Abstract

The LDP specification [RFC3036] for the Wildcard FEC element has several deficiencies. This document corrects those deficiencies. In addition, it specifies the Typed Wildcard FEC for the Prefix FEC Element Type defined in RFC3036.
1. Introduction

LDP [RFC3036] distributes labels for Forwarding Equivalence Classes (FECs). LDP uses FEC TLVs in LDP messages to specify FECs. An LDP FEC TLV includes 1 or more FEC Elements. A FEC element includes a FEC type and an optional type-dependent value.

RFC3036 specifies two FEC types (Wildcard and Prefix), and other documents specify additional FEC types; e.g., see [PWE3] [MLDP].

As specified in RFC3036 the Wildcard FEC Element refers to all FECs relative to an optional constraint. The only constraint RFC3036 specifies is one that limits the scope of the Wildcard FEC Element to "all FECs bound to a given label".

The RFC3036 specification of the Wildcard FEC Element has the following deficiencies which limit its utility:

1. The Wildcard FEC Element is untyped. There are situations where it would be useful to be able to refer to all FECs of a given type.

2. Use of the Wildcard FEC Element is limited to Label Withdraw and Label Release messages only. There are situations where it would be useful in Label Request messages.
This document addresses these deficiencies by defining a Typed Wildcard FEC Element and procedures for its use.

2. Specification Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. The Typed Wildcard FEC Element

The Typed Wildcard FEC Element refers to all FECs of a given type relative to an optional constraint. The constraint, if present, is determined from the context in which the Typed Wildcard FEC Element appears.

The format of the Typed Wildcard FEC Element is:

```
0                   1                   2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Typed (IANA) | FEC Element | Len FEC Type |               |
| Wildcard     | Type        | Info        |               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional FEC Type-specific Information               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

where:

Typed Wildcard: One octet FEC Element type to be assigned by IANA.

FEC Element Type: One octet FEC Element Type that specifies the FEC Element Type to be wildcarded.

Len FEC Type Info: One octet that specifies the length of the FEC Type Specific information field. MUST be 0 if there is no Additional FEC Type-specific Information.

Additional FEC Type-specific Information: Additional information specific to the FEC Element Type required to fully specify the Typed Wildcard.

Specification of the length and format of Additional FEC Type
Specific Information for particular FEC Element Types is outside of the scope of this document.

4. Procedures for the Typed Wildcard FEC Element

It is the responsibility of the designer of the FEC Element Type to specify whether typed wildcarding is required for the FEC Element Type. When typed wildcarding is supported for a FEC Element Type it is the responsibility of the designer to specify the length and format of any Additional FEC Type Specific Information.

When a FEC TLV contains a Typed Wildcard FEC Element the Typed Wildcard FEC Element MUST be the only FEC Element in the TLV.

An LDP implementation that supports the Typed Wildcard FEC Element MUST support its use in Label Request, Label Withdraw and Label Release messages.

Receipt of a Label Request message with a FEC TLV containing a Typed Wildcard FEC Element is interpreted as a request to send a Label Mapping for all FECs of the type specified by the FEC Element type in the Typed Wildcard FEC Element encoding.

An LDP implementation that supports the Typed Wildcard FEC Element MUST support the following constraints whenever a Typed Wildcard FEC appears in a Label Withdraw or Label Release message:

1. If the message carries an optional Label TLV the Typed Wildcard FEC Element refers to all FECs of the specified FEC type bound to the specified label.

2. If the message has no Label TLV the Typed Wildcard FEC Element refers to all FECs of the specified FEC type.

Backwards compatibility with a router not supporting the Typed Wildcard FEC element is ensured by the FEC procedures defined in RFC3036. Quoting from RFC3036:

"If it" [an LSR] "encounters a FEC Element type it cannot decode, it SHOULD stop decoding the FEC TLV, abort processing the message containing the TLV, and send an "Unknown FEC" Notification message to its LDP peer signaling an error."

A router receiving a FEC TLV containing a Typed Wildcard FEC element for a FEC Element Type that it either doesn’t support or for a FEC Element Type that doesn’t support the use of wildcarding MUST stop decoding the FEC TLV, abort processing the message containing the
TLV, and send an "Unknown FEC" Notification message to its LDP peer signaling an error.

5. Typed Wildcard FEC Element for RFC3036 Prefix FEC Element

RFC3036 defines the Prefix FEC Element but it does not specify a Typed Wildcard for it. This section specifies the Typed Wildcard FEC Element for RFC3036 Prefix Elements.

The format of the Prefix FEC Typed Wildcard FEC ("Prefix FEC Wildcard" for short) is:

```
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Typed WCard   | Prefix (2)    |      2        |   Address...  |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | ...Family     |
    | ++--------------|
```

Address Family: Two octet quantity containing a value from ADDRESS FAMILY NUMBERS in [IANA-AF].

The procedures of Section 4 apply to the Prefix FEC Wildcard.

6. IANA Considerations

The Typed Wildcard FEC Element requires a code point from the LDP FEC Type Name Space. IANA manages the FEC TYPE name space as recommended by the following from [RFC3036]:

"FEC Type Name Space

The range for FEC types is 0 - 255.

Following the policies outlined in [RFC3036], FEC types in the range 0 - 127 are allocated through an IETF Consensus action, types in the range 128 - 191 are allocated as First Come First Served, and types in the range 192 - 255 are reserved for Private Use."

The authors recommend that the code point 0x04 from the IETF Consensus range be assigned to the Typed Wildcard FEC Element.
7. Security Considerations

No security considerations beyond those that apply to the base LDP specification and described in [RFC3036] apply to use of the Typed Wildcard FEC Element defined in this document.

8. Acknowledgements

The authors wish to thank Yakov Rehkter for suggesting that the deficiencies of the Wildcard FEC be addressed.

9. References

Normative References

[IANA-AF] http://www.iana.org/assignments/address-family-numbers

Informative References

10. Author Information

Bob Thomas
Cisco Systems, Inc.
1414 Massachusetts Ave.
Boxborough MA 01719
Email: rhthomas@cisco.com

Ina Minei
Juniper Networks
1194 North Mathilda Ave.
Sunnyvale, CA 94089
Email: ina@juniper.net

11. Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
12. Full Copyright Statement

Copyright (C) The IETF Trust (2007).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.