March 2003

Definitions of Textual Conventions for Multiprotocol Label Switching (MPLS) Management

<draft-ietf-mpls-tc-mib-06.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC 2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress".

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Distribution of this document is unlimited. Please send comments to the Multiprotocol Label Switching (mpls) Working Group, mpls@uu.net.

Copyright Notice

Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

This memo defines a Management Information Base (MIB) module which contains Textual Conventions to represent commonly used Multiprotocol Label Switching (MPLS) management information. The intent is that these TEXTUAL CONVENTIONS (TCs) will be imported and used in MPLS.
related MIB modules that would otherwise define their own representations.
Table of Contents

1 Introduction .. 4
2 The Internet-Standard Management Framework 4
3 MPLS Textual Conventions MIB Definitions 4
4 Normative References .. 18
5 Informative References 19
6 Security Considerations 19
7 IANA Considerations ... 19
8 Contributors .. 19
9 Intellectual Property Notice 20
10 Authors’ Addresses .. 21
11 Full Copyright Statement 21
1. Introduction

This document defines a MIB module which contains Textual Conventions for Multi-Protocol Label Switching (MPLS) networks. These Textual Conventions should be imported by MIB modules which manage MPLS networks.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

For an introduction to the concepts of MPLS, see [RFC3031].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. MPLS Textual Conventions MIB Definitions

MPLS-TC-MIB DEFINITIONS ::= BEGIN

IMPORTS

MODULE-IDENTITY, Unsigned32, Integer32, transmission
FROM SNMPv2-SMI

TEXTUAL-CONVENTION
FROM SNMPv2-TC;

mplsTCMIB MODULE-IDENTITY
LAST-UPDATED "200303171200Z" -- 17 March 2003 12:00:00 GMT
ORGANIZATION
"IETF Multiprotocol Label Switching (MPLS) Working Group"

Expires September 2003
This MIB module defines Textual Conventions for concepts used in Multi-Protocol Label Switching (MPLS) networks.

REVISION "200303171200Z" -- 17 March 2003 12:00:00 GMT
DESCRIPTION
"Initial version published as part of RFC XXXX."
::= { mplsMIB 1 }

-- This object identifier needs to be assigned by IANA.
-- Since mpls has been assigned an ifType of 166 we recommend
-- that this OID be 166 as well.
mplsMIB OBJECT IDENTIFIER ::= { transmission XXX }

MplsAtmVcIdentifier ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d"
 STATUS current
 DESCRIPTION
 "A Label Switching Router (LSR) that creates LDP sessions on ATM interfaces uses the VCI or VPI/VCI field to hold the LDP Label. VCI values MUST NOT be in the 0-31 range. The values 0 to 31 are reserved for other uses by the ITU and ATM Forum. The value of 32 can only be used for the Control VC, although values greater than 32 could be configured for the Control VC.

 If a value from 0 to 31 is used for a VCI the management entity controlling the LDP subsystem should reject this with an inconsistentValue error. Also, if the value of 32 is used for a VC which is NOT the Control VC, this should result in an inconsistentValue error."
 REFERENCE
 "MPLS using LDP and ATM VC Switching, RFC3035."
 SYNTAX Integer32 (32..65535)

MplsBitRate ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d"
 STATUS current
 DESCRIPTION
 "If the value of this object is greater than zero, then this represents the bandwidth of this MPLS interface (or Label Switched Path) in units of ‘1,000 bits per second’.

 The value, when greater than zero, represents the bandwidth of this MPLS interface (rounded to the nearest 1,000) in units of 1,000 bits per second. If the bandwidth of the MPLS interface is between ((n * 1000) - 500) and ((n * 1000) + 499), the value of this object is n, such that n > 0."
If the value of this object is 0 (zero), this means that the traffic over this MPLS interface is considered to be best effort.

SYNTAX Unsigned32 (0|1..4294967295)

MplsBurstSize ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"The number of octets of MPLS data that the stream may send back-to-back without concern for policing. The value of zero indicates that an implementation does not support Burst Size."
SYNTAX Unsigned32 (0..4294967295)

MplsExtendedTunnelId ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A unique identifier for an MPLS Tunnel. This may represent an IPv4 address of the ingress or egress LSR for the tunnel. This value is derived from the Extended Tunnel Id in RSVP or the Ingress Router ID for CR-LDP."
REFERENCE
"RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209. Constraint-Based LSP Setup using LDP, RFC 3212."
SYNTAX Unsigned32

MplsLabel ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This value represents an MPLS label as defined in (RFC3031), (RFC3032), (RFC3034), (RFC3035) and (CCAMP-ARCH).

The label contents are specific to the label being represented, such as:

* The label carried in an MPLS shim header (for LDP this is the Generic Label) is a 20-bit number represented by 4 octets. Bits 0-19 contain a label or a reserved label value. Bits 20-31 MUST be zero.
The following is quoted directly from [RFC3032]. There are several reserved label values:

i. A value of 0 represents the ‘IPv4 Explicit NULL Label’. This label value is only legal at the bottom of the label stack. It indicates that the label stack must be popped, and the forwarding of the packet must then be based on the IPv4 header.

ii. A value of 1 represents the ‘Router Alert Label’. This label value is legal anywhere in the label stack except at the bottom. When a received packet contains this label value at the top of the label stack, it is delivered to a local software module for processing. The actual forwarding of the packet is determined by the label beneath it in the stack. However, if the packet is forwarded further, the Router Alert Label should be pushed back onto the label stack before forwarding. The use of this label is analogous to the use of the ‘Router Alert Option’ in IP packets [5] [Reference to RFC2113]. Since this label cannot occur at the bottom of the stack, it is not associated with a particular network layer protocol.

iii. A value of 2 represents the ‘IPv6 Explicit NULL Label’. This label value is only legal at the bottom of the label stack. It indicates that the label stack must be popped, and the forwarding of the packet must then be based on the IPv6 header.

iv. A value of 3 represents the ‘Implicit NULL Label’. This is a label that an LSR may assign and distribute, but which never actually appears in the encapsulation. When an LSR would otherwise replace the label at the top of the stack with a new label,
but the new label is 'Implicit NULL', the LSR will pop the stack instead of doing the replacement. Although this value may never appear in the encapsulation, it needs to be specified in the Label Distribution Protocol, so a value is reserved.

v. Values 4-15 are reserved.

* The frame relay label can be either 10-bits or 23-bits depending on the DLCI field size and the upper 22-bits or upper 9-bits must be zero, respectively.

* For an ATM label the lower 16-bits represents the VCI, the next 12-bits represents the VPI and the remaining bits MUST be zero.

* The Generalized-MPLS (GMPLS) label contains a value greater than 2^24-1 and used in GMPLS as defined in [CCAMP-ARCH]."

REFERENCE

"Multiprotocol Label Switching Architecture, RFC 3031.

MPLS Label Stack Encoding, RFC 3032.

Use of Label Switching on Frame Relay Networks, RFC 3034.

MPLS using LDP and ATM VC Switching, RFC 3035.

Generalized Multi-Protocol Label Switching (GMPLS) Architecture, draft-ietf-ccamp-gmpls-architecture-02.txt."

SYNTAX Unsigned32 (0..4294967295)

MplsLabelDistributionMethod ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The label distribution method which is also called the label advertisement mode (see LDP Specification). Each interface on an LSR is configured to operate in either Downstream Unsolicited or Downstream
on Demand."
REFERENCE
"Multiprotocol Label Switching Architecture, RFC 3031.
LDP Specification, RFC 3036, Section 2.6.3."
SYNTAX INTEGER {
 downstreamOnDemand(1),
 downstreamUnsolicited(2)
}

MplsLdpIdentifier ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1d.1d.1d.1d:2d"
 STATUS current
 DESCRIPTION
 "The LDP identifier is a six octet quantity which is used to identify a Label Switching Router (LSR) label space. The first four octets identify the LSR and must be a globally unique value, such as a 32-bit router ID assigned to the LSR, and the last two octets identify a specific label space within the LSR."
 SYNTAX OCTET STRING (SIZE (6))

MplsLsrIdentifier ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "The Label Switching Router (LSR) identifier is the first 4 bytes of the Label Distribution Protocol (LDP) identifier."
 SYNTAX OCTET STRING (SIZE (4))

MplsLdpLabelType ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "The Layer 2 label types which are defined for MPLS LDP and/or CR-LDP are generic(1), atm(2), or frameRelay(3)."
 SYNTAX INTEGER {
 generic(1),
 atm(2),
 frameRelay(3)
 }

MplsLSPID ::= TEXTUAL-CONVENTION
A unique identifier within an MPLS network that is assigned to each LSP. This is assigned at the head end of the LSP and can be used by all LSRs to identify this LSP. This value is piggybacked by the signaling protocol when this LSP is signaled within the network. This identifier can then be used at each LSR to identify which labels are being swapped to other labels for this LSP. This object can also be used to disambiguate LSPs that share the same RSVP sessions between the same source and destination.

For LSPs established using CR-LDP, the LSPID is composed of the ingress LSR Router ID (or any of its own IPv4 addresses) and a locally unique CR-LSP ID to that LSR. The first two bytes carry the CR-LSPID, and the remaining 4 bytes carry the Router ID. The LSPID is useful in network management, in CR-LSP repair, and in using an already established CR-LSP as a hop in an ER-TLV.

For LSPs signaled using RSVP-TE, the LSP ID is defined as a 16-bit (2 byte) identifier used in the SENDER_TEMPLATE and the FILTER_SPEC that can be changed to allow a sender to share resources with itself. The length of this object should only be 2 or 6 bytes. If the length of this octet string is 2 bytes, then it must identify an RSVP-TE LSPID, or it is 6 bytes, it must contain a CR-LDP LSPID.

REFERENCE
"RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209.
Constraint-Based LSP Setup using LDP, RFC 3212."
unknown(1) -- if the LSP is not known to be one of the following.

terminatingLsp(2) -- if the LSP terminates on the LSR/LER, then this is an egressing LSP which ends on the LSR/LER,

originatingLsp(3) -- if the LSP originates from this LSR/LER, then this is an ingressing LSP which is the head-end of the LSP,

crossConnectingLsp(4) -- if the LSP ingresses and egresses on the LSR, then it is cross-connecting on that LSR."
ldp(4) - The Label Distribution Protocol was used to configure this object initially.

crldp(5) - The Constraint-Based Label Distribution Protocol was used to configure this object initially.

rsvpTe(6) - The Resource Reservation Protocol was used to configure this object initially.

policyAgent(7) - A policy agent (perhaps in combination with one of the above protocols) was used to configure this object initially.

An object created by any of the above choices MAY be modified or destroyed by the same or a different choice.

SYNTAX INTEGER {

 unknown(1),
 other(2),
 snmp(3),
 ldp(4),
 crldp(5),
 rsvpTe(6),
 policyAgent(7)
 }

MplsPathIndexOrZero ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
 "A unique identifier used to identify a specific path used by a tunnel. A value of 0 (zero) means that no path is in use."
SYNTAX Unsigned32

MplsPathIndex ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
 "A unique value to index (by Path number) an entry in a table."
SYNTAX Unsigned32(1..4294967295)

MplsRetentionMode ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The label retention mode which specifies whether an LSR maintains a label binding for a FEC learned from a neighbor that is not its next hop for the FEC.

If the value is conservative(1) then advertised label mappings are retained only if they will be used to forward packets, i.e. if label came from a valid next hop.

If the value is liberal(2) then all advertised label mappings are retained whether they are from a valid next hop or not."

REFERENCE
"Multiprotocol Label Switching Architecture, RFC 3031.
LDP Specification, RFC 3036, Section 2.6.2."

SYNTAX INTEGER {
 conservative(1),
 liberal(2)
}

MplsTunnelAffinity ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Describes the configured 32-bit Include-any, include-all, or exclude-all constraint for constraint-based link selection."

REFERENCE
"RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, Section 4.7.4."

SYNTAX Unsigned32

MplsTunnelIndex ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A unique index into mplsTunnelTable. For tunnels signaled using RSVP, this value should correspond to the RSVP destination port used for the RSVP-TE session."

SYNTAX Unsigned32 (0..65535)

MplsTunnelInstanceIndex ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"Instance index into mplsTunnelTable. The tunnel entry with instance index 0 should refer to the configured tunnel interface (if one exists), and values greater than 0 but less than or equal to 65535 should be used to indicate signaled (or backup) tunnel LSP instances. For tunnel LSPs signaled using RSVP, this value should correspond to the RSVP source port used for the RSVP-TE session.

Values greater than 65535 apply to FRR detour instances."

SYNTAX Unsigned32

TeHopAddressType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"A value that represents a type of address a Traffic Engineered (TE) Tunnel hop.

unknown(0) An unknown address type. This value MUST be used if the value of the corresponding TeHopAddress object is a zero-length string. It may also be used to indicate a TeHopAddress which is not in one of the formats defined below.

ipv4(1) An IPv4 network address as defined by the InetAddressIPv4 TEXTUAL-CONVENTION (RFC 3291).

ipv6(2) A global IPv6 address as defined by the InetAddressIPv6 TEXTUAL-CONVENTION (RFC 3291).

asnumber(3) An Autonomous System (AS) number as defined by the TeHopAddressAS TEXTUAL-CONVENTION.

unnum(4) An unnumbered interface index as defined by the TeHopAddressUnnum TEXTUAL-CONVENTION.

lspid(5) An LSP ID for CR-LDP Tunnels (RFC 3212) as defined by the MplsLSPID TEXTUAL-CONVENTION.

Each definition of a concrete TeHopAddress value must
be accompanied by a definition of a textual convention for use with that TeHopAddressType.

To support future extensions, the TeHopAddressType TEXTUAL-CONVENTION SHOULD NOT be sub-typed in object type definitions. It MAY be sub-typed in compliance statements in order to require only a subset of these address types for a compliant implementation.

Implementations must ensure that TeHopAddressType objects and any dependent objects (e.g. TeHopAddress objects) are consistent. An inconsistentValue error must be generated if an attempt to change a TeHopAddressType object would, for example, lead to an undefined TeHopAddress value. In particular, TeHopAddressType/TeHopAddress pairs must be changed together if the address type changes (e.g. from ipv6(3) to ipv4(2))."

REFERENCE
"Textual Conventions for Internet Network Addresses, RFC3291.
Constraint-Based LSP Setup using LDP, RFC3212."

SYNTAX INTEGER {
 unknown(0),
 ipv4(1),
 ipv6(2),
 asnumber(3),
 unnum(4),
 lspid(5)
 }

TeHopAddress ::= TEXTUAL-CONVENTION

STATUS current
DESCRIPTION
"Denotes a generic Tunnel hop address.

A TeHopAddress value is always interpreted within the context of an TeHopAddressType value. Every usage of the TeHopInetAddress TEXTUAL-CONVENTION is required to specify the TeHopAddressType object which provides the context. It is suggested that the TeHopAddressType object is logically registered before the object(s) which use the TeHopAddress TEXTUAL-CONVENTION if they appear in the
The value of a TeHopAddress object must always be consistent with the value of the associated TeHopAddressType object. Attempts to set a TeHopAddress object to a value which is inconsistent with the associated TeHopAddressType must fail with an inconsistentValue error.

When this TEXTUAL-CONVENTION is used as the syntax of an index object, there may be issues which the limit of 128 sub-identifiers specified in SMIv2, STD 58. In this case, the object definition MUST include a 'SIZE' clause to limit the number of potential instance sub-identifiers.

SYNTAX OCTET STRING (SIZE (0..255))

TeHopAddressAS ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "Represents a two or four octet AS number. The AS number is represented in network byte order (MSB first). A two-octet AS number has the two MSB octets set to zero."
SYNTAX OCTET STRING (SIZE (4))

TeHopAddressUnnum ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "Represents an unnumbered interface:

<table>
<thead>
<tr>
<th>octets</th>
<th>contents</th>
<th>encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>unnumbered interface</td>
<td>network-byte order</td>
</tr>
</tbody>
</table>

The corresponding TeHopAddressType value is unnum(5)."
SYNTAX OCTET STRING(SIZE(4))

END
4. Normative References

5. Informative References

6. Security Considerations

This module does not define any management objects. Instead, it defines a set of textual conventions which may be used by other MPLS MIB modules to define management objects.

Meaningful security considerations can only be written in the MIB modules that define management objects. Therefore, this document has no impact on the security of the Internet.

7. IANA Considerations

IANA is requested to make a MIB OID assignment under the transmission branch, that is, assign the mplsMIB under { transmission 166 }. This sub-id is requested because 166 is the ifType for mpls(166) and is available under transmission.

In the future, MPLS related standards track MIB modules should be rooted under the mplsMIB subtree. The IANA is requested to manage that namespace. New assignments can only be made via a Standards Action as specified in [RFC2434].

This document also requests IANA to assign { mplsMIB 1 } to the MPLS-TC-MIB specified in this document.

8. Contributors

This document was created by combining TEXTUAL-CONVENTIONS from current MPLS MIBs and a TE-WG MIB. Co-authors on each of these MIBs contributed to the TEXTUAL-CONVENTIONS contained in this MIB and also contributed greatly to the revisions of this document. These co-authors' addresses are included here because they are useful future
contacts for information about this document. These co-authors are:

Cheenu Srinivasan
Parama Networks, Inc.
1030 Broad Street
Shrewsbury, NJ 07702
Phone: +1-732-544-9120 x731
Email: cheenu@paramanet.com

Arun Viswanathan
Force10 Networks, Inc.
1440 McCarthy Blvd
Milpitas, CA 95035
Phone: +1-408-571-3516
Email: arun@force10networks.com

Hans Sjostrand
ipUnplugged
P.O. Box 101 60
S-121 28 Stockholm, Sweden
Phone: +46-8-725-5930
Email: hans@ipunplugged.com

Kireeti Kompella
Juniper Networks
1194 Mathilda Ave
Sunnyvale, CA 94089
Phone: +1-408-745-2000
Email: kireeti@juniper.net

9. Intellectual Property Notice

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11 [RFC2028].
Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementors or users of this
specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.

10. Authors’ Addresses

Thomas D. Nadeau
Cisco Systems, Inc.
250 Apollo Drive
Chelmsford, MA 01824
Phone: +1-978-936-1470
Email: tnadeau@cisco.com

Joan Cucchiara
Artel
237 Cedar Hill Street
Marlborough, MA 01752
Phone: +1-508-303-8200 x302
Email: jcucchiara@artel.com

11. Full Copyright Statement

Copyright (C) The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.