4).

2.2. Access mode: ’f’

This access mode is standard Mobile IPv4 [5] with a foreign agent care-of address, except that

- the mobile node MUST detect that it is in the internal network;
- and
- the mobile node MUST re-register periodically (with a configurable interval) to ensure it is still inside the internal network (see Section 4).

2.3. Access mode: ’cvc’

Steps:

- The mobile node obtains a care-of address.
- The mobile node detects it is not inside and registers with the x-HA, where
 - T-bit MAY be set (reverse tunneling), which minimizes the probability of firewall related connectivity problems
- If the mobile node does not have an existing IPsec security association, it uses IKE to set up an IPsec security association with the VPN gateway, using the x-HoA as the IP address for IKE/IPsec communication. How the VPN-TIA is assigned is outside the scope of this document.
- The mobile node sends a MIPv4 RRQ to the i-HA, registering the VPN-TIA as a co-located care-of address, where
 - T-bit SHOULD be set (reverse tunneling) (see discussion below)

Reverse tunneling in the inner Mobile IPv4 layer is often required
because of IPsec security policy limitations. IPsec selectors define allowed IP addresses for packets sent inside the IPsec tunnel. Typical IPsec remote VPN selectors restrict the client address to be VPN-TIA (remote address is often unrestricted). If reverse tunneling is not used, the source address of a packet sent by the MN will be the MN’s home address (registered with i-HA), which is different from the VPN-TIA, thus violating IPsec security policy. Consequently the packet will be dropped, resulting in a connection black hole.

Some types of IPsec-based VPNs, in particular L2TP/IPsec VPNs (PPP-over-L2TP-over-IPsec), do not have this limitation and can use triangular routing.

2.4. Access mode: ‘fvc’

Steps:

- The mobile node obtains a foreign agent advertisement from the local network.
- The mobile node detects it is outside and registers with the x-HA, where
 * T-bit MAY be set (reverse tunneling), which minimizes the probability of firewall related connectivity problems
- If necessary, the mobile node uses IKE to set up an IPsec connection with the VPN gateway, using the x-HoA as the IP address for IKE/IPsec communication. How the VPN-TIA is assigned is outside the scope of this document.
- The mobile node sends a MIPv4 RRQ to the i-HA, registering the VPN-TIA as a co-located care-of address, where
 * T-bit SHOULD be set (reverse tunneling) (see discussion in Section 2.3)

2.5. NAT traversal

NAT devices may affect each layer independently. Mobile IPv4 NAT traversal SHOULD be supported for x-MIP and i-MIP layers, while IPsec NAT traversal [8][9] SHOULD be supported for the VPN layer.

Note that NAT traversal for the internal MIPv4 layer may be necessary even when there is no separate NAT device between the VPN gateway and the internal network. Some VPN implementations NAT VPN tunnel inner addresses before routing traffic to the intranet. Sometimes this is done to make a deployment easier, but in some cases this approach
makes VPN client implementation easier. Mobile IPv4 NAT traversal is required to establish a MIPv4 session in this case.
3. Internal network detection

Secure detection of the internal network is critical to prevent plaintext traffic from being sent over an untrusted network. In other words, the overall security (confidentiality and integrity of user data) relies on the security of the internal network detection mechanism in addition to IPsec. For this reason, security requirements are described in this section.

In addition to detecting entry into the internal network, the mobile node must also detect when it has left the internal network. Entry into the internal network is easier security-wise: the mobile node can ensure that it is inside the internal network before sending any plaintext traffic. Exit from the internal network is more difficult to detect, and the MN may accidentally leak plaintext packets if the event is not detected in time.

Several events can cause the mobile node to leave the internal network, including:

- a routing change upstream;
- a reassociation of 802.11 on layer 2 which the mobile node software does not detect;
- a physical cable disconnect and reconnect which the mobile node software does not detect.

Whether the mobile node can detect such changes in the current connection reliably depends on the implementation and the networking technology. For instance, some mobile nodes may be implemented as pure layer three entities. Even if the mobile node software has access to layer two information, such information is not trustworthy security-wise, and depends on the network interface driver.

If the mobile node does not detect these events properly, it may leak plaintext traffic into an untrusted network. A number of approaches can be used to detect exit from the internal network, ranging from frequent re-registration to the use of layer two information.

A mobile node MUST implement a detection mechanism fulfilling the requirements described in Section 3.2; this ensures that basic security requirements are fulfilled. The basic algorithm described in Section 3.3 is one way to do that, but alternative methods may be used instead or in conjunction. The assumptions that the requirements and the proposed mechanism rely upon are described in Section 3.1.
3.1. Assumptions

The firewall MUST be configured to block traffic originating from external networks going to the i-HA. In other words, if the mobile node succeeds in registering with the i-HA directly (without using IPsec), the mobile node may safely infer that it is connected to the trusted internal network, and may therefore send plaintext traffic on that particular network interface.

The firewall MAY be configured to block registration traffic to the x-HA originating from within the internal network, which makes the network detection algorithm simpler and more robust. However, as the registration request is basically UDP traffic, an ordinary firewall (even a stateful one) would typically allow the registration request to be sent, and a registration reply to be received through the firewall.

3.2. Implementation requirements

Any mechanism used to detect the internal network MUST fulfill the following requirements.

The mobile node implementation MUST track each network interface separately. Successful registration with the i-HA through interface X does not imply anything about the status of interface Y.

3.2.1. Connection status change

When the mobile node detects that its connection status on a certain network interface changes, the mobile node MUST:

- immediately stop relaying user data packets;
- detect whether this interface is connected to the internal or the external network;
- resume data traffic only after the internal network detection and necessary registrations and VPN tunnel establishment have been completed.

The mechanisms used to detect a connection status change depends on the mobile node implementation, the networking technology, and the access mode.

3.2.2. Registration-based internal network detection

The mobile node MUST NOT infer that an interface is connected to the internal network unless a successful registration has been completed.
through that particular interface and the connection status of the interface has not changed since.

3.2.3. Registration-based internal network monitoring

Some leak of plaintext packets to a (potentially) untrusted network cannot always be completely prevented; this depends heavily on the client implementation. In some cases the client cannot detect such a change, e.g. if upstream routing is changed.

More frequent re-registrations when the MN is inside is a simple way to ensure that MN is still inside. The MN SHOULD start re-registration every \((T_{\text{monitor}} - N)\) seconds when inside, where \(N\) is a grace period which ensures that re-registration is completed before \(T_{\text{monitor}}\) seconds are up. To bound the maximum amount of time that a plaintext leak may persist, the mobile node must fulfill the following security requirements when inside:

- The mobile node MUST NOT send or receive a user data packet if more than \(T_{\text{monitor}}\) seconds has elapsed since last successful (re-)registration with the i-HA.

- If more than \(T_{\text{monitor}}\) seconds has elapsed, data packets MUST be either dropped or queued. If the packets are queued, the queues MUST NOT be processed until the re-registration has been successfully completed without a connection status change.

- The \(T_{\text{monitor}}\) parameter MUST be configurable, and have the default value of 60 seconds. This default is a trade-off between traffic overhead and a reasonable bound to exposure.

This approach is reasonable for a wide range of mobile nodes (e.g. laptops), but has unnecessary overhead when the mobile node is idle (not sending or receiving packets). If re-registration does not complete before \(T_{\text{monitor}}\) seconds are up, data packets must be queued or dropped as specified above. Note that re-registration packets MUST be sent even if bi-directional user data traffic is being relayed: data packets are no substitute for an authenticated re-registration.

To minimize traffic overhead when the mobile node is idle, re-registrations can be stopped when no traffic is being sent or received. If the mobile node subsequently receives or needs to send a packet, the packet must be dropped or queued (as specified above) until a re-registration with the i-HA has been successfully completed. Although this approach adds packet processing complexity, it may be appropriate for small battery powered devices which may be idle much of the time. (Note that ordinary re-registration before
the mobility binding lifetime is exhausted should still be done to keep the MN reachable.)

T_MONITOR is required to be configurable so that an administrator can determine the required security level for the particular deployment. Configuring T_MONITOR in the order of few seconds is not practical; alternative mechanisms need to be considered if such confidence is required.

The re-registration mechanism is a worst case fallback mechanism. If additional information (such as layer two triggers) are available to the mobile node, the mobile node SHOULD use the triggers to detect MN movement and restart the detection process to minimize exposure.

Note that re-registration is required by Mobile IPv4 by default (except for the untypical case of an infinite binding lifetime); however, the re-registration interval may be much larger when using an ordinary Mobile IPv4 client. Shorter re-registration interval is usually not an issue, because the internal network is typically a fast, wired network, and the shortened re-registration interval applies only when the mobile node is inside the internal network. When outside, the ordinary Mobile IPv4 re-registration process (based on binding lifetime) is used.

3.3. Proposed algorithm

When the MN detects that it has changed its point of network attachment on a certain interface, it issues two simultaneous registration requests, one to the i-HA and another to the x-HA. These registration requests are periodically retransmitted if reply messages are not received.

Registration replies are processed as follows:

- If a response from the x-HA is received, the MN stops retransmitting its registration request to the x-HA and tentatively determines it is outside. However, the MN MUST keep on retransmitting its registration to the i-HA for a period of time. The MN MAY postpone the IPSec connection setup for some period of time while it waits for a (possible) response from the i-HA.

- If a response from the i-HA is received, the MN MUST determine that it is inside. If a previous registration reply from the x-HA has been received, the MN SHOULD de-register with the x-HA. In any case, the MN MUST stop retransmitting its registration requests to both i-HA and x-HA.
If a response from the x-HA is received while the MN has successfully registered with the i-HA, the MN SHOULD de-register with the x-HA.

If the MN ends up detecting that it is inside, it MUST re-register periodically (regardless of binding lifetime); see Section 3.2.3. If the re-registration fails, the MN MUST stop sending and receiving plaintext traffic, and MUST restart the detection algorithm.

Plaintext re-registration messages are always addressed either to the x-HA or the i-HA, not to both. This is because the MN knows, after initial registration, whether it is inside or outside. (However, when the mobile node is outside, it re-registers independently with the x-HA using plaintext, and with the i-HA through the VPN tunnel.)

Postponing the IPSec connection setup could prevent aborted IKE sessions. Aborting IKE sessions may be a problem in some cases because IKE does not provide a reliable, standardized, and mandatory-to-implement mechanism for terminating a session cleanly.

If the x-HA is not reachable from inside (i.e. the firewall configuration is known), a detection period of zero is preferred, as it minimizes connection setup overhead and causes no timing problems. Should the assumption have been invalid and a response from the i-HA received after a response from the x-HA, the MN SHOULD re-register with the i-HA directly.

3.4. Implementation issues

When the MN uses a parallel detection algorithm and is using an FA, the MN sends two registration requests through the same FA with the same MAC address (or equivalent) and possibly even the same home address. Although this is not in conflict with existing specifications, it is an unusual scenario; hence some FA implementations may not work properly in such a situation. However, testing against deployed foreign agents seems to indicate that a majority of available foreign agents handle this situation.

When the x-HA and i-HA addresses are the same, the scenario is even more difficult for the FA, and it is almost certain that existing FAs do not deal with the situation correctly. Therefore, it is required that x-HA and i-HA addresses MUST be different.

The mobile node MAY use the following hints to determine that it is inside, but MUST verify reachability of the i-HA anyway:

- a domain name in a DHCPDISCOVER / DHCPOFFER message;
o a NAI in a foreign agent advertisement;

o a list of default gateway MAC addresses which are known to reside in the internal network (i.e. configured as such, or have been previously verified to be inside).

For instance, if the MN has reason to believe it is inside, it MAY postpone sending of registration request to the x-HA for some time. Similarly, if the MN has a reason to believe it is outside, it may start IPsec connection setup immediately after receiving a registration reply from the x-HA. However, should the MN receive a registration reply from the i-HA after IPsec connection setup has been started, the MN SHOULD still switch to using the i-HA directly.

3.5. Rationale for design choices

3.5.1. Firewall configuration requirements

The requirement that the i-HA cannot be reached from the external network is necessary. If not, a successful registration with the i-HA (without IPsec) cannot be used as a secure indication that the mobile node is inside. A possible solution to the obvious security problem would be to define and deploy a secure internal network detection mechanism based on e.g. signed FA advertisement or signed DHCP messages.

However, unless the mechanism is defined for both FA and DHCP messages and is deployed in every internal network, it has limited applicability. In other words, the mobile node MUST NOT assume it is in the internal network unless it receives a signed FA or DHCP message (regardless of whether it can register directly with the i-HA or not!). If it receives an unsigned FA or DHCP message, it MUST use IPsec; otherwise the mobile node can be easily tricked into using plaintext.

Assuming that all FA and DHCP servers in the internal network are upgraded to support such a feature does not seem realistic; it is highly desirable to be able to take advantage of existing DHCP and FA deployments. Similar analysis seems to apply regardless of what kind of additional security mechanism is defined.

3.5.2. Registration-based internal network monitoring

This issue also affects IPsec client security. However, as IPsec specifications take no stand on how and when the client applies IPsec, the issue is out of scope for IPsec. Because this document describes an algorithm and requirements for (secure) internal network detection, the issue is in scope of the document.
The current requirement for internal network monitoring was added as a fallback mechanism.

3.5.3. No encryption when inside

If encryption was applied also when MN was inside, there would be no security reason to monitor the internal network periodically.

The main rationale for why encryption cannot be applied when the MN is inside was given in Section 1.6. In short, the main issues are (1) power consumption; (2) extra CPU load, especially because internal networks are typically switched networks and a lot of data may be routinely transferred; (3) existing HA devices do not typically integrate IPsec functionality; (4) (IPsec) encryption requires user authentication, which may be interactive in some cases (e.g. SecurID) and thus a usability issue; and (5) user may need to have separate credentials for VPN devices in the DMZ and the HA.

3.6. Improvements

The registration process can be improved in many ways. One simple way is to make the x-HA detect whether a registration request came from inside or outside. If it came from inside, the x-HA can simply drop the registration request.

This approach is feasible without protocol changes in scenarios where a corporation owns both the VPN and the x-HA. The x-HA can simply determine based on incoming interface identifier (or the router which relayed the packet) whether the registration request came from inside or not.

In other scenarios protocol changes may be needed. Such changes are out of scope of this document.
4. Requirements

4.1. Mobile node requirements

The mobile node MUST implement an internal network detection algorithm fulfilling the requirements set forth in Section 3.2.

The mobile node MUST support access modes: c, f, cvc, fvc (Section 2).

The mobile node SHOULD support Mobile IPv4 NAT traversal [6] for both internal and external Mobile IP.

The mobile node SHOULD support IPsec NAT traversal [8][9].

When the mobile node has direct access to the i-HA, it SHOULD use only the inner Mobile IPv4 layer to minimize firewall and VPN impact.

4.2. VPN device requirements

The VPN security policy MUST allow communication using UDP to the internal home agent(s), with home agent port 434 and any remote port. The security policy SHOULD allow IP-IP to internal home agent(s) in addition to UDP port 434.

The VPN device SHOULD implement the IPsec NAT traversal mechanism described in [8] [9].

4.3. Home agent requirements

The home agent SHOULD implement the Mobile IPv4 NAT traversal mechanism described in [6]. (This also refers to the i-HA: NAT traversal is required to support VPNs that NAT VPN tunnel addresses or block IP-IP traffic.)
5. Analysis

This section provides a comparison against guidelines described in Section 6 of the problem statement [1] and additional analysis of packet overhead with and without the optional mechanisms.

5.1. Comparison against guidelines

Preservation of existing VPN infrastructure

- The proposed solution does not mandate any changes to existing VPN infrastructure, other than possibly changes in configuration to avoid stateful filtering of traffic.

Software upgrades to existing VPN clients and gateways

- The solution described does not require any changes to VPN gateways or Mobile IPv4 home agents or foreign agents.

IPsec protocol

- The proposed solution does not require any changes to existing IPsec or key exchange standard protocols, and does not require implementation of new protocols in the VPN device.

Multi-vendor interoperability

- The proposed solution provides easy multi-vendor interoperability between server components (VPN device, foreign agents and home agents). Indeed, these components need not be aware of each other.
- The mobile node networking stack is somewhat complex to implement, which may be an issue for multi-vendor interoperability.

MIPv4 protocol

- The solution adheres to the MIPv4 protocol.
- The solution requires the use of two parallel MIPv4 layers.

Handoff overhead

- The solution provides a mechanism to avoid VPN tunnel SA renegotiation upon movement by using the external MIPv4 layer.

Scalability, availability, reliability, and performance
o The solution complexity is linear with the number of MNs registered and accessing resources inside the intranet.

o Additional overhead is imposed by the solution.

Functional entities

o The solution does not impose any new types of functional entities or required changes to existing entities. However, an external HA device is required.

Implications of intervening NAT gateways

o The solution leverages existing MIPv4 NAT traversal [6] and IPsec NAT traversal [8] [9] solutions and does not require any new functionality to deal with NATs.

Security implications

o The solution requires a new mechanism to detect whether the mobile node is in the internal or the external network. The security of this mechanism is critical in ensuring that the security level provided by IPsec is not compromised by a faulty detection mechanism.

o When the mobile node is outside, the external Mobile IPv4 layer may allow some traffic redirection attacks that plain IPsec does not allow. Other than that, IPsec security is unchanged.

o More security considerations are described in Section 6.

5.2. Packet overhead

The maximum packet overhead depends on access mode as follows:

o f: 0 octets

o c: 20 octets

o fvc: 77 octets

o cvc: 97 octets

The overhead consists of the following:

o IP-IP for i-MIPv4: 20 octets
- IPsec ESP: 57 octets total, consisting of: 20 (new IP header), 4+4+8 = 16 (SPI, sequence number, cipher initialization vector), 7+2 = 9 (padding, padding length field, next header field), 12 (ESP authentication trailer)

- IP-IP for x-MIPv4: 20 octets

When IPsec is used, a variable amount of padding is present in each ESP packet. The figures were computed for a cipher with 64-bit block size, padding overhead of 9 octets (next header field, padding length field, and 7 octets of padding, see Section 2.4 of [10]), and ESP authentication field of 12 octets (HMAC-SHA1-96 or HMAC-MD5-96). Note that an IPsec implementation MAY pad with more than a minimum amount of octets.

NAT traversal overhead is not included, and adds 8 octets when IPsec NAT traversal [8] [9] is used and 12 octets when MIP NAT traversal [6] is used. For instance, when using access mode cvc, the maximum NAT traversal overhead is 12+8+12 = 32 octets. Thus, the worst case scenario (with the abovementioned ESP assumptions) is 129 octets for cvc.

5.3. Latency considerations

When the MN is inside, connection setup latency does not increase compared to standard MIPv4 if the MN implements the suggested parallel registration sequence (see Section 3.3). Exchange of RRQ/RRP messages with the i-HA confirms the MN is inside, and the MN may start sending and receiving user traffic immediately. For the same reason, handovers in the internal network have no overhead relative to standard MIPv4.

When the MN is outside, the situation is slightly different. Initial connection setup latency essentially consists of (1) registration with the x-HA, (2) optional detection delay (waiting for i-HA response), (3) IPsec connection setup (IKE), (4) registration with the i-HA. All but (4) are in addition to standard MIPv4.

However, handovers in the external network have performance comparable to standard MIPv4. The MN simply re-registers with the x-HA and starts to send IPsec traffic to the VPN gateway from the new address.

The MN may minimize latency by (1) not waiting for an i-HA response before triggering IKE if the x-HA registration succeeds; and (2) sending first the RRQ most likely to succeed (e.g. if the MN is most likely outside. These can be done based on heuristics about the network, e.g. addresses, MAC address of the default gateway (which
the mobile node may remember from previous access), based on the
previous access network (i.e. optimize for inside-inside and outside-
outside movement), etc.

5.4. Firewall state considerations

A separate firewall device or an integrated firewall in the VPN
gateway typically performs stateful inspection of user traffic. The
firewall may, for instance, track TCP session status and block TCP
segments not related to open connections. Other stateful inspection
mechanisms also exist.

Firewall state poses a problem when the mobile node moves between the
internal and external networks. The mobile node may, for instance,
initiate a TCP connection while inside, and later go outside while
expecting to keep the connection alive. From the point of view of
the firewall, the TCP connection has not been initiated, as it has
not witnessed the TCP connection setup packets, thus potentially
resulting in connectivity problems.

When the VPN-TIA is registered as a co-located care-of address with
the i-HA, all mobile node traffic appears as IP-IP for the firewall.
Typically firewalls do not continue inspection beyond the IP-IP
tunnel, but it is not inconceivable that some firewalls may do that.

In summary, the firewall must allow traffic coming from and going
into the IPsec connection to be routed, even though they may not have
successfully tracked the connection state. How this is done is out
of scope of this document.

5.5. Intrusion detection systems (IDSs)

Many firewalls incorporate intrusion detection systems monitoring
network traffic for unusual patterns and clear signs of attack.
Since traffic from a mobile node implementing this specification is
UDP to i-HA port 434, and possibly IP-IP traffic to the i-HA address,
existing IDSs may treat the traffic differently than ordinary VPN
remote access traffic. Like firewalls, IDSs are not standardized, so
it is impossible to guarantee interoperability with any particular
IDS system.

5.6. Implementation of mobile node

Implementation of the mobile node requires the use of three tunneling
layers, which may be used in various configurations depending on
whether that particular interface is inside or outside. Note that it
is possible that one interface is inside and another interface is
outside, which requires a different layering for each interface at
the same time.

For multi-vendor implementation, the IPsec and MIPv4 layers need to interoperate in the same mobile node. This implies that a flexible framework for protocol layering (or protocol-specific APIs) are required.

5.7. Non-IPsec VPN protocols

The proposed solution works also for VPN tunneling protocols that are not IPsec-based, provided that the mobile node is provided IPv4 connectivity with an address suitable for registration. However, such VPN protocols are not explicitly considered.
6. Security considerations

6.1. Internal network detection

If the mobile node by mistake believes it is in the internal network and sends plaintext packets, it compromises IPsec security. For this reason, the overall security (confidentiality and integrity) of user data is a minimum of (1) IPsec security, and (2) security of the internal network detection mechanism.

Security of the internal network detection relies on a successful registration with the i-HA. For standard Mobile IPv4 [5] this means HMAC-MD5 and Mobile IPv4 replay protection.

When the connection status of an interface changes, an interface previously connected to the trusted internal network may suddenly be connected to an untrusted network. Although the same problem is also relevant to IPsec-based VPN implementations, the problem is especially relevant in the scope of this specification.

In most cases, mobile node implementations are expected to have layer two information available, making connection change detection both fast and robust. To cover cases where such information is not available (or fails for some reason), the mobile node is required to periodically re-register with the internal home agent to verify that it is still connected to the trusted network. It is also required that this re-registration interval be configurable, thus giving the administrator a parameter by which potential exposure may be controlled.

6.2. Mobile IPv4 versus IPsec

MIPv4 and IPsec have different goals and approaches for providing security services. MIPv4 typically uses a shared secret for authentication of signaling traffic, while IPsec typically uses IKE (an authenticated Diffie-Hellman exchange) to set up session keys. Thus, the overall security properties of a combined MIPv4 and IPsec system depend on both mechanisms.

In the solution outlined in this document, the external MIPv4 layer provides mobility for IPsec traffic. If the security of MIPv4 is broken in this context, traffic redirection attacks against the IPsec traffic are possible. However, such routing attacks do not affect other IPsec properties (confidentiality, integrity, replay protection, etc), because IPsec does not consider the network between two IPsec endpoints to be secure in any way.

Because MIPv4 shared secrets are usually configured manually, they
may be weak if easily memorizable secrets are chosen, thus opening up redirection attacks described above. Note especially that a weak secret in the i-HA is fatal to security, as the mobile node can be fooled into dropping encryption if the i-HA secret is broken.

Assuming the MIPv4 shared secrets have sufficient entropy, there are still at least the following differences and similarities between MIPv4 and IPsec worth considering:

- Both IPsec and MIPv4 are susceptible to the "transient pseudo NAT" attack described in [13] and [6], assuming that NAT traversal is enabled (which is typically the case).

- When considering a "pseudo NAT" attack against standard IPsec and standard MIP (with NAT traversal), redirection attacks against MIP may be easier because:
 * MIPv4 re-registrations typically occur more frequently than IPsec SA setups (although this may not be the case for mobile hosts).
 * It suffices to catch and modify a single registration request, whereas attacking IKE requires that multiple IKE packets are caught and modified.

- There may be concerns about mixing of algorithms. For instance, IPsec may be using HMAC-SHA1-96, while MIP is always using HMAC-MD5 (RFC 3344) or prefix+suffix MD5 (RFC 2002). Furthermore, while IPsec algorithms are typically configurable, MIPv4 clients typically use only HMAC-MD5 or prefix+suffix MD5. Although this is probably not a security problem as such, it is more difficult to communicate to users.

- When IPsec is used with a PKI, the key management properties are superior to those of basic MIPv4. Thus, adding MIPv4 to the system makes key management more complex.

- In general, adding new security mechanisms increases overall complexity and makes the system more difficult to understand.
7. Acknowledgements

This document is a joint work of the contributing authors (in alphabetical order):

- Farid Adrangi (Intel Corporation)
- Nitsan Baider (Check Point Software Technologies, Inc.)
- Gopal Dommety (Cisco Systems)
- Eli Gelasco (Cisco Systems)
- Dorothy Gellert (Nokia Corporation)
- Espen Klovning (Birdstep)
- Milind Kulkarni (Cisco Systems)
- Henrik Levkowetz (ipUnplugged AB)
- Frode Nielsen (Birdstep)
- Sami Vaarala (Stinghorn)
- Qiang Zhang (Liqwid Networks, Inc.)

The authors would like to thank MIP/VPN design team, especially Mike Andrews, Gaetan Feige, Prakash Iyer, Brijesh Kumar, Joe Lau, Kent Leung, Gabriel Montenegro, Ranjit Narjala, Antti Nuopponen, Alan O’Neill, Alpesh Patel, Ilkka Pietikainen, Phil Roberts, Hans Sjostrand, and Serge Tessier for their continuous feedback and helping us improve this draft. Special thanks to Radia Perlman for giving the document a thorough read and a security review. Tom Hiller pointed out issues with battery powered devices. We would also like to thank the previous Mobile IP working group chair (Gabriel Montenegro, Basavaraj Patil, and Phil Roberts) for important feedback and guidance.

8. References

Appendix A. Packet flow examples

A.1. Connection setup for access mode ‘cvc’

The following figure illustrates connection setup when the mobile node is outside and using a co-located care-of address. IKE connection setup is not shown in full, and involves multiple round trips (4.5 round trips when using main mode followed by quick mode).
<table>
<thead>
<tr>
<th>MN-APP</th>
<th>MN</th>
<th>x-HA</th>
<th>VPN</th>
<th>i-HA</th>
<th>CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>![]</td>
<td>![]</td>
<td>![------->]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>![]</td>
<td>![]</td>
<td>![riq]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>![]</td>
<td>![]</td>
<td>![--------------X]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>![]</td>
<td>![]</td>
<td>![riq]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>![]</td>
<td>![]</td>
<td>![<=------]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>![]</td>
<td>![]</td>
<td>![rrp]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
</tbody>
</table>

![[wait for detection period for response from i-HA]]

![[may also retransmit to i-HA, depending on config]]

![no rrp]

![![] | ![==(1)==> | ![] | ![] | ![] |

![![] | ![==(2)==> | ![] | ![] | ![] |

![![] | ![rrq (2a)! ==(1)==> | ![] | ![] | ![] |

![![] | ![rrq (2b)! ==(2)==> | ![] | ![] | ![] |

![![] | ![pkt (3a)! ==(3)==> | ![] | ![] | ![] |

![![] | ![pkt (3b)! ==(2)==> | ![] | ![] | ![] |

![![] | ![pkt (3c)! ==(1)==> | ![] | ![] | ![] |

![![] | ![pkt (3d)! ==(2)==> | ![] | ![] | ![] |

![![] | ![<=(3)== > pkt | ![] | ![] | ![] |

![![] | ![<=(3)== > pkt | ![] | ![] | ![] |

![![] | ![<=(3)== > pkt | ![] | ![] | ![] |

![![] | ![<=(2)== > pkt | ![] | ![] | ![] |

![![] | ![<=(1)== > pkt | ![] | ![] | ![] |

![![] | ![<=(1)== > pkt | ![] | ![] | ![] |

![![] | ![<=(2)== > pkt | ![] | ![] | ![] |

![![] | ![<=(1)== > pkt | ![] | ![] | ![] |
The notation "==(N)==>" or "<(N)==" indicates that the innermost packet has been encapsulated N times, using IP-IP, ESP, or MIP NAT traversal.

Packets marked with {xx} are shown in more detail below. Each area represents a protocol header (labeled). Source and destination addresses or ports are shown underneath the protocol name when applicable. Note that there are no NAT traversal headers in the example packets.

Packet {1a}
```
! IP      ! IP      ! UDP   ! IKE    
! co-CoA ! x-HoA  !  500  !        
! x-HA   ! VPN-GW !  500  !        
```

Packet {2a}
```
! IP      ! IP      ! ESP   ! IP       ! UDP   ! MIP RRQ ! 
! co-CoA ! x-HoA  !       ! VPN-TIA ! ANY   ! ! 
! x-HA   ! VPN-GW !       ! i-HA    ! 434   ! ! 
```

Packet {2b}
```
! IP      ! ESP   ! IP       ! UDP   ! MIP RRQ ! 
! x-HoA  !       ! VPN-TIA ! ANY   ! ! 
! VPN-GW !       ! i-HA    ! 434   ! ! 
```

Packet {2c}
```
! IP      ! UDP   ! MIP RRQ ! 
! VPN-TIA ! ANY   ! ! 
! i-HA    ! 434   ! ! 
```

Packet {3a}
```
! IP      ! user ! 
! i-HoA ! protocol ! 
! CN ! ! 
```

Packet {3b}
```
! IP      ! IP      ! ESP   ! IP      ! IP ! user  
```
Packet {3c}

! IP ! ESP ! IP ! IP ! user ! ESP !
! x-HoA ! VPN-TIA ! i-HoA ! protocol ! trailer !
! VPN-GW ! i-HA ! CN !

Packet {3d}

! IP ! IP ! user !
! VPN-TIA ! i-HoA ! protocol !
! i-HA ! CN !

Packet {3e}

! IP ! user !
! i-HoA ! protocol !
! CN !

Packet {3b} with all NAT traversal headers (x-MIP, ESP, and i-MIP) is shown below for comparison.
Packet (3b) (with NAT traversal headers)

```
! IP ! UDP ! MIP ! IP ! UDP ! ESP. \ 
! co-CoA ! ANY ! tunnel ! x-HoA ! 4500 ! / 
! x-HA ! 434 ! data ! VPN-GW ! 4500 ! \ 
```

```
<=== external MIPv4 =====> <=== IPsec ESP ======== = =
```

```
\..ESP ! IP ! UDP ! MIP ! IP ! user \
/   ! VPN-TIA ! ANY ! tunnel ! i-HoA ! protocol../
\   ! i-HA ! 434 ! data ! CN !
```

```
= ===> <==== internal MIPv4 =====> <= user packet == =
```

```
\..user ! ESP ! \
/ protocol ! trailer ! \
\   ! !
```

```
= = ======> <= ESP =>
```
Appendix B. Changes

Changes from draft-ietf-mip4-vpn-problem-solution-01 to
draft-ietf-mip4-vpn-problem-solution-02:

- Feedback from Vijay Devarapalli incorporated.
- Added references to MOBIKE WG where applicable.
- Changed requirement for reverse tunneling of inner MIPv4 when MN
 is outside, from MUST to SHOULD. Reason: not all IPsec-based VPNs
 have the policy limitation; in particular, L2TP/IPsec
 implementations do not.
- Added better explanation of why reverse tunneling to i-HA is often
 required when the MN is outside.
- Re-added latency considerations section in a simplified form.
- IPR reference from RFC 3667 updated to RFC 3978.
- Removed explicit IPR section, as the general reference to on-line
 IPR statements suffices.
- Removed unused document references.
- Other minor cleanups.

Changes from draft-ietf-mip4-vpn-problem-solution-00 to
draft-ietf-mip4-vpn-problem-solution-01:

- Presentation style cleaned up in many places, wording changes
 throughout the document to improve readability.
- More compact introduction section, terminology additions, IPsec
 mobility problem description shortened.
- Sections 2 (topology) and 3 (access modes) merged.
- Section 6.8 (shortcoming for enterprise use) removed.
- Appendix A.2 (connection setup for access mode ‘fvc’) removed, it
 contained mostly duplicate information (from A.1).

Changes from draft-ietf-mobileip-vpn-problem-solution-03 to
draft-ietf-mip4-vpn-problem-solution-00:
o Renamed and resubmitted document.

o New boilerplate to match RFCs 3667 and 3668.

Changes from -02 to -03:

o Remaining issues from security review worked into document.

o Short rationale for why (a) IPsec is not mobile, and (b) the essential problem statement assumptions added.

o Minor wording changes (IETF 57 comments).

o Internal network monitoring section revised with "relaxed re-registration" approach to improve applicability to battery powered devices.

o IPR section needs to refer to on-line rights (and current text moved on-line). Not done yet.

Changes from -01 to -02:

o Packet flow examples added.

o Explicit IDS reference added.

o Requirement levels adjusted; NAT traversal requirements changed from MUST to SHOULD and other changes.

o MN no longer required to use i-HA directly whenever available (in some cases that may not be desired).

o IPR section revised.

o Latency considerations section added.

o External HA reachability assumption refined; if firewall properly configured, handover performance can be improved. This is now mentioned in the detection section.

o Overhead section simplified, only base solution discussed.

o Proposed solutions section removed from appendix.

o Strawmen of optimizations removed from appendix, references to optimizations removed from text.

Changes from -00 to -01:
- First description of proposed solution based on basic and optimized dual HA drafts, as well as IPsec endpoint update mechanism.

- List of proposed solutions in -00 included in appendix.
Authors’ Addresses

Sami Vaarala
Stinghorn
Elimaenkatu 12-16 6B
Espoo 00510
FINLAND

Phone: +358 (0)201 4425 50
Email: sami.vaarala@iki.fi

Espen Klovning
Birdstep
Bryggegata 7
Oslo 0250
NORWAY

Phone: +47 95 20 26 29
Email: espen@birdstep.com
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

Copyright (C) The Internet Society (2005). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.