MPLS On-demand Connectivity Verification and Route Tracing
draft-ietf-mpls-tp-on-demand-cv-05

Abstract

LSP-Ping is an existing and widely deployed OAM mechanism for MPLS LSPs. This document describes extensions to LSP-Ping so that LSP-Ping can be used for On-demand Connectivity Verification of MPLS-TP LSPs. This document also clarifies procedures to be used for processing the related OAM packets. Further, it describes procedures for using LSP-Ping to perform Connectivity Verification and Route Tracing functions in MPLS-TP networks. Finally this document updates RFC 4379 by adding a new address type and requesting a registry.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 27, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents
1.  Introduction ......................................................... 4
   1.1.  Conventions used in this document .......................... 4
   1.2.  On-demand CV for MPLS-TP LSPs using IP encapsulation ... 4
   1.3.  On-demand CV for MPLS-TP LSPs using non-IP encapsulation ........................................................................... 5
2.  LSP-Ping Extensions ....................................................... 5
   2.1.  New address type for Downstream Mapping TLV .......... 5
       2.1.1.  DSMAP/DDMAP Non-IP Address Information .......... 6
   2.2.  Source/Destination Identifier TLV .............................. 7
       2.2.1.  Source/Destination Identifier TLV Format .......... 7
       2.2.2.  Source Identifier TLV ................................ 7
       2.2.3.  Destination Identifier TLV .............................. 8
   2.3.  Identifying Statically provisioned LSPs and PWs .......... 8
       2.3.1.  Static LSP Sub-TLV ................................... 8
       2.3.2.  Static Pseudowire Sub-TLV ............................ 9
3.  Performing On-demand CV over MPLS-TP LSPs ....................... 10
   3.1.  LSP-Ping with IP encapsulation ................................ 10
   3.2.  On-demand CV with IP encapsulation, over ACH ............ 11
   3.3.  Non-IP based On-demand CV, using ACH .................... 11
   3.4.  Reverse Path Connectivity Verification .................... 12
       3.4.1.  Requesting Reverse Path Connectivity Verification .... 12
       3.4.2.  Responder Procedures .................................. 13
       3.4.3.  Requester Procedures .................................. 13
   3.5.  P2MP Considerations ............................................ 13
   3.6.  Operation of On-demand CV with Static MPLS-TP .......... 14
   3.7.  GAL Label Processing ........................................... 14
4.  Performing on-demand Route Tracing over MPLS-TP LSPs .......... 14
   4.1.  On-demand LSP Route Tracing with IP encapsulation ..... 15
   4.2.  Non-IP based On-demand LSP Route Tracing, using ACH ... 15
       4.2.1.  Requester procedure for sending echo request packets ......................................................... 15
       4.2.2.  Requester procedure for receiving echo response packets ....................................................... 15
       4.2.3.  Responder procedure ..................................... 15
   4.3.  P2MP Considerations ............................................ 15
   4.4.  ECMP Considerations ............................................ 16
5.  Applicability .......................................................... 16
6. Security Considerations ............................. 16
7. IANA Considerations ................................. 16
   7.1. New Source and Destination Identifier TLVs .... 16
   7.2. New Target FEC Stack Sub-TLVs ................. 16
   7.3. New Reverse-path Target FEC Stack TLV ....... 17
   7.4. New Pseudowire Associated Channel Type ....... 17
   7.5. New RFC 4379 Registry .......................... 17
8. Contributing Authors ................................. 18
9. References ............................................ 18
   9.1. Normative References ............................ 18
   9.2. Informative References ......................... 19
Authors’ Addresses ..................................... 19
1. Introduction

LSP-Ping [RFC4379] is an OAM mechanism for MPLS LSPs. This document describes extensions to LSP-Ping so that LSP-Ping can be used for on-demand monitoring of MPLS-TP LSPs. It also clarifies the procedures to be used for processing the OAM packets. This document describes how LSP-Ping can be used for on-demand Connectivity Verification (Section 3) and Route Tracing (Section 4) functions required in [RFC5860] and specified in [I-D.ietf-mpls-tp-oam-framework].

1.1. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

There is considerable opportunity for confusion in use of the terms "on-demand connectivity verification" (CV), "on-demand route tracing" and "LSP-Ping." In this document, we try to use the terms consistently as follows:

- LSP-Ping: refers to the mechanism - particularly as defined and used in referenced material;
- On-demand CV: refers to on-demand connectivity verification and - where both apply equally - on-demand route tracing, as implemented using the LSP-Ping mechanism extended for support of MPLS-TP;
- On-demand route tracing: used in those cases where the LSP-Ping mechanism (as extended) is used exclusively for route tracing.

From the perspective of on-demand CV and traceroute, we use the concepts of "Requester" and "Responder" as follows:

- Requester: Originator of an OAM Request message,
- Responder: Entity responding to an OAM Request message.

Since - in this document - all messages are assumed to be carried in an LSP, all Request messages would be injected at the ingress to an LSP. A Responder may or may not be at the egress of this same LSP, given that it may receive Request messages as a result of TTL expiry. If a Reply is to be delivered via a reverse path LSP, the message would again be inserted at the ingress of that LSP.

1.2. On-demand CV for MPLS-TP LSPs using IP encapsulation

LSP-Ping requires IP addressing on responding LSRs for performing OAM on MPLS signaled LSPs and pseudowires. In particular, in these cases LSP-Ping packets generated by a Requester are encapsulated in an IP/UDP header with the destination address from the 127/8 range and then
encapsulated in the MPLS label stack ([RFC4379], [RFC5884]). A Responder uses the presence of the 127/8 destination address to identify OAM packets and relies further on the UDP port number to determine whether the packet is a LSP-Ping packet. It is to be noted that this determination does not require IP forwarding capabilities. It requires the presence of an IP host stack which enables responding LSRs to process packets with a destination address from the 127/8 range. [RFC1122] allocates the 127/8 range as "Internal host loopback address" and [RFC1812] states that "a router SHOULD NOT forward, except over a loopback interface, any packet that has a destination address on network 127".

1.3. On-demand CV for MPLS-TP LSPs using non-IP encapsulation

In certain MPLS-TP deployment scenarios IP addressing might not be available or it may be preferred to use some form of non-IP encapsulation for On-demand CV, route tracing and BFD packets. In such scenarios, On-demand CV and/or route tracing SHOULD be run without IP addressing, using the ACH channel type specified in Section 3. Section 3.3 and Section 4.2 describe the theory of operation for performing On-demand CV over MPLS-TP LSPs with any non-IP encapsulation.

2. LSP-Ping Extensions

2.1. New address type for Downstream Mapping TLV

[RFC4379] defines the Downstream Mapping (DSMAP) TLV. [I-D.ietf-mpls-lsp-ping-enhanced-dsmap] further defines the Downstream Detailed Mapping (DDMAP) TLV. This document defines the following new address type which MAY be used in any DSMAP or DDMAP TLV included in an On-demand CV message:

<table>
<thead>
<tr>
<th>Type #</th>
<th>Address Type</th>
<th>K Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Non IP</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 1: Downstream Mapping TLV new address type

The new address type indicates that no address is present in the DSMAP or DDMAP TLV. However, IF_Num information (see definition of "IF_NUM" in [I-D.ietf-mpls-tp-identifiers]) for both Requester and Responder interfaces, as well as multipath information is included in the format and MAY be present.
IF_Num values of zero indicate that no IF_Num applies in the field in which this value appears.

Multipath type SHOULD be set to 0 (no multipath) when using this address type.

When this address type is used, on receipt of a LSP-Ping echo request, interface verification MUST be bypassed. Thus the receiving node SHOULD only perform MPLS label control-plane/data-plane consistency checks. Note that these consistency checks include checking of included identifier information.

The new address type is also applicable to the Detailed Downstream Mapping (DDMAP) TLV defined in [I-D.ietf-mpls-lsp-ping-enhanced-dsmap].

2.1.1. DSMAP/DDMAP Non-IP Address Information

If the DSMAP (or DDMAP) TLV is included when sending On-demand CV packets using ACH, without IP encapsulation, the following information MUST be included in any DSMAP or DDMAP TLV that is included in the packet. This information forms the address portion of the DSMAP TLV (as defined in [RFC4379]) or DDMAP TLV (as defined in [I-D.ietf-mpls-lsp-ping-enhanced-dsmap] using one of the address information fields defined in [RFC4379] and extended to include non-IP identifier types in this document).

```
<table>
<thead>
<tr>
<th>MTU</th>
<th>Address Type</th>
<th>DS Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Ingress IF_Num (4 octets)</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Egress IF_Num (4 octets)</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Multipath Type</td>
<td>Depth Limit</td>
<td>Multipath Length</td>
</tr>
</tbody>
</table>
```

Figure 2: New DSMAP/DDMAP Address Format

Address Type will be 5 (as shown in Section 2.1 above.

Ingress IF_Num identifies the ingress port on the target node. A value of 0 indicates that the port is not part of the identifier.

Egress IF_Num identifies the ingress port on the target node. A value of 0 indicates that the port is not part of the identifier.
Multipath type SHOULD be set to 0 (no multipath) when using this address type.

2.2. Source/Destination Identifier TLV

2.2.1. Source/Destination Identifier TLV Format

The format for the identifier TLV is the same for both Source and Destination Identifier TLVs (only the type is different). The format is as specified in the figure below.

```
    0                  1                  2                  3
   +---------------------------------------------------------------+
   |             Type              | Length = 8                    |
   +---------------------------------------------------------------+
   |             Global_ID   (4 Octets)                            |
   +---------------------------------------------------------------+
   |          Node_ID   (4 Octets)                                  |
   +---------------------------------------------------------------+
```

Figure 3: New Source/Destination Identifier Format

Type will be one of either TBD-SRC or TBD-DST, depending on whether the TLV in question is a Source or Destination Identifier TLV.

Global_ID is as defined in [I-D.ietf-mpls-tp-identifiers].

Node_ID is as defined in [I-D.ietf-mpls-tp-identifiers].

2.2.2. Source Identifier TLV

When sending On-demand CV packets using ACH, without IP encapsulation, there MAY be a need to identify the source of the packet. This source identifier will be specified via the Source Identifier TLV, using the Identifier TLV defined in Section 2.2.1, containing the information specified above.

An On-demand CV packet MUST NOT include more than 1 Source Identifier TLV. The Source Identifier TLV MUST specify the identifier of the originator of the packet. If more than 1 such TLV is present in an On-demand CV request packet, then an error of 1 (Malformed echo request received, Section 3.3 [RFC4379]) MUST be returned, if it is possible to unambiguously identify the source of the packet.
2.2.3. Destination Identifier TLV

When sending On-demand CV packets using ACH, without IP encapsulation, there MAY be a need to identify the destination of the packet. This destination identifier will be specified via the Destination Identifier TLV, using the Identifier TLV defined in Section 2.2.1, containing the information specified above.

An On-demand CV packet MUST NOT include more than 1 Destination Identifier TLV. The Destination Identifier TLV MUST specify the destination node for the packet. If more than 1 such TLV is present in an On-demand CV Request packet, then an error of 1 (Malformed echo request received, Section 3.3 [RFC4379]) MUST be returned, if it is possible to unambiguously identify the source of the packet.

2.3. Identifying Statically provisioned LSPs and PWs

[RFC4379] specifies how an MPLS LSP under test may be identified in an echo request. A Target FEC Stack TLV is used to identify the LSP. In order to identify a statically provisioned LSP and PW, new target FEC stack sub-TLVs are being defined. The new sub-TLVs are assigned sub-type identifiers as follows, and are described in the following sections.

<table>
<thead>
<tr>
<th>Type #</th>
<th>Sub-Type #</th>
<th>Length</th>
<th>Value Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>24</td>
<td>Static LSP</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>32</td>
<td>Static Pseudowire</td>
</tr>
</tbody>
</table>

Figure 4: New target FEC sub-types

2.3.1. Static LSP Sub-TLV

The format of the Static LSP sub-TLV value field is specified in the following figure. The value fields are taken from the definitions in [I-D.ietf-mpls-tp-identifiers].
The Source global ID and Destination Global ID MAY be set to 0. When set to zero, the field is not applicable.

2.3.2. Static Pseudowire Sub-TLV

The format of the Static PW sub-TLV value field is specified in the following figure.
Figure 6: Static PW FEC Sub-TLV

Attachment Group Identifier (AGI) is included in the first two words, in most-significant, least-significant word order, as shown.

The Source global ID and Destination Global ID MAY be set to 0. When set to zero, the field is not applicable.

The AGI, Global ID and Node ID fields are defined in [I-D.ietf-mpls-tp-identifiers]. The AC-ID fields are defined in [RFC5003].

3. Performing On-demand CV over MPLS-TP LSPs

This section specifies how On-demand CV can be used in the context of MPLS-TP LSPs. The On-demand CV function meets the On-demand Connectivity Verification requirements specified in [RFC5860], section 2.2.3. This function SHOULD NOT be performed except in the on-demand mode. This function SHOULD be performed between End Points (MEPs) and Intermediate Points (MIPs) of PWs and LSPs, and between End Points of PWs, LSPs and Sections. In order for the On-demand CV packet to be processed at the desired MIP, the TTL of the MPLS label should be set such that it expires at the MIP to be probed.

[RFC5586] defines an ACH mechanism for MPLS LSPs. The mechanism is a generalization of Associated Channel mechanism that [RFC4385] defined for use with Pseudowires. As a result, a single Associated Channel Type may be used for either an LSP or Pseudowire.

A new Pseudowire Associated Channel Type (type TBD-2) is defined for use in performing On-demand Connectivity Verification. Its use is described in the following sections.

Except as specifically stated in the sections below, message and TLV construction procedures for On-demand CV messages are as defined in [RFC4379].

3.1. LSP-Ping with IP encapsulation

LSP-Ping packets, as specified in [RFC4379], are sent over the MPLS LSP for which OAM is being performed and contain an IP/UDP packet within them. The IP header is not used for forwarding (since LSP forwarding is done using MPLS label switching). The IP header is used mainly for addressing and can be used in the context of MPLS-TP LSPs. This form of On-demand CV OAM MUST be supported for MPLS-TP LSPs when IP addressing is in use.
The On-demand CV echo response message MUST be sent on the reverse
path of the LSP. The reply MUST contain IP/UDP headers followed by
the On-demand CV payload. The destination address in the IP header
MUST be set to that of the sender of the echo request message. The
source address in the IP header MUST be set to a valid address of the
replying node.

3.2. On-demand CV with IP encapsulation, over ACH

IP encapsulated On-demand CV packets MAY be sent over the MPLS LSP
using the control channel (ACH). IP ACH type specified in [RFC4385]
MUST be used in such a case. The IP header is used mainly for
addressing and can be used in the context of MPLS-TP LSPs.

The On-demand CV echo response message MUST be sent on the reverse
path of the LSP. The response in this case SHOULD use ACH and SHOULD
be IP encapsulated.

If IP encapsulated, the destination address in the IP header MUST be
set to that of the sender of the echo request message, and the source
address in the IP header MUST be set to a valid address of the
replying node.

3.3. Non-IP based On-demand CV, using ACH

The OAM procedures defined in [RFC4379] require the use of IP
addressing, and in some cases IP routing, to perform OAM functions.
When the ACH header is used, IP addressing and routing is not needed.
This section describes procedures for performing on-demand CV without
a dependency on IP addressing and routing.

In the non-IP case, when using On-demand CV via LSP-Ping with the ACH
header, the LSP-Ping Reply mode [RFC4379] in the LSP-Ping echo
request SHOULD be set to 4 (Reply via application level control
channel).

Note that the application level control channel in this case is the
reverse path of the LSP (or Pseudowire) using ACH.

The requesting node MAY attach a Source Identifier TLV (Section 2.2)
to identify the node originating the request.

If the Reply mode indicated in an On-demand CV Request is 4 (Reply
via application level control channel), the On-demand CV reply
message MUST be sent on the reverse path of the LSP using ACH. The
On-demand CV payload MUST directly follow the ACH header and IP
and/or UDP headers MUST NOT be attached. The responding node MAY
attach a Source Identifier TLV to identify the node sending the
response.

If a node receives an MPLS echo request packet over ACH, without IP/UDP headers, with a reply mode of 4, and if that node does not have a return MPLS LSP path to the echo request source, then the node SHOULD drop the echo request packet and not attempt to send a response.

If a node receives an MPLS echo request with a reply mode other than 4 (reply via application level control channel), and if the node supports that reply mode, then it MAY respond using that reply mode. If the node does not support the reply mode requested, or is unable to reply using the requested reply mode in any specific instance, the node MUST drop the echo request packet and not attempt to send a response.

3.4. Reverse Path Connectivity Verification

3.4.1. Requesting Reverse Path Connectivity Verification

A new global flag, Validate Reverse Path (R), is being defined in the LSP-Ping packet header. When this flag is set in the echo request, the Responder SHOULD return reverse path FEC information, as described in Section 3.4.2.

The R flag MUST NOT be set in the echo response. If it is set in the echo response, it SHOULD be ignored.

The Global Flags field is now a bit vector with the following format:

```
0                   1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             MBZ         |R|T|V|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 7: Global Flags Field

The V flag is defined in [RFC4379]. The T flag is defined in P2MP-LSP-PING. The R flag is defined in this draft.

The Validate FEC Stack (V) flag MAY be set in the echo response when reverse path connectivity verification is being performed.
### 3.4.2. Responder Procedures

When the R flag is set in the echo request, the responding node SHOULD attach a Reverse-path Target FEC Stack TLV in the echo response. The requesting node (on receipt of the response) can use the Reverse-path Target FEC Stack TLV to perform reverse path connectivity verification. For co-routed bi-directional LSPs, the Reverse-path Target FEC Stack used for On-demand CV will be the same in both the forward and reverse path of the LSP. For associated bi-directional LSPs, the target FEC stack MAY be different for the reverse path.

The format of the Reverse-path Target FEC Stack TLV is the same as that of the Target FEC stack TLV defined in [RFC4379]. The rules for creating a Target FEC stack TLV also apply to the Reverse-path Target FEC Stack TLV.

<table>
<thead>
<tr>
<th>Value</th>
<th>TLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD-1</td>
<td>Reverse-path Target FEC Stack</td>
</tr>
</tbody>
</table>

Figure 8: Reverse-Path Target FEC Stack TLV Type

### 3.4.3. Requester Procedures

On receipt of the echo response, the requesting node MUST perform the following checks:

1. Perform interface and label-stack validation to ensure that the packet is received on the reverse path of the bi-directional LSP
2. If the Reverse-Path Target FEC Stack TLV is present in the echo response, then perform FEC validation.

The verification in this case is performed as described for Target FEC Stack in section 3.6 of [RFC4379].

If any of the validations fail, then the requesting node MUST drop the echo response and report an error.

### 3.5. P2MP Considerations

[I-D.ietf-mpls-p2mp-lsp-ping] describes how LSP-Ping can be used for OAM on P2MP LSPs with IP encapsulation. This MUST be supported for MPLS-TP P2MP LSPs when IP addressing is used. When IP addressing is not used, then the procedures described in Section 3.3 can be applied to P2MP MPLS-TP LSPs as well.
3.6. Operation of On-demand CV with Static MPLS-TP

Support for static MPLS-TP LSP, or Pseudowire, usage and on-demand CV, requires manageable objects necessary to, for instance, configure operating parameters such as duration and periodicity of an on-demand connectivity test.

The specifics of this manageability requirement are out-of-scope in this document and SHOULD be addressed in an appropriate management specification.

3.7. GAL Label Processing

At the Requester, when encapsulating the LSP echo request (LSP Ping) packet (with the IP ACH, or the non IP ACH, codepoint), a GAL label MUST be added before adding the MPLS LSP label, and sending the LSP Ping echo request packet in-band in the MPLS LSP.

The GAL label MUST NOT be considered as part of the MPLS label stack that requires verification by the Responder. For this reason, a NIL FEC Stack TLV MUST NOT be added or associated with the GAL label.

GAL Label MUST NOT be included in DSMAP or DDMAP TLVs.

Interface and label stack TLV MUST include the whole label stack including the GAL label.

4. Performing on-demand Route Tracing over MPLS-TP LSPs

This section specifies how On-demand CV traceroute can be used in the context of MPLS-TP LSPs. The On-demand CV traceroute function meets the Route Tracing requirement specified in [RFC5860], section 2.2.4. This function SHOULD be performed on-demand. This function SHOULD be performed between End Points and Intermediate Points of PWs and LSPs, and between End Points of PWs, LSPs and Sections.

When performing On-demand CV traceroute, the requesting node inserts a Downstream Mapping TLV to get the downstream node information and to enable LSP verification along the transit nodes. The Downstream Mapping TLV can be used as is for performing the traceroute. If IP addressing is not in use, then the Address Type field in the Downstream Mapping TLV can be set to "Non IP" (Section 2.1). The Downstream Mapping TLV address type field can be extended to include other address types as need be.
4.1. On-demand LSP Route Tracing with IP encapsulation

The mechanics of On-demand CV traceroute are similar to those described for ping in Section 3.1. On-demand Route Tracing packets sent by the Requester MUST follow procedures described in [RFC4379]. This form of On-demand CV OAM MUST be supported for MPLS-TP LSPs, when IP addressing is used.

4.2. Non-IP based On-demand LSP Route Tracing, using ACH

This section describes procedures for performing LSP traceroute when using LSP-Ping with the ACH header and without any dependency on IP addressing. The procedures specified in Section 3.3 with regards to Source Identifier TLV apply to LSP traceroute as well.

4.2.1. Requester procedure for sending echo request packets

On-demand Route Tracing packets sent by the Requester MUST adhere to the format described in Section 3.3. MPLS-TTL expiry (as described in [RFC4379]) will be used to direct the packets to specific nodes along the LSP path.

4.2.2. Requester procedure for receiving echo response packets

The On-demand CV traceroute responses will be received on the LSP itself and the presence of an ACH header with channel type of On-demand CV is an indicator that the packet contains On-demand CV payload.

4.2.3. Responder procedure

When a echo request reaches the Responder, the presence of the ACH channel type of On-demand CV will indicate that the packet contains On-demand CV data. The On-demand CV data, the label stack and the destination identifier should be sufficient to identify the LSP associated with the echo request packet. If there is an error and the node is unable to identify the LSP on which the echo response would to be sent, the node MUST drop the echo request packet and not send any response back. All responses MUST always be sent on a LSP path using the ACH header and ACH channel type of On-demand CV.

4.3. P2MP Considerations

[I-D.ietf-mpls-p2mp-lsp-ping] describes how LSP-Ping can be used for OAM on P2MP LSPs. This MUST be supported for MPLS-TP P2MP LSPs when IP addressing is used. When IP addressing is not used, then the procedures described in Section 4.2 can be applied to P2MP MPLS-TP LSPs as well.
4.4. ECMP Considerations

On-demand CV using ACH SHOULD NOT be used when there is ECMP (equal cost multiple paths) for a given LSP. The addition of the additional ACH header may modify the hashing behavior for OAM packets which may result in incorrect monitoring of path taken by data traffic.

5. Applicability

The procedures specified in this document for non-IP encapsulation apply only to MPLS-TP Transport paths. This includes LSPs and PWs when IP encapsulation is not desired. However, when IP addressing is used, as in non MPLS-TP LSPs, procedures specified in [RFC4379] MUST be used.

6. Security Considerations

The draft does not introduce any new security considerations. Those discussed in [RFC4379] are also applicable to this document.

7. IANA Considerations

7.1. New Source and Destination Identifier TLVs

IANA is requested to assign the following TLV types from the "Label Switched Paths (LSPs) Parameters - TLVs" Registry, "TLVs and sub-TLVs" sub-registry (from "Standards Action" TLV type range):

<table>
<thead>
<tr>
<th>Type #</th>
<th>TLV Name</th>
<th>Length Octets</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD-SRC</td>
<td>Source ID TLV</td>
<td>8</td>
<td>this document (sect 2.2)</td>
</tr>
<tr>
<td>TBD-DST</td>
<td>Destination ID TLV</td>
<td>8</td>
<td>this document (sect 2.2)</td>
</tr>
</tbody>
</table>

Figure 9: New Source/Destination Identifier TLV Type

7.2. New Target FEC Stack Sub-TLVs

Section 2.3 defines 2 new sub-TLV types for inclusion within the LSP Ping [RFC4379] Target FEC Stack TLV.

IANA is requested to assign sub-type values to the following sub-TLVs from the "Multiprotocol Label Switching Architecture (MPLS) Label Switched Paths (LSPs) Parameters - TLVs" registry, "TLVs and sub-TLVs" sub-registry.
7.3. New Reverse-path Target FEC Stack TLV

Section 3.4.2 defines a new TLV type for inclusion in the LSP-Ping packet.

IANA is requested to assign a type value to the TLV from the
"Multiprotocol Label Switching Architecture (MPLS) Label Switched
Paths (LSPs) Parameters - TLVs" registry, "TLVs and sub-TLVs" sub-
registry.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD-1</td>
<td>Reverse-path Target FEC Stack TLV</td>
<td>this document (sect 3.4)</td>
</tr>
</tbody>
</table>

The sub-TLV space and assignments for this TLV will be the same as
that for the Target FEC Stack TLV. Sub-types for the Target FEC Stack TLV and the Reverse-path Target FEC Stack TLV MUST be kept the same. Any new sub-type added to the Target FEC Stack TLV MUST apply to the Reverse-path Target FEC Stack TLV as well.

7.4. New Pseudowire Associated Channel Type

On-demand Connectivity Verification requires a unique Associated Channel Type. IANA is requested to assign a PW ACh Type from the
"Pseudowire Associated Channel Type Registry" as describe below:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>TLV Follows</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD-2</td>
<td>On-Demand CV</td>
<td>No</td>
<td>this document (sect 3)</td>
</tr>
</tbody>
</table>

7.5. New RFC 4379 Registry

[RFC4379] defined several registries. It also defined some value assignments without explicitly asking for IANA to create a registry to support additional value assingments. One such case is in
defining address types associated with the Downstream Mapping (DSMAP) TLV.

This document extends RFC 4379 by defining a new address type for use with the Downstream Mapping and Downstream Detailed Mapping TLVs.
Recognizing that the absence of a registry makes it possible to have collisions of "address-type" usages, IANA is requested to establish a new registry - associated with both [RFC4379] and this document - that initially allocates the following assignments:

<table>
<thead>
<tr>
<th>Type #</th>
<th>Address Type</th>
<th>K Octets</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IPv4 Numbered</td>
<td>16</td>
<td>RFC 4379</td>
</tr>
<tr>
<td>2</td>
<td>IPv4 Unnumbered</td>
<td>16</td>
<td>RFC 4379</td>
</tr>
<tr>
<td>3</td>
<td>IPv6 Numbered</td>
<td>40</td>
<td>RFC 4379</td>
</tr>
<tr>
<td>4</td>
<td>IPv6 Unnumbered</td>
<td>28</td>
<td>RFC 4379</td>
</tr>
<tr>
<td>5</td>
<td>Non IP</td>
<td>12</td>
<td>this document (sect 2.1.1)</td>
</tr>
</tbody>
</table>

Downstream Mapping Address Type Registry

Because the field in this case is an 8-octet field, the basis for all future allocations SHOULD be "Standards Based."

8. Contributing Authors

The following individuals also contributed to this document:

- Thomas D. Nadeau, CA Technologies
- Nurit Sprecher, Nokia Siemens Networks
- Yaacov Weingarten, Nokia Siemens Networks

9. References

9.1. Normative References

[I-D.ietf-mpls-lsp-ping-enhanced-dsmap]
Bahadur, N., Kompella, K., and G. Swallow, "Mechanism for performing LSP-Ping over MPLS tunnels",

draft-ietf-mpls-lsp-ping-enhanced-dsmap-09 (work in progress), May 2011.

[I-D.ietf-mpls-p2mp-lsp-ping]
draft-ietf-mpls-p2mp-lsp-ping-17 (work in progress), June 2011.

[I-D.ietf-mpls-tp-identifiers]
Bocci, M., Swallow, G., and E. Gray, "MPLS-TP Identifiers",
draft-ietf-mpls-tp-identifiers-05 (work in progress), May 2011.
9.2. Informative References


Authors’ Addresses

Nitin Bahadur
Juniper Networks, Inc.
1194 N. Mathilda Avenue
Sunnyvale, CA  94089
US
Phone: +1 408 745 2000
Email: nitinb@juniper.net
URI:   www.juniper.net

Rahul Aggarwal
Juniper Networks, Inc.
1194 N. Mathilda Avenue
Sunnyvale, CA  94089
US
Phone: +1 408 745 2000
Email: rahul@juniper.net
URI:   www.juniper.net

Sami Boutros
Cisco Systems, Inc.
3750 Cisco Way
San Jose, CA  95134
US
Phone: 
Fax: 
Email: sboutros@cisco.com
URI: 

Eric Gray
Ericsson
900 Chelmsford Street
Lowell, MA  01851
US
Phone: +1 978 275 7470
Fax: 
Email: eric.gray@ericsson.com
URI: 