Using the NETCONF Protocol over Blocks Extensible Exchange Protocol (BEEP)
draft-ietf-netconf-beep-05

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 2, 2005.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This document specifies an application protocol mapping for the NETCONF protocol over the Blocks Extensible Exchange Protocol (BEEP).
1. Introduction

The NETCONF protocol [1] defines a simple mechanism through which a network device can be managed. NETCONF is designed to be usable over a variety of application protocols. This document specifies an application protocol mapping for NETCONF over the Blocks Extensible Exchange Protocol (BEEP) [7].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [2].

1.1 Why BEEP?

Use of BEEP is natural as an application protocol for transport of XML. As a peer to peer protocol, BEEP provides an easy way to implement NETCONF, no matter which side of the connection was the initiator. This "bidirectionality" allows for either manager or agent to initiate a connection. This is particularly important to support large number of intermittently connected devices, as well as those devices that must reverse the management connection in the face of firewalls and NATs.

The SASL profile used by BEEP allows for a simple and direct mapping to the existing security model for CLI, while TLS provides a strong well tested encryption mechanism with either server or server and client-side authentication.
2. BEEP Transport Mapping

All NETCONF over BEEP implementations MUST implement the profile and functional mapping between NETCONF and BEEP as described below.

2.1 NETCONF Session Establishment

Managers may be either BEEP listeners or initiators. Similarly, agents may be either listeners or initiators. Thus the initial exchange takes place without regard to whether a manager or the agent is the initiator. After the transport connection is established, as greetings are exchanged, they SHOULD each announce their support for TLS [4] and optionally SASL [3]. Once greetings are exchanged, if TLS is to be used and available by both parties, the listener STARTs a channel with the TLS profile.

Once TLS has been started, a new greeting is sent by both initiator and listener, as required by the BEEP RFC.

At this point, if SASL is desired, the initiator starts a BEEP channel to perform a SASL exchange to authenticate itself. Upon completion of authentication the channel is closed. That is, the channel is exclusively used to authenticate.

Examples of both TLS and SASL profiles can be found in [7].

It is anticipated that the SASL PLAIN mechanism will be heavily used in conjunction with TLS.[5] In such cases, in accordance with RFC 2595 the PLAIN mechanism MUST NOT be advertised in the first BEEP <greeting>, but only in the one following a successful TLS negotiation. This applies only if TLS and SASL PLAIN mechanisms are both to be used. The SASL PLAIN mechanism MUST NOT be used unencrypted channels to avoid risk of eavesdropping. More specifics about the use of SASL and TLS are mentioned in Security Considerations below.

Once authentication has occurred, there is no need to distinguish between initiator and listener. We now distinguish between manager and agent, and it is assumed that each knows its role in the conversation.

2.2 Starting a Channel for NETCONF

The manager now establishes new channel and specifies the single NETCONF profile. For example:
(M = Manager ; A = Agent)

M: MSG 0 1 . 10 48 101
M: Content-type: application/beep+xml
M: <start number="1">
M: <profile uri="http://iana.org/beep/netconf" />
M: </start>
M: END
A: RPY 0 1 . 38 87
A: Content-Type: application/beep+xml
A:
A: <profile uri="http://iana.org/beep/netconf" />
A: END

At this point we are ready to proceed on BEEP channel 1 with NETCONF operations.

Next the manager and the agent exchange NETCONF <hello> elements on the new channel so that each side learns the other’s capabilities. This occurs through a MSG. Each side will then respond with positively. The following example is adapted from [1] Section 8.1:

A: MSG 1 0 . 0 436
A: Content-type: application/beep+xml
A:
A: <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
A: <capabilities>
A: <capability>
A: </capability>
A: <capability>
A: urn:ietf:params:xml:ns:netconf:base:1.0#startup
A: </capability>
A: <capability>
A: http://example.net/router/2.3/core#myfeature
A: </capability>
A: </capabilities>
A: <session-id>4</session-id>
A: </hello>
A: END

M: RPY 1 0 . 0 0
M: END

Certain NETCONF capabilities may require additional BEEP channels. When such capabilities are defined, a BEEP mapping must be defined as
well.

At this point, the NETCONF session is established, and capabilities have been exchanged.

2.3 NETCONF Session Usage

Nearly all NETCONF operations are executed through the <rpc> tag. To issue an RPC, the manager transmits on the operational channel a BEEP MSG containing the RPC and its arguments. In accordance with the BEEP standard, RPC requests may be split across multiple BEEP frames.

Once received and processed, the agent responds with BEEP RPYs on the same channel with the response to the RPC. In accordance with the BEEP standard, responses may be split across multiple BEEP frames.

2.4 NETCONF Session Teardown

Upon receipt of <close-session> from the manager, once the agent has completed all RPCs, it will close BEEP channel 0. When an agent needs to initiate a close it will do so by closing BEEP channel 0. Although not required to do so, the agent should allow for a reasonable period for a manager to release an existing lock prior to initiating a close. Once the agent has closed channel 0, all locks are released, and each side follows tear down procedures as specified in [8]. Having received a BEEP close or having sent <close-session>, a manager MUST NOT send further requests. If there are additional activities due to expanded capabilities, these MUST cease in an orderly manner, and should be properly described in the capability mapping.

2.5 BEEP Profile for NETCONF

Profile Identification: http://iana.org/beep/netconf

messages exchanged during Channel Creation: not applicable

Messages starting one-to-one exchanges: "hello", "rpc", "rpc-reply"

Messages in positive replies: "rpc-reply"

Messages in negative replies: "rpc-reply"

Messages in one-to-many exchanges: none

Message syntax: [1]

message semantics: [1]
Contact Information: c.f., the "Author’s Address" section of this memo.
3. Security Considerations

Configuration information is by its very nature sensitive. Its transmission in the clear and without integrity checking leaves devices open to classic so-called "person in the middle" attacks. Configuration information often times contains passwords, user names, service descriptions, and topological information, all of which are sensitive. A NETCONF application protocol, therefore, must minimally support options for both confidentiality and authentication.

The BEEP mapping described in this document addresses both confidentiality and authentication in a flexible manner through the use of TLS and SASL profiles. Confidentiality is provided via the TLS profile, and is used as discussed above. In addition, the server certificate shall serve as the server’s authentication to the client. The client MUST be prepared to recognize a valid server certificate. While distribution of such certificates is beyond the scope of this document, the implementor is cautioned to be aware of any interdependencies that may be placed on the network infrastructure through the use of protocols that validate trust anchors.

For client-side authentication there are several options. The client MAY provide a certificate during the initiation phase of TLS, in which case the subject of that certificate shall be considered principle for authentication purposes. Once again, server implementors should be aware of any interdependencies that could be created through protocols used to validate trust anchors.

In the case where the client has not authenticated through TLS, the server SHOULD advertise one or more SASL profile, from which the client will choose. In the singular case where TLS is established the minimum profile MAY be PLAIN. Otherwise, implementations MUST support the DIGEST-MD5 profile as described in [6], and they MAY support other profiles such as OTP.[12]

Different environments may well allow different rights prior to and then after authentication. An authorization model is not specified in this document. When an operation is not properly authorized then a simple rpc-error containing "permission denied" is sufficient. Note that authorization information may be exchanged in the form of configuration information, which is all the more reason to ensure the security of the connection.
4. IANA Considerations

The IANA will assign a TCP port for NETCONF, and register the BEEP profile contained here-in.
5. Acknowledgments

This work is the product of the NETCONF IETF working group, and many people have contributed to the NETCONF discussion. Most notably, Rob Ens, Phil Schafer, Andy Bierman, Wes Hardiger, Ted Goddard, and Margaret Wasserman all contributed in some fashion to this work, which was originally to be found in the NETCONF base protocol specification. Thanks also to Weijing Chen, Keith Allen, Juergen Schoenwaelder, Marshall Rose, and Eamon O’Tuathail for their very constructive participation.
6. References

6.1 Normative References

6.2 Informative References

Authors’ Addresses

Eliot Lear
Cisco Systems
Glatt-com
Glattzentrum, Zurich 8301
CH

Email: lear@cisco.com

Ken Crozier
Cisco Systems
170 W. Tasman Dr.
San Jose, CA 95134-1706
US

Email: kcrozier@cisco.com
Appendix A. Change Log

05: improved advice on use of tls and SASL profiles.

04: complete revamp of the profile. Added <hello> as well as examples.

03: minor gnits relating to <close-session>

02: added comments about locking

01: Removed management channel, rpc-status, rpc-abort, and associated profile changes.
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.