A YANG Data Model for MPLS Static LSPs

draft-ietf-mpls-static-yang-00

Abstract

This document contains the specification for the MPLS Static Label Switched Paths (LSPs) YANG model. The model allows for the provisioning of static LSP(s) on LER(s) and LSR(s) devices along a LSP path without the dependency on any signaling protocol. The MPLS Static LSP model augments the MPLS base YANG model with specific data to configure and manage MPLS Static LSP(s).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 13, 2016.
1. Introduction

This document describes a YANG data model for configuring and managing the Static LSPs feature. The model allows the configuration of LER and LSR devices with the necessary MPLS cross-connects or bindings to realize an end-to-end LSP service.

A static LSP is established by manually specifying incoming and outgoing MPLS label(s) and necessary forwarding information on each of the traversed Label Edge Router (LER) and Label Switched Router (LSR) devices (ingress, transit, or egress nodes) of the forwarding path.

For example, on an ingress LER device, the model is used to associate a specific Forwarding Equivalence Class (FEC) of packets—e.g. matching a specific IP prefix in a Virtual Routing or Forwarding (VRF) instance—to an MPLS outgoing label imposition, next-hop(s) and respective outgoing interface(s) to forward the packet. On an LSR device, the model is used to create a binding that swaps the incoming label with an outgoing label and forwards the packet on one or
multiple egress path(s). On an egress LER, it is used to create a
binding that decapsulates the incoming MPLS label and performs
forwarding based on the inner MPLS label (if present) or IP
forwarding in the packet.

The MPLS Static LSP YANG model is defined in module "ietf-mpls-
static" and augments the MPLS Base YANG model defined in module
"ietf-mpls" in [I-D.saad-mpls-static-yang]. The approach described
in [I-D.openconfig-netmod-opstate] is adopted to represent data
pertaining to configuration intended, applied state and derived state
data elements. Each container in the model holds a "config" and
"state" sub-container. The "config" sub-container is used to
represent the intended configurable parameters, and the state sub-
container is used to represent both the applied configurable
parameters and any derived state, such as counters or statistical
information.

1.1. Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
[RFC2119].

The following terms are defined in [RFC6020]:

- augment,
- configuration data,
- data model,
- data node,
- feature,
- mandatory node,
- module,
- schema tree,
- state data,
- RPC operation.
1.2. MPLS Static LSPs Model Tree Diagram

The MPLS Static LSP tree diagram is shown in Figure 1.

```yang
defines: ietf-mpls-static

augment /rt:routing/mpls:mpls:
  +--rw static-lsps
    +--rw static-lsp* [name]
      +--rw name      string
      +--rw config
        +--rw in-segment
          | +--rw (type)?
          |   | +--:(ip-prefix)
          |   |   | +--rw ip-prefix?      inet:ip-prefix
          |   | +--:(mpls-label)
          |   |   | +--rw incoming-label? mpls:mpls-label
          | +--rw operation?            enumeration
          +--rw (out-segment)?
            | +--:(simple-path)
            |   | +--rw next-hop?           inet:ip-address
            |   | +--rw outgoing-label?     mpls:mpls-label
            |   | +--rw outgoing-interface? if:interface-ref
            +--:(path-list)
              +--rw paths* [path-index]
              | +--rw path-index          uint16
              | +--rw backup-path-index?  uint16
              | +--rw next-hop?           inet:ip-address
              | +--rw outgoing-labels*    mpls:mpls-label
              | +--rw outgoing-interface? if:interface-ref
              | +--rw loadshare?          uint16
              | +--rw role?               enumeration
        +--ro state
          +--ro in-segment
            | +--ro (type)?
            |   | +--:(ip-prefix)
            |   |   | +--ro ip-prefix?      inet:ip-prefix
            |   | +--:(mpls-label)
            |   |   | +--ro incoming-label? mpls:mpls-label
            | +--ro operation?            enumeration
          +--ro (out-segment)?
            | +--:(simple-path)
            |   | +--ro next-hop?           inet:ip-address
            |   | +--ro outgoing-label?     mpls:mpls-label
            |   | +--ro outgoing-interface? if:interface-ref
            +--:(path-list)
              +--ro paths* [path-index]
              | +--ro path-index          uint16
              | +--ro backup-path-index?  uint16
```
1.3. MPLS Static LSP YANG Module

<CODE BEGINS>file "ietf-mpls-static@2016-05-11.yang"

module ietf-mpls-static {

 namespace "urn:ietf:params:xml:ns:yang:ietf-mpls-static";

 prefix "mpls-static";

 import ietf-mpls {
 prefix mpls;
 }

 import ietf-routing {
 prefix "rt";
 }

 import ietf-inet-types {
 prefix inet;
 }

 import ietf-interfaces {
 prefix "if";
 }

 organization "IETF MPLS Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/mpls/>
 WG List: <mailto:mpls@ietf.org>
 WG Chair: Loa Andersson
 <mailto:loa@pi.nu>
 WG Chair: Ross Callon
 <mailto:rcallon@juniper.net>
 WG Chair: George Swallow

Figure 1: MPLS Static LSP tree diagram
description
"This YANG module augments the 'ietf-routing' module with basic configuration and operational state data for MPLS static";

revision "2016-05-11" {
 description
 "Latest revision:
 - Addressed MPLS-RT review comments";
 reference "RFC 3031: A YANG Data Model for Static MPLS LSPs";
}

grouping path-basic-config {
 description "common definitions for statics";

 leaf next-hop {
 type inet:ip-address;
 }
}
description "next hop IP address for the LSP";
}

leaf outgoing-label {
 type mpls:mpls-label;
 description
 "label value to push at the current hop for the
 LSP";
}

leaf outgoing-interface {
 type if:interface-ref;
 description
 "The outgoing interface";
}

grouping path-properties_config {
 description
 "MPLS path properties";
 leaf path-index {
 type uint16;
 description
 "Path identifier";
 }

 leaf backup-path-index {
 type uint32;
 description
 "Backup path identifier";
 }

 leaf next-hop {
 type inet:ip-address;
 description
 "The address of the next-hop";
 }

 leaf-list outgoing-labels {
 type mpls:mpls-label;
 ordered-by user;
 description
 "The outgoing MPLS labels to impose";
 }

 leaf outgoing-interface {
 type if:interface-ref;
description
"The outgoing interface";
}

leaf loadshare {
 type uint16;
 description
 "This value is used to compute a loadshare to perform un-equal
 load balancing when multiple outgoing path(s) are specified. A
 share is computed as a ratio of this number to the total under
 all configured path(s).";
}

leaf role {
 type enumeration {
 enum PRIMARY {
 description
 "Path as primary traffic carrying";
 }
 enum BACKUP {
 description
 "Path acts as backup";
 }
 enum PRIMARY_AND_BACKUP {
 description
 "Path acts as primary and backup simultaneously";
 }
 }
 description
 "The MPLS path role";
}

grouping static-lsp_config {
 description "common definitions for static LSPs";
}

container in-segment {
 description
 "MPLS incoming segment";
 choice type {
 description
 "Basic FEC choice";
 case ip-prefix {
 leaf ip-prefix {
 type inet:ip-prefix;
 description "An IP prefix";
 }
 }
 }
}
case mpls-label {
 leaf incoming-label {
 type mpls:mpls-label;
 description "label value on the incoming packet";
 }
}

leaf operation {
 type enumeration {
 enum impose-and-forward {
 description
 "Operation impose outgoing label(s) and forward to next-hop";
 }
 enum pop-and-forward {
 description
 "Operation pop incoming label and forward to next-hop";
 }
 enum pop-impose-and-forward {
 description
 "Operation pop incoming label, impose one or more outgoing label(s) and forward to next-hop";
 }
 enum swap-and-forward {
 description
 "Operation swap incoming label, with outgoing label and forward to next-hop";
 }
 enum pop-and-lookup {
 description
 "Operation pop incoming label and perform a lookup";
 }
 }
 description
 "The MPLS operation to be executed on the incoming packet";
}

choice out-segment {
 description "The MPLS out-segment type choice";
 case simple-path {
 uses path-basic_config;
 }
 case path-list {
 list paths {
 key path-index;
 description
"The list of MPLS paths associated with the FEC";
uses path-properties_config;
}
}
}

grouping static-lsp {
 description "grouping for top level list of static LSPs";
 container config {
 description "Holds the intended configuration";
 uses static-lsp_config;
 }
 container state {
 config false;
 description "Holds the state and inuse configuration";
 uses static-lsp_config;
 }
}

augment "/rt:routing/mpls:mpls" {
 description "Augmentations for MPLS Static LSPs";
 container static-lsps {
 description "Statically configured LSPs, without dynamic signaling";
 list static-lsp {
 key name;
 description "list of defined static LSPs";

 leaf name {
 type string;
 description "name to identify the LSP";
 }
 uses static-lsp;
 }
 }
}

<CODE ENDS>

Figure 2: MPLS Static LSP YANG module
2. IANA Considerations

This document registers the following URIs in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made.

URI: urn:ietf:params:xml:ns:yang:ietf-mpls-static XML: N/A, the requested URI is an XML namespace.

This document registers a YANG module in the YANG Module Names registry [RFC6020].

3. Security Considerations

The YANG module defined in this memo is designed to be accessed via the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the secure transport layer and the mandatory-to-implement secure transport is SSH [RFC6242]. The NETCONF access control model [RFC6536] provides means to restrict access for particular NETCONF users to a pre-configured subset of all available NETCONF protocol operations and content.

There are a number of data nodes defined in the YANG module which are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., <edit-config>) to these data nodes without proper protection can have a negative effect on network operations.

4. References

4.1. Normative References

[I-D.saad-mpls-static-yang]

4.2. Informative References

[I-D.openconfig-netmod-opstate]

Authors' Addresses

Tarek Saad
Cisco Systems Inc
Email: tsaad@cisco.com

Kamran Raza
Cisco Systems Inc
Email: skraza@cisco.com

Rakesh Gandhi
Cisco Systems Inc
Email: rgandhi@cisco.com
Xufeng Liu
Ericsson
Email: xufeng.liu.ietf@gmail.com

Vishnu Pavan Beeram
Juniper Networks
Email: vbeeram@juniper.net

Himanshu Shah
Ciena
Email: hshah@ciena.com

Igor Bryskin
Huawei Technologies
Email: Igor.Bryskin@huawei.com

Xia Chen
Huawei Technologies
Email: jescia.chenxia@huawei.com

Raqib Jones
Brocade
Email: raqib@Brocade.com

Bin Wen
Comcast
Email: Bin_Wen@cable.comcast.com