Indication of Client Failure in MPLS-TP

draft-ietf-mpls-tp-csf-02.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on March 13, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info).
1. Introduction

In transport networks, OAM functions are important and fundamental to ease operational complexity, enhance network availability and meet service performance objectives. This is achieved through automatic detection, handling, diagnosis, appropriate reporting of defects and performance monitoring.

As defined in [RFC 5860] MPLS-TP OAM MUST provide a function to enable the propagation, from edge to edge of an MPLS-TP network, of information pertaining to a client (i.e., external to the MPLS-TP network) defect or fault condition detected at an End Point of a PW or LSP, if the client layer OAM functionality does not provide an alarm notification/propagation functionality (e.g. not needed in the
original application of the client signal, or the signal was originally at the bottom of the layer stack and it was not expected to be transported over a server layer), while such an indication is needed by the downstream.

This document defines a Client Signal Fail (CSF) indication protocol in order to propagate client failures and their clearance across a MPLS-TP domain.

According to [RFC 5921], MPLS-TP supports two native service adaptation mechanisms via:

1) a Pseudowire, to emulate certain services, for example, Ethernet, Frame Relay, or PPP / High-Level Data Link Control (HDLC).

2) an LSP, to provide adaptation for any native service traffic type supported by [RFC3031] and [RFC3032]. Examples of such traffic types include IP packets and MPLS-labeled packets (i.e.: PW over LSP, or IP over LSP).

As to the first adaptation mechanism via a PW, the mechanism of CSF function to support propagation of client failure indication follows [static-pw-status]. The PW status relevant to CSF function is AC fault as defined in [RFC 4447] and [RFC 4446].

As to the second adaptation mechanism via LSP, the mechanism is detailed in this draft and is used in case the client of MPLS-TP can not provide itself with such failure notification/propagation.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119].

2.1. Terminology

The reader is assumed to be familiar with the terminology in MPLS-TP. The relationship between ITU-T and IETF terminologies on MPLS-TP can be found in [Rosetta stone].

ACH: Associated Channel Header

AIS: Alarm Indication Signal

CSF: Client Signal Fail indication
3. Mechanisms of CSF

3.1. General

Client Signal Fail (CSF) indication provides a function to enable a MEP to propagate a client failure indication to its peer MEP across a MPLS-TP network in case the client service itself does not support propagation of its failure status. A MIP is not intended to generate or process CSF information.

Packets with CSF information can be issued by a MEP, upon receiving failure information from its client service. Detection rules for client failure events are client-specific and are therefore outside the scope of this document.

Figure 1 depicts a typical connection scenario between two client network elements (Node A and Node D) interconnected through MPLS-TP transport network. Client Node A connects to MPLS-TP Node B and
Client Node D connects to MPLS-TP Node C. Node B and C support MPLS-TP MEP function.

If a failure is detected between Node A and Node B and is taken as a native client failure condition, the MEP function in Node B will initiate CSF signal and it will be sent to Node C through MPLS-TP network. CSF signal will be extracted at Node C as an indication of client signal failure. Further, this may be mapped back into native client failure indication and regenerated towards client Node D.

Node B learns the failure between A and B either by direct detection of signal fail (e.g. loss of signal) or by some fault indications between A and B (e.g. RDI, AIS/FDI).

If the connection between Node A and B recovers, Node B may stop sending CSF signals to Node C (implicit failure clearance mechanism) or explicitly send failure clearance indication (e.g. by flags in CSF PDU format) to Node C to help expedite clearance of native client failure conditions.

Accordingly, Node C will clear client failure condition when a valid client data frame is received and no CSF is received (implicit failure clearance mechanism) or upon receiving explicit failure clearance indication.

3.2. Transmission of CSF

When CSF function is enabled, upon learning signal failure condition of its client-layer, the MEP can immediately start transmitting periodic packets with CSF information to its peer MEP. A MEP continues to transmit periodic packets with CSF information until the client-layer signal failure condition is cleared.

The clearance of CSF condition can be communicated to the peer MEP via:

- Stopping of the transmission of CSF signal but forwarding client data frames, or
- Forwarding CSF PDUs with a clearance indication.

Transmission of packets with CSF information can be enabled or disabled on a MEP (e.g. through management plane).
Detection and clearance rules for CSF events are client and application specific and outside the scope of this draft.

The period of CSF transmission is client and application specific. Examples are as follows:
- 3.33ms: for protection switching application.
- 1s: for fault management application.

However, the value 0 is invalid.

3.3. Reception of CSF

Upon receiving a packet with CSF information a MEP either declares or clears a client-layer signal fail condition according to the received CSF information and propagates this as a signal fail indication to its client-layer.

CSF condition is cleared when the receiving MEP
- does not receive CSF signal within an interval of \(N \) times the CSF transmission period (Suggested value of \(N \) is 3.5), or
- receives a valid client data frame, or
- receives CSF PDU with CSF-Clear information

3.4. Configuration of CSF

Specific configuration information required by a MEP to support CSF transmission is the following:

CSF transmission period - this is application dependent. Examples are 3.3 ms and 1s.

PHB - identifies the per-hop behavior of packet with CSF information.

A MIP is transparent to packets with CSF information and therefore does not require any information to support CSF functionality.
4. Frame format of CSF

Figure 2 depicts the frame format of CSF. CSF PDUs are encapsulated using the ACH, according to [RFC 5586]. GAL is used as an alert based exception mechanism to differentiate CSF packets (with ACH as G-ACh packets) from user-plane packets as defined in [RFC 5586].

```
+-----------------------------------------------+---------------------------------------------------------------+
| Version | Reserved 1 | Flags | Reserved 2 | Total TLV Len | ~ | TLVs | ~ | ~ |
+-----------------------------------------------+---------------------------------------------------------------+
| 0 0 0 1|0 0 0 0|0 0 0 0 0 0 0 0|                                                                  |
+-----------------------------------------------+---------------------------------------------------------------+
|0 0 0 0|0 0 0 0 0 0 0 0|    MPLS-TP CSF (0xXX)                                 |
+-----------------------------------------------+---------------------------------------------------------------+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
```

Figure 2 Frame format of CSF

The first four bytes represent the Generic ACH ([RFC 5586]):

- first nibble: set to 0001b to indicate a control channel associated with a PW, a LSP or a Section;
- ACH Version (bits 4 to 7): set to 0, as specified in [RFC 5586];
- ACH Reserved (bits 8 to 15): set to 0 and ignored on reception, as specified in [RFC 5586];
- ACH Channel Type (Bits 16 to 31): value 0xXX identifies the payload as CSF PDU. To be assigned by IANA.
- CSF Version (Bits 32 to 39): Set to 0;
- CSF Reserved 1 (Bits 40 to 47): This field MUST be set to zero on transmission and ignored on receipt;
- CSF Reserved 2 (Bits 56 to 63): This field MUST be set to zero on transmission and ignored on receipt;
- Total TLV Length: Total of all included TLVs. No TLVs are defined currently. The value is 0.
- TLVs: No TLVs are defined currently.

0 1 2 3 4 5 6 7
+------------------+
| Res | Type | Period |
+------------------+

Figure 3 Format of Flags in CSF PDU

Figure 3 depicts the format of Flags in CSF PDU.

- Flag Reserved (Bits 48 to 49): Set to 0;
- Type (Bits 50 to 52): Set to the following values to indicate CSF types

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Client Signal Fail - Loss of Signal (CSF-LOS)</td>
</tr>
<tr>
<td>001</td>
<td>Client Signal Fail - Forward Defect Indication (CSF-FDI)</td>
</tr>
<tr>
<td>010</td>
<td>Client Signal Fail - Reverse Defect Indication (CSF-RDI)</td>
</tr>
<tr>
<td>000</td>
<td>Clearance of Client Signal Fail - (CSF-Clear)</td>
</tr>
</tbody>
</table>
- Period (Bits 53 to 55): CSF transmission period and can be configured.

5. Consequent actions

The primary intention of CSF is to transport a client signal fail condition at the input of the MPLS-TP network to the output port of the MPLS-TP network for clients that do not have alarm notification/propagation mechanism defined.

Further, CSF allows creating a condition at the output port of the MPLS-TP network such that the customer input port is able to detect and alarm that there is no data arriving i.e. the connection is interrupted. In this case, customers may choose another transport network or another port to continue communication.
6. Security Considerations

Malicious insertion of spurious CSF signals (e.g. DoS) is not quite likely in a transport network since transport networks are usually self-managed by operators and providers.

7. IANA Considerations

MPLS-TP CSF function requires a new Associated Channel Type to be assigned by IANA from the Pseudowire Associated Channel Types Registry.

Registry:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xXX</td>
<td>MPLS-TP Client Signal Fail indication (CSF)</td>
</tr>
</tbody>
</table>

8. Acknowledgments

The authors would like to thank Haiyan Zhang, Adrian Farrel, Loa Andersson, Matthew Bocci, Andy Malis and Thomas D. Nadeau for their guidance and input to this work.

9. References

9.1. Normative References

[RFC4446] Martini, L., "IANA Allocations for Pseudowire Edge to Edge Emulation (PWE3)", RFC4446, April 2006
9.2. Informative References

10. Authors' Addresses

Jia He
Huawei Technologies Co., Ltd.

Email: hejia@huawei.com
Intellectual Property

The IETF Trust takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in any IETF Document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights.

Copies of Intellectual Property disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement any standard or specification contained in an IETF Document. Please address the information to the IETF at ietf-ipr@ietf.org.

The definitive version of an IETF Document is that published by, or under the auspices of, the IETF. Versions of IETF Documents that are published by third parties, including those that are translated into other languages, should not be considered to be definitive versions of IETF Documents. The definitive version of these Legal Provisions is that published by, or under the auspices of, the IETF. Versions of these Legal Provisions that are published by third parties, including those that are translated into other languages, should not be considered to be definitive versions of these Legal Provisions.
For the avoidance of doubt, each Contributor to the IETF Standards Process licenses each Contribution that he or she makes as part of the IETF Standards Process to the IETF Trust pursuant to the provisions of RFC 5378. No language to the contrary, or terms, conditions or rights that differ from or are inconsistent with the rights and licenses granted under RFC 5378, shall have any effect and shall be null and void, whether published or posted by such Contributor, or included with or in such Contribution.

Disclaimer of Validity

All IETF Documents and the information contained therein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.