RADIUS Mobile IPv6 Support
draft-ietf-mip6-radius-01.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 28, 2007.

Copyright Notice

Copyright (C) The Internet Society (2006).
Abstract

A Mobile IPv6 node requires a home agent (HA) address, a home address (HOA), and IPsec security association with its HA before it can start utilizing Mobile IPv6 service. RFC 3775 requires that some or all of these parameters are statically configured. Ongoing work aims to make this information dynamically available to the mobile node. An important aspect of the Mobile IPv6 bootstrapping solution is to support interworking with existing authentication, authorization and accounting (AAA) infrastructure. This document defines new attributes to facilitate Mobile IPv6 bootstrapping via a RADIUS infrastructure. This information exchange may take place as part of the initial network access authentication procedure or as part of a separate protocol exchange between the mobile node, the HA and the AAA infrastructure.
Table of Contents

1. Introduction ... 4
2. Terminology .. 5
3. Solution Overview .. 6
 3.1. Integrated Scenario 6
 3.2. Split Scenario ... 7
4. RADIUS Attribute Overview 9
 4.1. MIP6-HA Attribute 9
 4.2. MIP6-HA-FQDN Attribute 9
 4.3. MIP6- HL-Prefix Attribute 9
 4.4. MIP6-HOA Attribute 9
 4.5. MIP6-DNS-MO Attribute 9
5. RADIUS attributes ... 10
 5.1. MIP6-HA Attribute 10
 5.2. MIP6-HA-FQDN Attribute 11
 5.3. MIP6- HL-Prefix Attribute 11
 5.4. MIP6-HOA Attribute 12
 5.5. MIP6-DNS-MO Attribute 13
6. Message Flows ... 16
 6.1. Integrated Scenario (MSA=ASA) 16
 6.1.1. HA allocation in the MSP 16
 6.1.2. HA allocation in the ASP (visited network) 17
 6.2. Split Scenario (MSA!=ASA) 18
 6.2.1. Mobile Service Provider and Mobile Service
 Authorizer are the same entity 18
 6.2.2. Mobile Service Provider and Mobile Service
 Authorizer are different entities 20
7. Goals for the HA-AAA Interface 21
 7.1. General Goals .. 21
 7.2. Service Authorization 21
 7.3. Accounting ... 22
 7.4. MN Authentication 22
 7.5. Provisioning of Configuration Parameters 22
8. Table of Attributes .. 23
9. Diameter Considerations 24
10. Security Considerations 25
11. IANA Considerations .. 26
12. Acknowledgements .. 27
13. References .. 28
 13.1. Normative References 28
 13.2. Informative References 28
Authors’ Addresses .. 30

Intellectual Property and Copyright Statements 31
1. Introduction

Mobile IPv6 specification [5] requires a Mobile Node (MN) to perform registration with a HA with information about its current point of attachment (Care-of Address). The HA creates and maintains binding between the MN’s HOA and the MN’s Care-of Address.

In order to register with a HA, the MN needs to know some information such as, the Home Link prefix, the HA Address, the HOA, the Home Link prefix Length and security related information in order to secure the Binding Update.

The aforementioned set of information may be statically provisioned in the MN. However, static provisioning of this information has its drawbacks. It increases provisioning and network maintenance burden for the operator. Moreover, static provisioning does not allow load balancing, failover, opportunistic home link assignment etc. For example, the user may be accessing the network from a location that may be geographically far away from the preconfigured home link; the administrative burden to configure the MN’s with the respective addresses is large and the ability to react on environmental changes is minimal. In these situations static provisioning may not be desirable.

Dynamic assignment of Mobile IPv6 home registration information is a desirable feature for ease of deployment and network maintenance. For this purpose, the RADIUS infrastructure, which is used for access authentication, can be leveraged to assign some or all of the necessary parameters. The RADIUS server in the Access Service Provider (ASP) or in the Mobility Service Provider’s (MSP) network may return these parameters to the AAA client. The AAA client might either be the NAS, in case of the integrated scenario, or the HA, in case of the split scenario. The terms integrated and split are described in the terminology section and were introduced in [6].
2. Terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [1].

General mobility terminology can be found in [7]. The following additional terms, as defined in [6], are used in this document:

Access Service Authorizer (ASA):

A network operator that authenticates a MN and establishes the MN’s authorization to receive Internet service.

Access Service Provider (ASP):

A network operator that provides direct IP packet forwarding to and from the MN.

Mobility Service Authorizer (MSA):

A service provider that authorizes Mobile IPv6 service.

Mobility Service Provider (MSP):

A service provider that provides Mobile IPv6 service. In order to obtain such service, the MN must be authenticated and authorized to obtain the Mobile IPv6 service.

Split Scenario:

A scenario where the mobility service and the network access service are authorized by different entities.

Integrated Scenario:

A scenario where the mobility service and the network access service are authorized by the same entity.
3. Solution Overview

This document addresses the authentication, authorization and accounting functionality required by for the MIPv6 bootstrapping as outlined in the MIPv6 bootstrapping problem statement document (see [6]). As such, the AAA functionality for the integrated and the split scenario needs to be defined. This requires the ability to offer support for the HA to AAA server and the network access server to AAA server communication.

To highlight the main use cases, we briefly describe the integrated and the split scenarios in Section 3.1 and Section 3.2, respectively.

3.1. Integrated Scenario

In the integrated scenario MIPv6 bootstrapping is provided as part of the network access authentication procedure. Figure 1 shows the participating entity.

Figure 1: Mobile IPv6 Service Access in the Integrated Scenario

In the typical Mobile IPv6 access scenario as shown above, the MN attaches in a ASP’s network. During this network attachment
procedure, the NAS/RADIUS client interacts with the MN. As shown in Figure 1, the authentication and authorization happens via a RADIUS infrastructure.

At the time of authorizing the user for IPv6 access, the RADIUS server in the MSA detects that the user is authorized for Mobile IPv6 access. Based on the MSA’s policy, the RADIUS server may allocate several parameters to the MN for use during the subsequent Mobile IPv6 protocol interaction with the HA.

Depending on the details of the solution interaction with the DHCPv6 server may be required, as described in [2].

3.2. Split Scenario

In the split scenario, Mobile IPv6 bootstrapping is not provided as part of the network access authentication procedure. The Mobile IPv6 bootstrapping procedure is executed with the Mobility Service Provider when desired by the MN. Two variations can be considered:

1. the MSA and the MSP are the same entity.

2. the MSA and the MSP are different entities.

Since scenario (1) is the more generic scenario we show it in Figure 2.
As shown in Figure 2 the interaction between the RADIUS client and the RADIUS server is triggered by the protocol interaction between the MN and the HA/RADIUS client using IKEv2 (see [3] and [8]). The HA / RADIUS Client interacts with the RADIUS infrastructure to perform authentication, authorization, accounting and parameter bootstrapping. The exchange is triggered by the home agent and an interaction with the RADIUS infrastructure is initiated. When the protocol exchange is completed then the HA needs to possess the Mobile IPv6 specific parameters (see [6]).

Additionally, the MN might instruct the RADIUS server (via the home agent) to perform a dynamic DNS update.
4. RADIUS Attribute Overview

4.1. MIP6-HA Attribute

The RADIUS server may decide to assign a HA to the MN that is in close proximity to the point of attachment (e.g., determined by the NAS-ID). There may be other reasons for dynamically assigning HAs to the MN, for example to share the traffic load. The attribute also contains the prefix length so that the MN can easily infer the Home Link prefix from the HA address.

4.2. MIP6-HA-FQDN Attribute

The RADIUS server may assign an FQDN of the HOA to the MN. The mobile node can perform DNS query with the FQDN to derive the HA address.

4.3. MIP6-HL-Prefix Attribute

For the same reason as the HA assignment, the RADIUS server may assign a Home Link that is in close proximity to the point of attachment (NAS-ID). The MN can perform [5] specific procedures to discover other information for Mobile IPv6 registration.

4.4. MIP6-HOA Attribute

The RADIUS server may assign a HOA to the MN. This allows the network operator to support mobile devices that are not configured with static addresses. The attribute also contains the prefix length so that the MN can easily infer the Home Link prefix from the HA address.

4.5. MIP6-DNS-MO Attribute

By using this payload the RADIUS client instructs the RADIUS server to perform a dynamic DNS update. When this payload is included in the reverse direction, i.e., from the RADIUS server to the RADIUS client, it informs about the status of the dynamic DNS update. When the payload is sent from the RADIUS client to the RADIUS server then the response MUST include the MIP6-DNS-MO attribute.
5. RADIUS attributes

This section defines format and syntax for the attribute that carries the Mobile IPv6 parameters that are described in the previous section.

The attributes MAY be present in Access-Accept, Accounting-Request.

5.1. MIP6-HA Attribute

This attribute is sent by the RADIUS server to the NAS in an Access-Accept packet. The attribute carries the assigned HA address.

This attribute MAY be sent by the NAS to the RADIUS server in an Access-Request packet as a hint to suggest a dynamic HA that may be assigned to the MN. The RADIUS server MAY use this value or may ignore this suggestion.

If available at the NAS, at least MIP6-HA attribute and/or MIP6-HA-FQDN SHOULD appear in accounting packets to indicate the identity of the serving HA for this session.

```
+------------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Type     |   Length      |    Reserved   | Prefix-Length |
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1               |
|                                                               |
|              IPv6 address of assigned HA                      |
|                                                               |
+------------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Type:

ASSIGNED-HA-ADDR-TYPE to be defined by IANA.

Length:

= 20 octets

Reserved:

Reserved for future use. The bits MUST be set to zero by the sender, and MUST be ignored by the receiver.
Prefix-Length:

This field indicates the prefix length of the Home Link.

IPv6 address of assigned HA:

128-bit IPv6 address of the assigned HA.

5.2. MIP6-HA-FQDN Attribute

This attribute is sent by the RADIUS server to the NAS in an Access-Accept packet. The attribute carries the FQDN of the assigned HA.

This attribute MAY be sent by the NAS to the RADIUS server in an Access-Request packet as a hint to suggest a dynamic HA that may be assigned to the MN. The RADIUS server MAY use this value or may ignore this suggestion.

If available at the NAS, at least MIP6-HA-FQDN attribute and/or MIP6-HA SHOULD appear in accounting packets to indicate the identity of the serving HA for this session.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>FQDN of the assigned HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type:

ASSIGNED-HA-FQDN-TYPE to be defined by IANA.

Length:

Variable length.

FQDN of the assigned HA:

The data field MUST contain a FQDN as described in [9].

5.3. MIP6-HL-Prefix Attribute

This attribute is sent by the RADIUS-MIP server to the NAS in an Access-Accept packet. The attribute carries the assigned Home Link prefix.
This attribute MAY be sent by the NAS to the RADIUS server in an Access-Request packet along with the MIP6-HA and/or MIP6-HA-FQDN attribute as a hint to suggest a Home Link prefix that may be assigned to the MN. The RADIUS server MUST use this value if it accepts the NAS’s HA suggestion.

```
0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Type     |   Length      | Reserved      | Prefix-Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                       Home Link Prefix                        |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Type:

ASSIGNED-HL-TYPE to be defined by IANA.

Length:

>= 4 octets + the minimum length of a prefix.

Reserved:

Reserved for future use. The bits MUST be set to zero by the sender, and MUST be ignored by the receiver.

Prefix-Length:

This field indicates the prefix length of the Home Link.

Home Link Prefix:

Home Link prefix (upper order bits) of the assigned Home Link where the MN should send binding update.

5.4. MIP6-HOA Attribute

This attribute is sent by the RADIUS server to the NAS in an Access-Accept packet. The attribute carries the assigned Home IPv6 Address for the MN.

This attribute MAY be sent by the NAS to the RADIUS server in an Access-Request packet along with the MIP6-HA and/or MIP6-HA-FQDN attribute as a hint to suggest a Home Address that may be assigned to
the MN. The RADIUS server MUST use this value if it accepts the NAS’s HA suggestion.

If available at the NAS, this attribute SHOULD appear in the accounting packets so that the IPv6 address used for this session is known in the accounting stream.

```
0                   1                   2                   3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Type     |   Length      |   Reserved    | Prefix-Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Assigned IPv6 HOA                                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Type:

ASSIGNED-HOA-TYPE to be defined by IANA.

Length:

= 20 octets.

Reserved:

Reserved for future use. The bits MUST be set to zero by the sender, and MUST be ignored by the receiver.

Prefix-Length:

This field indicates the prefix length of the Home Link.

Assigned IPv6 HOA:

IPv6 HOA that is assigned to the MN.

5.5. MIP6-DNS-MO Attribute

The MIP6-DNS-MO attribute is used for triggering a DNS update by the RADIUS server and to return the result to the RADIUS client. The request MUST carry the MN’s FQDN but the attribute carried in response to the request MAY not carry a FQDN value.
<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Reserved-1</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Reserved-2</td>
<td>FQDN</td>
<td>...</td>
</tr>
</tbody>
</table>

Type:

DNS-UPDATE-TYPE to be defined by IANA.

Length:

Variable length.

Reserved-1:

Reserved for future use. The bits MUST be set to zero by the sender, and MUST be ignored by the receiver.

Status:

This 8 bit unsigned integer field indicates the result of the dynamic DNS update procedure as defined in [3]. This field MUST be set to 0 and ignored by the RADIUS server when the MIPv6-DNS-MO is sent from the RADIUS client to the RADIUS server. When the MIPv6-DNS-MO is provided in the response, values of the Status field less than 128 indicate that the dynamic DNS update was performed successfully by the RADIUS server. Values greater than or equal to 128 indicate that the dynamic DNS update was not successfully completed. The following values for the Status field are currently defined:

- 0 DNS update performed
- 128 Reason unspecified
- 129 Administratively prohibited
- 130 DNS Update Failed

R flag:

If this bit for the R flag is set then the RADIUS client requests the RADIUS server to remove the DNS entry identified by the FQDN included in this attribute. If not set, the RADIUS client is requesting the RADIUS server to create or update a
DNS entry with the FQDN specified in this attribute and the Home Address carried in another attribute specified in this document.

Reserved-2:

Reserved for future use. The bits MUST be set to zero by the sender, and MUST be ignored by the receiver.

FQDN of the MN:

In an Access-Request packet the data field MUST contain a FQDN. In an Access-Accept packet the data field MAY contain an FQDN. FQDN is described in [9].
6. Message Flows

6.1. Integrated Scenario (MSA=ASA)

This section is based on [2] and uses the previously defined RADIUS attributes.

6.1.1. HA allocation in the MSP

RADIUS is used to authenticate the MN, to authorize it for the mobility service and to send information about the assigned HA to the NAS.

HA allocation in the MSP

In step (1), the MN executes the normal network access authentication procedure (e.g., IEEE 802.11i/802.1x, PANA) with the NAS. The NAS acts as an authenticator in "pass-through" mode, i.e., the endpoint of the authentication dialogue is the MN's home RADIUS server. This...
is the typical scenario in case the messages involved in the authentication protocol are transported in EAP.

As per [10], the NAS encapsulates/decapsulates EAP packets into/from RADIUS packets until an Access-Response (either an Access-Accept or an Access/Reject packet is received by the NAS). This concludes the network access authentication phase.

Depending on the RADIUS server configuration, the MIP6-HA attribute or the MIP6-HA-FQDN attribute may be appended to the Access-Accept packet. In the latter case the MN needs to perform a DNS query in order to discover the HA address.

The MIP6-HA or MIP6-HA-FQDN attribute is appended to the Access-Accept in case the home RADIUS server knows or has allocated a HA to the Access-Request (this is assumed in this scenario).

In step (2) the MN sends a DHCPv6 Information Request message to all_DHCP_Relay_Agents_and_Servers. In the OPTION_ORO, Option Code for the Home Network Identifier Option shall be included in that message. The Home Network Identifier Option should have id-type of 1, the message is a request to discover home network information that pertains to the given realm, i.e., the user’s home domain (identified by the NAI of the MN). The OPTION_CLIENTID is set by the MN to identify itself to the DHCP server.

In step (3) the DHCP relay agent forwards this request to the DHCP server. The OPTION_MIP6-RELAY-Option is included in this forwarded message. This option carries the RADIUS MIP6-HA Attribute from the Access-Accept packet.

In step (4), the DHCP server identifies the client (by DUID) and finds out that it requests HA information in the MSP (by the Home Network Identifier Option = 1). The DHCP server extracts the HA address from OPTION_MIP6-RELAY-Option and places it into Home Network Information Option in the Reply message.

In step (5), the Relay Agent forwards the Reply Message to the MN. On reception of this message, the HA address or the FQDN of the home agent is available at the MN.

6.1.2. HA allocation in the ASP (visited network)

This scenario is similar to the one described in Section 6.1.1. The difference is in step (2), where the type-id field in the Home Network Identifier Option is set to zero, indicating that a HA is requested in the ASP instead of in the MSP. Thus, the information received by the home RADIUS server, via the DHCP relay, in the
OPTION_MIP6-RELAY-Option (Information Request) is ignored. The DHCP server allocates a HA from its list of possible HAs and returns it in the Reply message (Home Network Information Option).

6.2. Split Scenario (MSA!=ASA)

6.2.1. Mobile Service Provider and Mobile Service Authorizer are the same entity.

The assumption in this scenario is that the MN has the domain name of the MSP preconfigured.

In this scenario there is no relationship between the network access authentication procedure and the MIPv6 bootstrapping procedure.

In order to learn the IP address of the HA, the MN either performs a DNS lookup of the HA Name or a DNS lookup by service name. In the first case, the MN is preconfigured with the FQDN of the HA, and thus sends a DNS request, where QNAME = name of HA, QTYPE=’AAAA’ (request for IPv6 address of HA). A DNS reply message is returned by the DNS server with the HA address.

The MN then runs IKEv2 [11] with the HA in order to set up IPsec SAs (MN-HA). As part of this, the MN authenticates itself to the RADIUS server in the MSA domain, and obtains authorization for mobility service (including the Home Address).

The MN shares credentials with the RADIUS server in the MSA domain. The RADIUS communication between the HA and the this RADIUS server is also secured by RADIUS-specific mechanisms (e.g., IPsec). Using EAP within IKEv2 [11], the MN is authenticated and authorized for the IPv6 mobility service and is also assigned a HOA.

The setup of SAs and mutual authentication between MN and AAAH using RADIUS (and EAP) is similar to the one described for Diameter protocol in [12]. The described mechanism ensures that common keying material will be available at the MN and HA after successful completion.
Internet-Draft RADIUS Mobile IPv6 Support October 2006

+----+ IKEv2 +----+ RADIUS (EAP) +--------------------+
| MN |<----------->| HA |<-------------------->|Remote RADIUS Server|
+----+ +----+ +--------------------+

MN HA Remote RADIUS server
-- -- --------------------

IKE_SA_INIT

<RADIUS Access-Request(EAP-Response)
<RADIUS Access-Challenge(EAP-Request)

HDR, SK {IDr, [CERT,] AUTH, EAP }

<RADIUS Access-Request(EAP-Response)
<RADIUS Access-Challenge(EAP-Request)

HDR, SK (EAP-Request)

HDR, SK (EAP-Response)

... ...

RADIUS Access-Accept(EAP-Success)

HDR, SK{EAP-Success}

HDR, SK{AUTH}

HDR, SK {AUTH, SAr2, TSi, TSr }

Split Scenario Exchange
MN and HA start with an IKE_SA_INIT to setup the IKE SA (messages defined in the IKEv2 specification [11], negotiating crypto algorithms and running DH key exchange). IKEv2 supports integration with EAP. The MN indicates its desire to use EAP by not including the AUTH payload in the third message. However, it indicates its identity (NAI) by using the IDi field. If the HA supports EAP for authentication, as per [10] it forwards the identity to the Remote RADIUS server by sending a RADIUS Access-Request packet containing the identity in the EAP-Payload AVP and in the RADIUS User-Name attribute. Based on this identity, the Remote RADIUS server chooses authentication method and sends the first EAP-Request in the RADIUS Access-Challenge packet. During the EAP authentication phase, the HA relays EAP packets between the MN and the Remote RADIUS server. If the authentication succeeds and if the MN is authorized to use Mobile IPv6 service, the Remote RADIUS server sends a RADIUS Access-Accept packet containing the EAP-Success and the AAA-Key derived from the EAP authentication method. EAP authentication methods that do not derive keys are not recommended. This key is used by both MN and HA to generate the AUTH payload. In subsequent messages, MN and HA setup IPsec SAs for Mobile IPv6.

6.2.2. Mobile Service Provider and Mobile Service Authorizer are different entities.

The HA address discovery is performed as described in Section 6.2.1.

The scenario is similar to previously described scenarios with the difference of utilizing AAA roaming agreements between the MSP and the MSA.
7. Goals for the HA-AAA Interface

Here, we follow the classification and labels listed in the MIPv6-AAA-Goals document [13].

7.1. General Goals

G1.1-G1.4 Security

These are standard requirements for a AAA protocol - mutual authentication, integrity, replay protection, confidentiality. IPsec can be used to achieve the goals. Goal G1.5 regarding inactive peer detection needs further investigations since heartbeat messages do not exist (like in the Diameter case, Watch-Dog-Request/Answer).

7.2. Service Authorization

G2.1. The AAA-HA interface should allow the use of Network Access Identifier (NAI) to identify the MN. The User-Name attribute can be used for the purpose to carry the NAI.

G2.2 The HA should be able to query the AAAH server to verify Mobile IPv6 service authorization for the MN. Any node implementing RADIUS functionality[4] can possibly initiate a request message. In combination with the ability of the RADIUS protocol to carry EAP messages [10], our solution will enable an HA to query a RADIUS server and verify MIPv6 authorization for the MN.

G2.3 The AAAH server should be able to enforce explicit operational limitations and authorization restrictions on the HA (e.g., packet filters, QoS parameters). Work in progress in the area, including NAS-Filter-Rule, RADIUS quality of service support, prepaid extensions etc. is performed. The relevant attributes may be reused for providing required functionality over the AAAH-HA interface.

G2.4 - G2.6. Issues addressing the maintenance of a Mobile IPv6 session by the AAAH server, e.g., authorization lifetime, extension of the authorization lifetime and explicit session termination by the AAAH server side.

The attribute Session-Timeout may be sent in Access-Challenge or Access-Accept packet by the RADIUS server, thus limiting the authorization session duration. In order to reauthenticate/reauthorize the user, the Termination-Action attribute can be included, with value 1, meaning the NAS should send a new RADIUS-Request packet. Additional AVPs for dealing with pre-paid sessions (e.g., volume, resource used--VolumeQuota AVP, ResourceQuota AVP) are specified in RADIUS prepaid extension. Exchanging of application
specific authorization request/answer messages provides extension of
the authorization session (e.g., Authorize Only Access-Request sent
by the HA (NAS) to the RADIUS server). Initiation of the re-
authorization by both sides could be supported. Both sides could
initiate session termination - the RADIUS server by sending
Disconnect message [14].

7.3. Accounting

G3.1 The AAA-HA interface must support the transfer of accounting
records needed for service control and charging. These include (but
may not be limited to): time of binding cache entry creation and
deletion, octets sent and received by the MN in bi-directional
tunneling, etc.

The requirements for accounting over the AAAH-HA interface does not
require enhancements to the existing accounting functionality.

7.4. MN Authentication

G4.1 The AAA-HA interface MUST support pass-through EAP
authentication with the HA working as EAP authenticator operating in
pass-through mode and the AAAH server working as back-end
authentication server.

These issues require the functionality of AAAH server working as a
back-end authentication server and HA working as NAS and EAP
authenticator in pass-through mode for providing a MN authentication.
This document suggests this mode of operation in the context of the
relevant scenarios.

7.5. Provisioning of Configuration Parameters

G5.1 The HA should be able to communicate to the AAAH server the HOA
allocated to the MN (e.g. for allowing the AAAH server to perform DNS
update on behalf of the MN).

This document describes needed AVPs for this purpose, see section
"DNS Update Mobility Option Attribute"
8. Table of Attributes

The following tables provide a guide to which attributes may be found in RADIUS packet and in what number.

The following defines the meaning of the notation used in the following tables:

- 0 This attribute MUST NOT be present.
- 0-1 Zero or one instance of this attribute MAY be present.

Request Accept Reject Challenge Type Attribute

<table>
<thead>
<tr>
<th>Request</th>
<th>Accept</th>
<th>Reject</th>
<th>Challenge</th>
<th>Type</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1[a]</td>
<td>0-1[a]</td>
<td>0</td>
<td>0</td>
<td>MIP6-HA-TYPE</td>
<td>MIP6-HA Attribute</td>
</tr>
<tr>
<td>0-1[a]</td>
<td>0-1[a]</td>
<td>0</td>
<td>0</td>
<td>MIP6-HA-FQDN-TYPE</td>
<td>MIP6-HA-FQDN Attribute</td>
</tr>
<tr>
<td>0-1[b]</td>
<td>0-1</td>
<td>0</td>
<td>0</td>
<td>MIP6-HL-PREFIX-TYPE</td>
<td>MIP6-HL-Prefix Attribute</td>
</tr>
<tr>
<td>0-1[b]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MIP6-HOA-TYPE</td>
<td>MIP6-HOA Attribute</td>
</tr>
<tr>
<td>0-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MIP6-DNS-MO-TYPE</td>
<td>MIP6-DNS-MO Attribute</td>
</tr>
</tbody>
</table>

Notes:

[a] Either MIP6-HA or MIP6-HA-FQDN MAY appear in a RADIUS packet.

[b] If MIP6-HA or MIP6-HA-FQDN are present in the Access-Request then these attributes MUST also be present in the Access-Request. If the RADIUS server accepts the NAS suggestion for the HA, then the RADIUS server MUST also include the values received for these attributes in the Access-Accept.

As used in accounting packets:

<table>
<thead>
<tr>
<th>Request</th>
<th>Interim</th>
<th>Stop</th>
<th>Type</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>0-1</td>
<td>0-1</td>
<td>MIP6-HA-TYPE</td>
<td>MIP6-HA Attribute</td>
</tr>
<tr>
<td>0-1</td>
<td>0-1</td>
<td>0-1</td>
<td>MIP6-HA-FQDN-TYPE</td>
<td>MIP6-HA-FQDN Attribute</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MIP6-HL-PREFIX-TYPE</td>
<td>MIP6-HL-Prefix Attribute</td>
</tr>
<tr>
<td>0-1</td>
<td>0-1</td>
<td>0-1</td>
<td>MIP6-HOA-TYPE</td>
<td>MIP6-HOA Attribute</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MIP6-DNS-MO-TYPE</td>
<td>MIP6-DNS-MO Attribute</td>
</tr>
</tbody>
</table>
9. Diameter Considerations

When used in Diameter, the attributes defined in this specification can be used as Diameter AVPs from the Code space 1-255 (RADIUS attribute compatibility space). No additional Diameter Code values are therefore allocated. The data types and flag rules for the attributes are as follows:

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Value Type</th>
<th>AVP Flag rules</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SHLD</td>
</tr>
<tr>
<td>MIP6-HA</td>
<td>Address</td>
<td>M</td>
</tr>
<tr>
<td>MIP6-HA-FQDN</td>
<td>UTF8String</td>
<td>M</td>
</tr>
<tr>
<td>MIP6-HL-Prefix</td>
<td>OctetString</td>
<td>M</td>
</tr>
<tr>
<td>MIP6-HOA</td>
<td>Address</td>
<td>M</td>
</tr>
<tr>
<td>MIP6-DNS-MO</td>
<td>OctetString</td>
<td>M</td>
</tr>
</tbody>
</table>

Other than MIP6-HA and HOA-IPv6, the attributes in this specification have no special translation requirements for Diameter to RADIUS or RADIUS to Diameter gateways; they are copied as is, except for changes relating to headers, alignment, and padding. See also [15] Section 4.1 and [16] Section 9. MIP6-HA and HOA-IPv6 must be translated between their RADIUS representation of String to a Diameter Address format which requires that the AddressType field be set to 2 for IP6 (IP version 6).

What this specification says about the applicability of the attributes for RADIUS Access-Request packets applies in Diameter to AA-Request [16] or Diameter-EAP-Request [17]. What is said about Access-Challenge applies in Diameter to AA-Answer [16] or Diameter-EAP-Answer [17] with Result-Code AVP set to DIAMETER_MULTI_ROUND_AUTH.

What is said about Access-Accept applies in Diameter to AA-Answer or Diameter-EAP-Answer messages that indicate success. Similarly, what is said about RADIUS Access-Reject packets applies in Diameter to AA-Answer or Diameter-EAP-Answer messages that indicate failure.

What is said about Accounting-Request applies to Diameter Accounting-Request [16] as well.
10. Security Considerations

Assignment of these values to a user should be based on successful authentication of the user at the NAS and/or at the HA. The RADIUS server should only assign these values to a user who is authorized for Mobile IPv6 service (this check could be performed with the user’s subscription profile in the Home Network).

The NAS and the HA to the RADIUS server transactions must be adequately secured. Otherwise there is a possibility that the user may receive fraudulent values from a rogue RADIUS server potentially hijacking the user’s Mobile IPv6 session.

These new attributes do not introduce additional security considerations besides the ones identified in [4].
11. IANA Considerations

The following RADIUS attribute Type values MUST be assigned by IANA.

MIP6-HA-TYPE
MIP6-HA-FQDN-TYPE
MIP6-HL-PREFIX-TYPE
MIP6-HOA-TYPE
MIP6-DNS-MO-TYPE
12. Acknowledgements

We would like to thank the following individuals for their review and constructive comments during the development of this document:

Florian Kohlmayer, Mark Watson, Jayshree Bharatia, Dimiter Milushev, Andreas Pashalidis, Rafa Marin Lopez and Pasi Eronen.
13. References

13.1. Normative References

13.2. Informative References

Authors’ Addresses

Kuntal Chowdhury
Starent Networks
30 International Place
Tewksbury, MA 01876
US

Phone: +1 214-550-1416
Email: kchowdhury@starentnetworks.com

Avi Lior
Bridgewater Systems
303 Terry Fox Drive, Suite 100
Ottawa, Ontario
Canada K2K 3J1

Phone: +1 613-591-6655
Email: avi@bridgewatersystems.com

Hannes Tschofenig
Siemens
Otto-Hahn-Ring 6
Munich, Bavaria 81739
Germany

Email: Hannes.Tschofenig@siemens.com