Quality of Service Option for Proxy Mobile IPv6
draft-ietf-netext-pmip6-qos-10.txt

Abstract

This specification defines a new mobility option, the Quality of Service (QoS) option, for Proxy Mobile IPv6. This option can be used by the local mobility anchor and the mobile access gateway for negotiating Quality of Service parameters for a mobile node’s IP flows. The negotiated QoS parameters can be used for QoS policing and marking of packets to enforce QoS differentiation on the path between the local mobility anchor and the mobile access gateway. Furthermore, making QoS parameters available on the mobile access gateway enables mapping of these parameters to QoS rules that are specific to the access technology and allows those rules to be enforced on the access network using access technology specific approaches.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on June 28, 2014.
Table of Contents

1. Introduction .. 5

2. Conventions and Terminology 7
 2.1. Conventions ... 7
 2.2. Terminology ... 7

3. Overview of QoS Support in Proxy Mobile IPv6 10
 3.1. Quality of Service Option - Usage Examples 12

4. Protocol Messaging Extensions 15
 4.1. Quality of Service Option 15
 4.2. Quality of Service Attribute 17
 4.2.1. Per Mobile Node Aggregate Maximum Downlink Bit Rate 19
 4.2.2. Per Mobile Node Aggregate Maximum Uplink Bit Rate 20
 4.2.3. Per Mobility Session Aggregate Maximum Downlink Bit Rate 21
 4.2.4. Per Mobility Session Aggregate Maximum Uplink Bit Rate 23
 4.2.5. Allocation and Retention Priority 25
 4.2.6. Aggregate Maximum Downlink Bit Rate 26
 4.2.7. Aggregate Maximum Uplink Bit Rate 27
 4.2.8. Guaranteed Downlink Bit Rate 29
 4.2.9. Guaranteed Uplink Bit Rate 30
 4.2.10. QoS Traffic Selector 31
 4.2.11. QoS Vendor Specific Attribute 32
 4.3. New Status Code for Proxy Binding Acknowledgement ... 33
 4.4. New Notification Reason for Update Notification Message 33
 4.5. New Status Code for Update Notification Acknowledgement Message 33

5. Protocol Considerations 34
 5.1. Local Mobility Anchor Considerations 34
 5.2. Mobile Access Gateway Considerations 38

6. QoS Services in Integrated WLAN-3GPP Networks 42
 6.1. Technical Scope and Procedure 42
 6.2. Relevant QoS Attributes 44

7. IANA Considerations .. 46

8. Implementation Status .. 49

9. Security Considerations 51

10. Acknowledgements .. 52
11. References .. 53
11.1. Normative References .. 53
11.2. Informative References 53

Appendix A. Information when implementing 3GPP QoS in IP transport network 55
A.1. Mapping tables ... 55
A.2. Use cases and protocol operations 56
 A.2.1. Handover of existing QoS rules 56
 A.2.2. Establishment of QoS rules 58
 A.2.3. Dynamic Update to QoS Policy 60

Appendix B. Information when implementing PMIP based QoS support with IEEE 802.11e 62

Appendix C. Information when implementing with a Broadband Network Gateway 66

Authors’ Addresses ... 67
1. Introduction

Mobile operators deploy Proxy Mobile IPv6 (PMIPv6) [RFC5213] to enable network-based mobility management for mobile nodes (MN). Users can access Internet Protocol (IP) based services from their mobile device by using various radio access technologies. Current standardization effort considers strong QoS classification and enforcement for cellular radio access technologies. QoS policies are typically controlled by a policy control function, whereas the policies are enforced by one or more gateways in the infrastructure, such as the local mobility anchor and the mobile access gateway, as well as by access network elements. Policy control and QoS differentiation for access to the mobile operator network through alternative non-cellular access technologies is not yet considered, even though some of these access technologies are able to support QoS by appropriate traffic prioritization techniques. However, handover and IP Flow Mobility using alternative radio access technologies, such as IEEE802.16 and Wireless LAN according to the IEEE802.11 specification, are being considered by the standards [TS23.402], whereas inter-working with the cellular architecture to establish QoS policies in alternative access networks has not received much attention so far.

In particular Wireless LAN (WLAN) has been identified as an alternative technology to complement cellular radio access. Since the 802.11e extension provides QoS extensions to WLAN, it is beneficial to apply QoS policies to WLAN access, which enables QoS classification of downlink as well as uplink traffic between a mobile node and its local mobility anchor. Three functional operations have been identified to accomplish this:

(a) Maintaining QoS classification during a handover between cellular radio access and WLAN access by means of establishing QoS policies in the handover target access network,

(b) mapping of QoS classes and associated policies between different access systems and

(c) establishment of QoS policies for new data sessions/flows, which are initiated while using WLAN access.

This document specifies an extension to the PMIPv6 protocol [RFC5213] to establish QoS policies for a mobile node’s data traffic on the local mobility anchor and the mobile access gateway. QoS policies are conveyed in-band with PMIPv6 signaling using the specified QoS option and are enforced on the local mobility anchor for downlink traffic and on the mobile access gateway and its access network for the uplink traffic. The specified option allows association between
IP session classification characteristics, such as a Differentiated Services Code Point (DSCP) [RFC2474], and the expected QoS class for this IP session. This document specifies fundamental QoS attributes which apply on a per mobile node, mobility session or on a per-flow basis. The specified attributes are not specific to any access technology, but are compatible with the Third Generation Partnership Project (3GPP) and IEEE 802.11 Wireless LAN QoS specifications.

Additional QoS attributes can be specified and used with the QoS option, e.g. to represent more specific descriptions of latency constraints or jitter bounds. The specification of such additional QoS attributes as well as the handling of QoS policies between the mobile access gateway and the access network are out of scope for this specification.
2. Conventions and Terminology

2.1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2.2. Terminology

All the mobility related terms used in this document are to be interpreted as defined in the Proxy Mobile IPv6 specifications [RFC5213], [RFC5844], and [RFC7077]. Additionally, this document uses the following abbreviations:

Differentiated Services Code Point (DSCP)

In Differentiated Services Architecture [RFC2474], packets are classified and marked to receive a particular per-hop forwarding behavior on nodes along their path based on the marking present on the packet. This marking on IPv4 and IPv6 packets that defines a specific Per-hop behavior is known as DSCP. Refer to [RFC2474], [RFC2475], and [RFC4594] for complete explanation.

QoS Service Request

A set of QoS parameters that are defined to be enforced on one or more mobile node's IP flows. The parameters at the minimum include a DSCP marking and additionally may include Guaranteed Bit Rate, Aggregate Maximum Bit Rate. The Quality of Service option defined in this document represents a QoS Service Request.

Guaranteed Bit Rate (GBR)

GBR denotes the assured bit-rate that will be provided by the network for a set of IP flows. It is assumed that the network reserves the resources for supporting the GBR parameter. Variants of the GBR term can be defined by limiting the scope of the target IP flows on which the GBR is applied to a mobile node, mobility session or flow direction. Example of such definitions that are used in this document are, Guaranteed Downlink Bit Rate and Guaranteed Uplink Bit Rate.

Aggregate Maximum Bit Rate (AMBR)

AMBR defines the upper limit on the bit-rate that can be provided by the network for a set of IP flows. IP packets exceeding the AMBR limit will be discarded by the rate-shaping function where
the AMBR parameter is enforced. Variants of AMBR term can be defined by restricting the target set of IP flows on which the AMBR is applied to a mobile node, mobility session or flow direction. Example of such definitions that are used in this document are, Per Mobile Node Aggregate Maximum Downlink Bit Rate, Per Mobile Node Aggregate Maximum Uplink Bit Rate, Per Mobility Session Aggregate Maximum Downlink Bit Rate, and Per Mobility Session Aggregate Maximum Uplink Bit Rate.

Allocation and Retention Priority (AARP)

AARP is used in congestion situations when there are no sufficient resources for meeting all services requests. It is used primarily by the Admission Control function to determine whether a particular service request must be rejected due to lack of resources, or if it must be rejected by preempting an existing low-priority service.

Downlink (DL) Traffic

The mobile node’s IP packets that the mobile access gateway receives from the local mobility anchor is referred to as the Downlink traffic. The "Downlink" term used in the QoS attribute definition is always from the reference point of the mobile node and it implies traffic heading towards the mobile node.

Uplink (UL) Traffic

The mobile node’s IP packets that the mobile access gateway forwards to the local mobility anchor is referred to as the Uplink traffic. The "Uplink" term used in the QoS attribute definitions is based on the reference point of the mobile node and "Uplink" implies traffic originating from the mobile node.

Mobility Session

The term, mobility session, is defined in [RFC5213]. It refers to the creation or existence of state associated with the mobile node’s mobility binding on the local mobility anchor and on the mobile access gateway.

Service Identifier

In some mobility architectures, multiple services within the same mobility service subscription are offered to a mobile node. Each of those services provide a specific service (Example: Internet Service, Voice Over IP Service) and has an identifier called, Service Identifier. 3GPP APN (Access Point Name) is an example of
a Service Identifier. Refer to [RFC5149] for the definition of
the Service Identifier and the mobility option used for carrying
the Service Identifier.
Overview of QoS Support in Proxy Mobile IPv6

The Quality of Service support in Proxy Mobile IPv6 specified in this document is based on the Differentiated-Services architecture ([RFC2474] and [RFC2475]). The access and the home network in the Proxy Mobile IPv6 domain are assumed to be DiffServ enabled, with every network node in the forwarding path for the mobile node’s IP traffic being Diffserv compliant. The per-hop behavior for providing differential treatment based on the DiffServ marking in the packet is assumed to be consistent throughout the Proxy Mobile IPv6 domain.

The local mobility anchor in the home network and the mobile access gateway in the access network define the network boundary between the access and the home network. These entities being the entry and exit points for the mobile node’s IP traffic are the logical choice for being the QoS enforcement points. The basic QoS primitives such as marking, metering, policing and rate-shaping on the mobile node’s IP flows can be enforced at these nodes.

The local mobility anchor and the mobile access gateway can negotiate the Quality of Service parameters for a mobile node’s IP flows based on the signaling extensions defined in this document. The QoS services that can be enabled for a mobile node are for meeting both the quantitative performance requirements, such as Guaranteed Bit-Rate, and as well for realizing relative performance treatment by the ways of class-based differentiation. The subscriber’s policy and the charging profile is a key consideration for the mobility entities in the QoS service negotiation. The decision on the type of QoS services that are to be enabled for a mobile node is based on the subscriber profile and based on available network resources. The negotiated QoS parameters are used for providing QoS service differentiation on the path between the local mobility anchor and the mobile access gateway. The signaling related to QoS services is strictly between the mobility entities and does not result in per-flow state, or signaling to any other node in the network.
Figure 1 explains the support of QoS services in a Proxy Mobile IPv6 domain. The local mobility anchor and the mobile access gateway have negotiated QoS parameters for the mobility sessions belonging to MN-1 and MN-2. A Per-Session-AMBR of 1Mbps and 2 Mbps for MN-1 and MN-2 respectively. Furthermore, different IP flows from MN-1 and MN-2 are given different QoS service treatment. For example, a GBR of 64Kbps for Flow-1 and Flow-5 is assured, a DSCP marking enforcement of “Z”
3.1. Quality of Service Option - Usage Examples

Use Case 1: Figure 2 explains a scenario where a local mobility anchor initiates a QoS service request to a mobile access gateway.

```
+-----+            +-----+              +-----+
| MN  |            | MAG |              | LMA |
+-----+            +-----+              +-----+
    |                   |                   |
1)    |---- MN Attach ----|                   |
    |                   |------ PBU ------->|
2)    |                   |<----- PBA --------|
    |                   |o=================o|
3)    |                   |   PMIPv6 Tunnel   |
    |                   |                   |
4)    |                   |<-------- UPN (QoS)--|
    |                   |                   |
5)    |                   |------ UPA (QoS')->|
    |                   |                   |
6)    |                   |<------ UPN (QoS')--|
    |                   |                   |
7)    |                   |------ UPA (QoS')->|
    |                   |                   |
8)    |                   |o--------------------|
    |                   |                   |
LMA initiates QoS Service Request
9)    |                   |o--------------------|
7)    |                   |QoS Rules ---|
6)    |                   |Established <--| QoS Rules ---|
5)    |                   |--- Established <--|
4)    |                   |---<------------------|
3)    |                   |<------------------>|
2)    |                   |<------------------>|
1)    |                   |<------------------>|
```

Figure 2: LMA Initiated QoS Service Request

- (1) to (4): MAG detects the mobile node’s attachment to the access link and initiates the signaling with the local mobility anchor. The LMA and MAG upon completing the signaling establish the mobility session and the forwarding state.

- (5) to (8): The LMA initiates a QoS Service request to the mobile access gateway. The trigger for this service can be based on a trigger from a policy function and the specific details of that trigger are outside the scope of this document. The LMA sends an Update Notification message [RFC7077] to the MAG. The message includes the QoS option Section 4.1 which includes a set of QoS parameters. The mobile access gateway on determining that it cannot support the requested QoS service request for that mobile sends an revised QoS option in the Update Notification.
Acknowledgement message, which the LMA agrees to the proposed QoS parameters by sending a new Update Notification message with a modified QoS option.

- (9) to (11): Upon successfully negotiating a QoS service request the MAG and the LMA install the QoS rules for that service request. Furthermore, the MAG (using access technology specific mechanisms) install the QoS rules on the access network.

Use Case 2: Figure 3 explains a scenario where a mobile access gateway initiates a QoS service request to a local mobility anchor.

--- MN Attach ---
- PBU
- PUA

(MAG initiates QoS Service Request)
- PBU (QoS)
- PUA (QoS)

Established <-| QoS Rules ---
--- Established <-| ---

Figure 3: MAG Initiated QoS Service Request

- (1) to (4): MAG detects the mobile node’s attachment to the access link and initiates the signaling with the local mobility anchor. The LMA and MAG upon completing the signaling establish the mobility session and the forwarding state.

- (5) to (6): The MAG initiates a QoS Service request to the local mobility anchor. The trigger for this service can be based on a trigger from the mobile node using access technology specific mechanisms. The specific details of that trigger are outside the scope of this document. The MAG sends a Proxy Binding Update message [RFC5213] to the LMA. The message includes the QoS option Section 4.1 which includes a set of QoS parameters. The LMA agrees to the proposed QoS service request by sending Proxy
Binding Acknowledgement message.

- (7) to (9): Upon successfully negotiating a QoS service request the MAG and the LMA install the QoS rules for that service request. Furthermore, the MAG using access technology specific mechanisms install the QoS rules on the access network.
4. Protocol Messaging Extensions

4.1. Quality of Service Option

The Quality of Service option is a mobility header option used by local mobility anchor and mobile access gateway for negotiating QoS parameters associated with a mobility session. This option can be carried in Proxy Binding Update (PBU) [RFC5213], Proxy Binding Acknowledgement (PBA) [RFC5213], Update Notification (UPN) [RFC7077] and Update Notification Acknowledgement (UPA) [RFC7077] messages. There can be more than one instance of the Quality of Service option in a single message. Each instance of the Quality of Service option represents a specific QoS service request.

The alignment requirement for this option is 4n.

```
+---------------------------------+---------------------------------+---------------------------------+---------------------------------+
| Type | Length | SR-ID | TC | OC | Reserved | QoS Attribute(s) | ~ | ~ |
+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+~+~|
```

Figure 4: QoS Option

Type

<IANA-1>

Length

8-bit unsigned integer indicating the length of the option in octets, excluding the Type and Length fields.

Service Request Identifier (SR-ID)

A 8-bit unsigned integer used for identifying the QoS service request. Its uniqueness is within the scope of a mobility session. The local mobility anchor always allocates the identifier value. When the QoS Service request is initiated by a mobile access gateway, it sets the value to (0) and the local mobility anchor allocates and includes the value in the
response. For any QoS service requests initiated by a local mobility anchor, the Service Request Identifier is set to the allocated value.

Traffic Class (TC)

Traffic Class consists of a 6-bit DSCP field followed by a 2-bit reserved field.

Differentiated Services Code Point (DSCP)

A 6-bit unsigned integer indicating the code point value, as defined in [RFC2475] to be used for the mobile node’s IP flows. When this DSCP marking needs to be applied only for a subset of mobile node’s IP flows, there will be a Traffic Selector attribute (Section 4.2.10) in the option which provides the flow selectors. In the absence of any such traffic selector attribute, the DSCP marking applies to all the IP flows associated with the mobility session.

Two-bit Reserved Field

The last two-bits in the Traffic Class field are currently unused. These bits MUST be initialized by the sender to (0) and MUST be ignored by the receiver.

Operational Code (OC)

One-Octet Operational code indicates the type of QoS request.

RESPONSE: (0)
 Response to a QoS request

ALLOCATE: (1)
 Request to allocate QoS resources

DE-ALLOCATE: (2)
 Request to de-Allocate QoS resources

MODIFY: (3)
 Request to modify QoS parameters for a previously negotiated QoS service request

QUERY: (4)
 Query to list the previously negotiated QoS service requests and that are still active
NEGOTIATE: (5)
Response to a QoS service request with a counter QoS proposal

Reserved: (6) to (255)
Currently not used. Receiver MUST ignore the option received with this value.

Reserved
This field is unused for now. The value MUST be initialized to a value of (0) by the sender and MUST be ignored by the receiver.

QoS Attribute(s)
Zero or more Type-Length-Value (TLV) encoded QoS Attributes, also referred to as sub-options. The format of the QoS attribute is defined in Section 4.2. The interpretation and usage of the QoS attribute is based on the value in the "Type" field.

4.2. Quality of Service Attribute
This section identifies the format of a Quality of Service attribute. QoS attribute is a sub-option that can be included in the Quality of Service option defined in Section 4.1. The latter part of this section identifies the QoS attributes defined by this specification.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type       |     Length    |           Value               ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 5: Format of a Quality of Service Attribute

Type: 8-bit unsigned integer indicating the type of the QoS attribute. This specification reserves the following values.

(0) - Reserved
This value is reserved and cannot be used
(1) – Per-MN-Agg-Max-DL-Bit-Rate
This QoS attribute, Per Mobile Node Aggregate Maximum Downlink Bit Rate, is defined in Section 4.2.1.

(2) – Per-MN-Agg-Max-UL-Bit-Rate
This QoS attribute, Per Mobile Node Aggregate Maximum Uplink Bit Rate, is defined in Section 4.2.2.

(3) – Per-Session-Agg-Max-DL-Bit-Rate
This QoS attribute, Per Mobility Session Aggregate Maximum Downlink Bit Rate, is defined in Section 4.2.3.

(4) – Per-Session-Agg-Max-UL-Bit-Rate
This QoS attribute, Per Mobility Session Aggregate Maximum Uplink Bit Rate, is defined in Section 4.2.4.

(5) – Allocation-Retention-Priority
This QoS attribute, Allocation and Retention Priority, is defined in Section 4.2.5.

(6) – Aggregate-Max-DL-Bit-Rate
This QoS attribute, Aggregate Maximum Downlink Bit Rate, is defined in Section 4.2.6.

(7) – Aggregate-Max-UL-Bit-Rate
This QoS attribute, Aggregate Maximum Uplink Bit Rate, is defined in Section 4.2.7.

(8) – Guaranteed-DL-Bit-Rate
This QoS attribute, Guaranteed Downlink Bit Rate, is defined in Section 4.2.8.

(9) – Guaranteed-UL-Bit-Rate
This QoS attribute, Guaranteed Uplink Bit Rate, is defined in Section 4.2.9.
(10) - QoS-Traffic-Selector

This QoS attribute, QoS Traffic Selector, is defined in Section 4.2.10.

(11) - QoS-Vendor-Specific-Attribute

This QoS attribute, QoS Vendor Specific Attribute, is defined in Section 4.2.11.

(255) - Reserved

This value is reserved and cannot be used

Length: 8-bit unsigned integer indicating the number of octets needed to encode the Value, excluding the Type and Length fields.

Value: The format of this field is based on the Type value.

4.2.1. Per Mobile Node Aggregate Maximum Downlink Bit Rate

This attribute, Per-MN-Agg-Max-DL-Bit-Rate, represents the maximum downlink bit-rate for a mobile node. It is a variant of the AMBR term defined in Section 2.2. This value is an aggregate across all mobility sessions associated with that mobile node.

This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute. There can only be a single instance of this attribute present in a QoS option.

When this attribute is present in a Proxy Binding Update sent by a mobile access gateway, or in a Update Notification message sent by a local mobility anchor, it indicates the maximum aggregate downlink bit-rate that is being requested for the mobile node at the peer.

When this attribute is present in a Proxy Binding Acknowledgement message, or in an Update Notification Acknowledgement message, it indicates the maximum aggregate downlink bit-rate that the peer agrees to offer.

If multiple mobility sessions are established for a mobile node, through multiple mobile access gateways and with sessions anchored either on a single local mobility anchor, or when spread out across multiple local mobility anchors, then it depends on the operator’s policy and the specific deployment as how the total bandwidth for the mobile node on each MAG-LMA pair is computed.
<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per-MN-Agg-Max-DL-Bit-Rate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

o Type: 1

o Length: The length in octets of the attribute, excluding the Type and Length fields. This value is set to (6).

o Reserved: This field is unused for now. The value MUST be initialized by the sender to 0 and MUST be ignored by the receiver.

o Per-MN-Agg-Max-DL-Bit-Rate: is a 32-bit unsigned integer, and it indicates the aggregate maximum downlink bit-rate that is requested/allocated for all the mobile node’s IP flows. The measurement units for Per-MN-Agg-Max-DL-Bit-Rate are bits-per-second.

4.2.2. Per Mobile Node Aggregate Maximum Uplink Bit Rate

This attribute, Per-MN-Agg-Max-UL-Bit-Rate, represents the maximum uplink bit-rate for the mobile node. It is a variant of the AMBR term defined in Section 2.2. This value is an aggregate across all mobility sessions associated with that mobile node.

This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute. There can only be a single instance of this attribute present in a QoS option.

When this attribute is present in a Proxy Binding Update sent by a mobile access gateway, or in an Update Notification message sent by the local mobility anchor, it indicates the maximum aggregate uplink bit-rate that is being requested for the mobile node at the peer.

When this attribute is present in a Proxy Binding Acknowledgement message, or in an Update Notification Acknowledgement message, it indicates the maximum aggregate uplink bit-rate that the peer agrees to offer for that mobile node.

If multiple mobility sessions are established for a mobile node, through multiple mobile access gateways and with sessions anchored either on a single local mobility anchor, or when spread out across multiple local mobility anchors, then it depends on the operator’s
policy and the specific deployment as how the total bandwidth for the
mobile node on each MAG-LMA pair is computed.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length | Reserved |
+-+
| Per-MN-Agg-Max-UL-Bit-Rate |
+-+
0 Type: 2
0 Length: The length in octets of the attribute, excluding the Type
and Length fields. This value is set to (6).
0 Reserved: This field is unused for now. The value MUST be
initialized by the sender to 0 and MUST be ignored by the
receiver.
0 Per-MN-Agg-Max-UL-Bit-Rate: is of type unsigned 32-bit integer,
and it indicates the aggregate maximum uplink bit-rate that is
requested/allocated for the mobile node’s IP flows. The
measurement units for Per-MN-Agg-Max-UL-Bit-Rate are bits-per-
second.

4.2.3. Per Mobility Session Aggregate Maximum Downlink Bit Rate

This attribute, Per-Session-Agg-Max-DL-Bit-Rate, represents the
maximum downlink bit-rate for the mobility session. It is a variant
of the AMBR term defined in Section 2.2.

This attribute can be included in the Quality of Service option
defined in Section 4.1 and it is an optional attribute. There can
only be a single instance of this attribute present in a QoS option.

When this attribute is present in a Proxy Binding Update sent by a
mobile access gateway, or in an Update Notification message sent by
the local mobility anchor, it indicates the maximum aggregate
downlink bit-rate that is being requested for that mobility session.

When this attribute is present in a Proxy Binding Acknowledgement
message, or in an Update Notification Acknowledgement message, it
indicates the maximum aggregate downlink bit-rate that the peer
agrees to offer for that mobility session.

When a QoS option includes both the Per-Session-Agg-Max-DL-Bit-Rate
attribute and the QOS Traffic Selector attribute (Section 4.2.10),
then the QoS Traffic Selector attribute does not apply to this attribute.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>S</th>
<th>E</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Type:** 3
- **Length:** The length of the attribute in octets, excluding the Type and Length fields. This value is set to (6).

- **Service (S) flag:** This flag is used for extending the scope of the target flows for Per-Session-Agg-Max-DL-Bit-Rate to mobile node’s other mobility sessions sharing the same service identifier. 3GPP Access Point Name (APN) is an example of service identifier and that identifier is carried using the Service Selection mobility option [RFC5149].

 * When the (S) flag is set to a value of (1), then the Per-Session-Agg-Max-DL-Bit-Rate is measured as an aggregate across all the mobile node’s other mobility sessions sharing the same service identifier associated with this mobility session.

 * When the (S) flag is set to a value of (0), then there is no special effect on the receiver.

 * The (S) flag MUST NOT be set to a value of (1), when there is no service identifier associated with the mobility session.

- **Exclude (E) flag:** This flag is used to request that some flows be excluded from the target IP flows for which Per-Session-Agg-Max-DL-Bit-Rate is measured.

 * When the (E) flag is set to a value of (1), then the request is for excluding the IP flows for which Guaranteed-DL-Bit-Rate (Section 4.2.8) is negotiated, from the flows for which Per-Session-Agg-Max-DL-Bit-Rate applies is measured.

 * When the (E) flag is set to a value of (0), then there is no special effect on the receiver.

 * When the (S) flag and (E) flag are both set to a value of (1), then the request is for excluding all the IP flows sharing the
service identifier associated with this mobility session, from the target flows for which Per-Session-Agg-Max-DL-Bit-Rate is measured.

- **Reserved**: This field is unused for now. The value MUST be initialized by the sender to 0 and MUST be ignored by the receiver.

- **Per-Session-Agg-Max-DL-Bit-Rate**: is a 32-bit unsigned integer, and it indicates the aggregate maximum downlink bit-rate that is requested/allocated for all the IP flows associated with that mobility session. The measurement units for Per-Session-Agg-Max-DL-Bit-Rate are bits-per-second.

4.2.4. Per Mobility Session Aggregate Maximum Uplink Bit Rate

This attribute, Per-Session-Agg-Max-UL-Bit-Rate, represents the maximum uplink bit-rate for the mobility session. It is a variant of the AMBR term defined in Section 2.2.

This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute. There can only be a single instance of this attribute present in a QoS option.

When this attribute is present in a Proxy Binding Update sent by a mobile access gateway, or in an Update Notification message [RFC7077] sent by the local mobility anchor, it indicates the maximum aggregate uplink bit-rate that is being requested for that mobility session.

When this attribute is present in a Proxy Binding Acknowledgement message, or in an Update Notification Acknowledgement [RFC7077] message, it indicates the maximum aggregate uplink bit-rate that the peer agrees to offer for that mobility session.

When a QoS option includes both the Per-Session-Agg-Max-UL-Bit-Rate attribute and the QOS Traffic Selector attribute (Section 4.2.10), then the QOS Traffic Selector attribute does not apply to this attribute.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td>++++++++++++++++++++++++++</td>
<td>Type</td>
<td>Length</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>Per-Session-Agg-Max-UL-Bit-Rate</td>
<td></td>
</tr>
<tr>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Type: 4

Length: The length of the attribute in octets, excluding the Type and Length fields. This value is set to (6).

Service (S) flag: This flag is used for extending the scope of the target flows for Per-Session-Agg-Max-UL-Bit-Rate to mobile node’s other mobility sessions sharing the same service identifier. 3GPP Access Point Name (APN) is an example of service identifier and that identifier is carried using the Service Selection mobility option [RFC5149].

* When the (S) flag is set to a value of (1), then the Per-Session-Agg-Max-UL-Bit-Rate is measured as an aggregate across all the mobile node’s other mobility sessions sharing the same service identifier associated with this mobility session.

* When the (S) flag is set to a value of (0), then there is no special effect on the receiver.

* The (S) flag MUST NOT be set to a value of (1), when there is no service identifier associated with the mobility session.

Exclude (E) flag: This flag is used to request that some flows be excluded from the target IP flows for which Per-Session-Agg-Max-UL-Bit-Rate is measured.

* SGS When the (E) flag is set to a value of (1), then the request is for excluding the IP flows for which Guaranteed-UL-Bit-Rate (Section 4.2.9) is negotiated, from the flows for which Per-Session-Agg-Max-UL-Bit-Rate is measured.

* When the (E) flag is set to a value of (0), then there is no special effect on the receiver.

* When the (S) flag and (E) flag are both set to a value of (1), then the request is for excluding all the IP flows sharing the service identifier associated with this mobility session, from the target flows for which Per-Session-Agg-Max-UL-Bit-Rate is measured.

Reserved: This field is unused for now. The value MUST be initialized by the sender to 0 and MUST be ignored by the receiver.

Per-Session-Agg-Max-UL-Bit-Rate: is a 32-bit unsigned integer, and it indicates the aggregate maximum uplink bit-rate that is requested/allocated for all the IP flows associated with that
4.2.5. Allocation and Retention Priority

This attribute, Allocation-Retention-Priority, represents allocation and retention priority for the mobility session or a set of IP flows. It is defined in Section 2.2.

This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute. There can only be a single instance of this attribute present in a QoS option.

When the QoS option includes both the Allocation and Retention Priority attribute and the QOS Traffic Selector attribute (Section 4.2.8), then the Allocation and Retention Priority attribute is to be applied at a flow level. The traffic selector in the QOS Traffic Selector attribute identifies the target flows.

When the QoS option including the Allocation and Retention Priority attribute does not include the QOS Traffic Selector attribute (Section 4.2.8), then the Allocation and Retention Priority attribute is to be applied to all the IP flows associated with that mobility session.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Reserved</th>
<th>Priority-Level</th>
<th>Preemption-Capability</th>
<th>Preemption-Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

o Type: 5

o Length: The length of the attribute in octets, excluding the Type and Length fields. This value is set to (10).

o Reserved: This field is unused for now. The value MUST be initialized by the sender to 0 and MUST be ignored by the receiver.

o Priority-Level: is of type unsigned 32-bit integer, and it is used to decide whether a mobility session establishment or modification request can be accepted; this is typically used for admission control of Guaranteed Bit Rate traffic in case of resource
The priority level can also be used to decide which existing mobility session to pre-empt during resource limitations. The priority level defines the relative timeliness of a resource request.

Values 1 to 15 are defined, with value 1 as the highest level of priority.

Values 1 to 8 should only be assigned for services that are authorized to receive prioritized treatment within an operator domain. Values 9 to 15 may be assigned to resources that are authorized by the home network and thus applicable when a mobile node is roaming.

- **Preemption-Capability**: defines whether a service data flow can get resources that were already assigned to another service data flow with a lower priority level. The following values are defined:
 - Enabled (0): This value indicates that the service data flow is allowed to get resources that were already assigned to another IP data flow with a lower priority level.
 - Disabled (1): This value indicates that the service data flow is not allowed to get resources that were already assigned to another IP data flow with a lower priority level.

- **Preemption-Vulnerability**: defines whether a service data flow can lose the resources assigned to it in order to admit a service data flow with higher priority level. The following values are defined:
 - Enabled (0): This value indicates that the resources assigned to the IP data flow can be pre-empted and allocated to a service data flow with a higher priority level.
 - Disabled (1): This value indicates that the resources assigned to the IP data flow shall not be pre-empted and allocated to a service data flow with a higher priority level.

4.2.6. Aggregate Maximum Downlink Bit Rate

This attribute, Aggregate-Max-DL-Bit-Rate, represents the maximum downlink bit-rate for the mobility session. It is a variant of the AMBR term defined in Section 2.2.

This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute. There can only be a single instance of this attribute present in a QoS option.
When this attribute is present in a Proxy Binding Update sent by a mobile access gateway, or in an Update Notification message sent by the local mobility anchor, it indicates the maximum aggregate bit-rate for downlink IP flows that is being requested.

When this attribute is present in a Proxy Binding Acknowledgement message, or in an Update Notification Acknowledgement message, it indicates the maximum aggregate downlink bit-rate that the peer agrees to offer.

When a QoS option includes both the Aggregate-Max-DL-Bit-Rate attribute and the QOS-Traffic-Selector attribute (Section 4.2.10), then the Aggregate-Max-DL-Bit-Rate attribute is to be enforced at a flow level and the traffic selectors present in the QOS-Traffic-Selector attribute identifies those target flows.

When the QoS option that includes the Aggregate-Max-DL-Bit-Rate attribute does not include the QOS-Traffic-Selector attribute (Section 4.2.10), then the Aggregate-Max-DL-Bit-Rate attribute is to be applied to all the IP flows associated with the mobility session.

```
|                   Aggregate-Max-DL-Bit-Rate                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type      |     Length    |            Reserved           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                   Aggregate-Max-DL-Bit-Rate                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

- **Type**: 6
- **Length**: The length of the attribute in octets, excluding the Type and Length fields. This value is set to (6).
- **Reserved**: This field is unused for now. The value MUST be initialized by the sender to 0 and MUST be ignored by the receiver.
- **Aggregate-Max-DL-Bit-Rate**: is a 32-bit unsigned integer, and it indicates the aggregate maximum downlink bit-rate that is requested/allocated for downlink IP flows. The measurement units for Aggregate-Max-DL-Bit-Rate are bits-per-second.

4.2.7. Aggregate Maximum Uplink Bit Rate

This attribute, Aggregate-Max-UL-Bit-Rate, represents the maximum uplink bit-rate for the mobility session. It is a variant of the AMBR term defined in Section 2.2.
This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute. There can only be a single instance of this attribute present in a QoS option.

When this attribute is present in a Proxy Binding Update sent by a mobile access gateway, or in an Update Notification message sent by the local mobility anchor, it indicates the maximum aggregate uplink bit-rate that is being requested.

When this attribute is present in a Proxy Binding Acknowledgement message, or in an Update Notification Acknowledgement message, it indicates the maximum aggregate uplink bit-rate that the peer agrees to offer.

When a QoS option includes both the Aggregate-Max-UL-Bit-Rate attribute and the QOS-Traffic-Selector attribute (Section 4.2.10), then the Aggregate-Max-UL-Bit-Rate attribute is to be enforced at a flow level and the traffic selectors present in the QOS-Traffic-Selector attribute identifies those target flows.

When the QoS option that includes the Aggregate-Max-UL-Bit-Rate attribute does not include the QOS-Traffic-Selector attribute (Section 4.2.10), then the Aggregate-Max-UL-Bit-Rate attribute is to be applied to all the IP flows associated with the mobility session.

```
+-------------------------------+
|     Type      |     Length    |            Reserved           |
|-------------------------------|
|                   Aggregate-Max-UL-Bit-Rate                   |
```

- **Type**: 7
- **Length**: The length of the attribute in octets, excluding the Type and Length fields. This value is set to (6).
- **Reserved**: This field is unused for now. The value MUST be initialized by the sender to 0 and MUST be ignored by the receiver.
- **Per-Session-Agg-Max-UL-Bit-Rate**: is a 32-bit unsigned integer, and it indicates the aggregate maximum uplink bit-rate that is requested/allocated for all the IP flows associated with that mobility session. The measurement units for Aggregate-Max-UL-Bit-Rate are bits-per-second.
4.2.8. Guaranteed Downlink Bit Rate

This attribute, Guaranteed-DL-Bit-Rate, represents the assured bit-rate on the downlink path that will be provided for a set of IP flows associated with a mobility session. It is a variant of the GBR term defined in Section 2.2.

This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute. There can only be a single instance of this attribute present in a QoS option.

When this attribute is present in a Proxy Binding Update sent by a mobile access gateway, or in a Update Notification message sent by the local mobility anchor, it indicates the guaranteed downlink bit-rate that is being requested.

When this attribute is present in a Proxy Binding Acknowledgement message, or in an Update Notification Acknowledgement message, it indicates the guaranteed downlink bit-rate that the peer agrees to offer.

When a QoS option includes both the Guaranteed-DL-Bit-Rate attribute and the QOS-Traffic-Selector attribute (Section 4.2.10), then the Guaranteed-DL-Bit-Rate attribute is to be enforced at a flow level and the traffic selectors present in the QOS-Traffic-Selector attribute identifies those target flows.

When the QoS option that includes the Guaranteed-DL-Bit-Rate attribute does not include the QOS-Traffic-Selector attribute (Section 4.2.10), then the Guaranteed-DL-Bit-Rate attribute is to be applied to all the IP flows associated with the mobility session.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Reserved</th>
<th>Guaranteed-DL-Bit-Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- Type: 8
- Length: The length of the attribute in octets, excluding the Type and Length fields. This value is set to (6).
- Reserved: This field is unused for now. The value MUST be initialized by the sender to 0 and MUST be ignored by the receiver.
o Guaranteed-DL-Bit-Rate: is of type unsigned 32-bit integer, and it indicates the guaranteed bandwidth in bits-per-second for downlink IP flows. The measurement units for Guaranteed-DL-Bit-Rate are bits-per-second.

4.2.9. Guaranteed Uplink Bit Rate

This attribute, Guaranteed-UL-Bit-Rate, represents the assured bit-rate on the uplink path that will be provided for a set of IP flows associated with a mobility session. It is a variant of the GBR term defined in Section 2.2.

This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute. There can only be a single instance of this attribute present in a QoS option.

When this attribute is present in a Proxy Binding Update sent by a mobile access gateway, or in a Update Notification message sent by the local mobility anchor, it indicates the guaranteed uplink bit-rate that is being requested.

When this attribute is present in a Proxy Binding Acknowledgement message, or in an Update Notification Acknowledgement message, it indicates the guaranteed uplink bit-rate that the peer agrees to offer.

When a QoS option includes both the Guaranteed-UL-Bit-Rate attribute and the QOS-Traffic-Selector attribute (Section 4.2.10), then the Guaranteed-UL-Bit-Rate attribute is to be enforced at a flow level and the traffic selectors present in the QOS-Traffic-Selector attribute identifies those target flows.

When the QoS option that includes the Guaranteed-UL-Bit-Rate attribute does not include the QOS-Traffic-Selector attribute (Section 4.2.10), then the Guaranteed-UL-Bit-Rate attribute is to be applied to all the IP flows associated with the mobility session.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Length</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>+--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guaranteed-UL-Bit-Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+--</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 Type: 9
4.2.10. QoS Traffic Selector

This attribute, QoS-Traffic-Selector, includes the parameters used to match packets for a set of IP flows.

This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute.

When a QoS option that includes the QoS-Traffic-Selector also includes any one or more of the attributes, Allocation-Retention-Priority (Section 4.2.5), Aggregate-Max-DL-Bit-Rate (Section 4.2.6), Aggregate-Max-UL-Bit-Rate (Section 4.2.7), Guaranteed-DL-Bit-Rate (Section 4.2.8), and Guaranteed-UL-Bit-Rate (Section 4.2.9), then those included attributes are to be enforced at a flow level and the traffic selectors present in the QoS-Traffic-Selector attribute identifies those target flows. Furthermore, the DSCP marking in the QoS option is to be applied only to partial set of mobile node’s IP flows and the traffic selectors present in the QoS-Traffic-Selector attribute identifies those target flows.

| Type | Length | Reserved | TS Format | Traffic Selector ...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td>+--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td>+--</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Type: 10
- Length: The length of the attribute in octets, excluding the Type and Length fields.
- Reserved: This field is unused for now. The value MUST be initialized by the sender to 0 and MUST be ignored by the receiver.
o TS Format: An 8-bit unsigned integer indicating the Traffic Selector Format. Value (0) is reserved and MUST NOT be used. When the value of TS Format field is set to (1), the format that follows is the IPv4 Binary Traffic Selector specified in section 3.1 of [RFC6088], and when the value of TS Format field is set to (2), the format that follows is the IPv6 Binary Traffic Selector specified in section 3.2 of [RFC6088].

o Traffic Selector: variable-length opaque field for including the traffic specification identified by the TS format field.

4.2.11. QoS Vendor Specific Attribute

This attribute is used for carrying vendor specific QoS attributes. The interpretation and the handling of this option is specific to the vendor implementation.

This attribute can be included in the Quality of Service option defined in Section 4.1 and it is an optional attribute. There can be multiple instances of this attribute with different sub-type values present in a single QoS option.

```
<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-Type</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
```

o Type: 11

o Length: The length of the attribute in octets, excluding the Type and Length fields.

o Reserved: This field is unused for now. The value MUST be initialized by the sender to 0 and MUST be ignored by the receiver.

o Vendor ID: The Vendor ID is the SMI (Structure of Management Information) Network Management Private Enterprise Code of the IANA-maintained Private Enterprise Numbers registry [SMI].

o Sub-Type: An 8-bit field indicating the type of vendor-specific information carried in the option. The name space for this Sub-type is managed by the Vendor identified by the Vendor ID field.
4.3. New Status Code for Proxy Binding Acknowledgement

This document defines the following new Status Code value for use in Proxy Binding Acknowledgement message.

CANNOT_MEET_QOS_SERVICE_REQUEST (Cannot meet QoS Service Request):
<IANA-2>

4.4. New Notification Reason for Update Notification Message

This document defines the following new Notification Reason value for use in Update Notification message.

QOS_SERVICE_REQUEST (QoS Service Requested): <IANA-3>

4.5. New Status Code for Update Notification Acknowledgement Message

This document defines the following new Status code value for use in Update Notification Acknowledgement message.

CANNOT_MEET_QOS_SERVICE_REQUEST (Cannot meet QoS Service Request):
<IANA-4>
5. Protocol Considerations

5.1. Local Mobility Anchor Considerations

- The conceptual Binding Cache entry data structure maintained by the local mobility anchor, described in Section 5.1 of [RFC5213], can be extended to store a list of negotiated Quality of Service requests to be enforced. There can be multiple such entries and each entry must include the Service Request Identifier, DSCP value and the attributes defined in Section 4.2.

LMA Receiving a QoS Service Request:

- On receiving a Proxy Binding Update message with one or more instances of Quality of Service option included in the message, the local mobility anchor MUST process the option(s) and determine if the QoS service request for the proposed QoS service request(s) can be met. Each instance of the Quality of Service option represents a specific QoS service request. This determination to accept the request(s) can be based on policy configured on the local mobility anchor, available network resources, or based on other considerations.

- If the local mobility anchor can support the proposed QoS service requests in entirety, then it MUST send a Proxy Binding Acknowledgement message with a status code value of (0).

 * The message MUST include all the Quality of Service option instances copied (including all the option content) from the received Proxy Binding Update message. However, if the Operational Code field in the request is a QUERY, then the message MUST include all the Quality of Service option(s) reflecting the currently negotiated QoS service requests for that mobility session.

 * The Operational Code field in each of the Quality of Service option(s) MUST be set to RESPONSE.

 * The local mobility anchor MUST enforce the Quality of Service rules for all the negotiated QoS service requests on the mobile node’s uplink and downlink traffic.

- If the local mobility anchor cannot support any of the requested QoS service requests in entirety, then it MUST reject the request and send a Proxy Binding Acknowledgement message with the status code value set to CANNOT_MEET_QOS_SERVICE_REQUEST (Cannot meet QoS Service Request).
* The denial for QoS service request MUST NOT result in removal of the mobility session for that mobile node.

* The Operational Code field in each of the Quality of Service option(s) MUST be set to RESPONSE.

* The Proxy Binding Acknowledgement message may include the Quality of Service option based on the following considerations.

 + If the local mobility anchor cannot support QoS services for that mobile node, then Quality of Service option MUST NOT be included in the Proxy Binding Acknowledgement message. This serves as an indication to the mobile access gateway that QoS services are not supported for that mobile node.

 + If the local mobility anchor can support QoS services for that mobile node, but for a downgraded/revised QoS service request, or for a partial set of QoS service requests, then the updated Quality of Service option(s) MUST be included in the Proxy Binding Acknowledgement message. This includes the case, where the Attributes in a QoS option have conflicting requirements, Ex: Per-Session-Agg-Max-UL-Bit-Rate is lower than the Guaranteed-UL-Bit-Rate. The contents of each of the option (including the QoS attributes) MUST reflect the QoS service parameters that the local mobility anchor can support for that mobile node. The Operational Code field in each of the Quality of Service option(s) MUST be set to NEGOTIATE. This serves as an indication for the mobile access gateway to resend the Proxy Binding Update message with the revised QoS parameters.

LMA Sending a QoS Service Request:

 o The local mobility anchor, at any time, can initiate a QoS service request for mobile node, by sending an Update Notification message [RFC7077]. The Notification Reason in the Update Notification message MUST be set to a value of QOS_SERVICE_REQUEST and the Acknowledgement Requested (A) flag set to a value of (1).

 * New QoS service request:

 + The message MUST include a Quality of Service option with one or more QoS attributes included in the option.

 + The Operational Code field in the Quality of Service option MUST be set to ALLOCATE.
The Service Request Identifier MUST be set to a value of (0).

The DSCP field in the Traffic Class (TC) field MUST reflect the requested DSCP value.

* Modification of an existing QoS Service Request:

+ The message MUST include a Quality of Service option with the QoS attributes reflecting the updated values in the Attributes, and the updated list of Attributes.

+ The Operational Code field in the Quality of Service option MUST be set to MODIFY.

+ The Service Request Identifier MUST be set to a value that was allocated for that QoS service request.

+ There can be more than one QOS service request in a single message, but there MUST be a instance of a Quality of Service option in the message for each of those service requests.

* Deletion of an existing QoS Service Request:

+ The Operational Code field in the Quality of Service option MUST be set to DE-ALLOCATE.

+ The Service Request Identifier MUST be set to a value that was allocated for that QoS service request.

+ The message MUST include a Quality of Service option with the QoS attributes reflecting the updated values for the attributes.

* Query for the previously negotiated QoS Service Requests:

+ The Operational Code field in the Quality of Service option MUST be set to QUERY.

+ The Service Request Identifier MUST be set to a value of (0).

+ The message MUST include a single instance of the Quality of Service option without including any QoS Attributes.
Handling a Response to the QoS Service Request:

* If the received Update Notification Acknowledgement message has the status code field set to value of (0), the local mobility anchor MUST enforce the Quality of Service rules for the negotiated QoS parameters on the mobile node’s uplink and downlink traffic.

* If the received Update Notification Acknowledgement message is with the status code field set to value of (CANNOT_MEET_QoS_SERVICE_REQUEST), the local mobility anchor MUST apply the following considerations.

 + The denial of QoS service request MUST NOT result in removal of any of the mobile node’s Binding Cache entries.

 + If the message did not include any Quality of Service option(s), then it is an indication from the mobile access gateway that QoS services are not enabled for the mobile node.

 + If the Operational Code field in the Quality of Service option is set to a value of NEGOTIATE and the message includes one or more instances of the Quality of Service option, but the option contents reflect a downgraded/revised set of QoS parameters, then the local mobility anchor MAY choose to agree to proposed QoS service request by resending a new Proxy Binding Update message with the updated Quality of Service option.

General Considerations:

* Any time the local mobility anchor removes a mobile node’s mobility session by removing a Binding Cache entry [RFC5213], for which QoS resources have been previously allocated, those allocated resources MUST be released.

* Any time the local mobility anchor receives a Proxy Binding Update with HI hint = 3 (inter-MAG handover), the local mobility anchor when sending a Proxy Binding Acknowledgement message MUST include the QoS option(s) for each of the QoS service requests that are active for that mobile node. This allows the mobile access gateway to allocate QoS resources on the current path. This is relevant for the scenario where a mobile node performs an handover to a new mobile access gateway which is unaware of the previously negotiated QoS services.
5.2. Mobile Access Gateway Considerations

- The conceptual Binding Update List entry data structure maintained by the mobile access gateway, described in Section 6.1 of [RFC5213], can be extended to store a list of negotiated Quality of Service requests to be enforced. There can be multiple such entries and entry must include the Service Request Identifier, DSCP value and the attributes defined in Section Section 4.2.

MAG Receiving a QoS Service Request:

- On receiving a Update Notification message with one or more instances of Quality of Service option included in the message, the mobile access gateway MUST process the option(s) and determine if the QoS service request for the proposed QoS service request(s) can be met. Each instance of the Quality of Service option represents a specific QoS service request. This determination to accept the request(s) can be based on policy configured on the mobile access gateway, available network resources, or based on other considerations.

- If the mobile access gateway can support the proposed QoS service requests in entirety, then it MUST send a an Update Notification Acknowledgement message with status code value of (0).
 - The message MUST include all the Quality of Service option instances copied (including all the option content) from the received Update Notification message. However, if the Operational Code field in the request is a QUERY, then the message MUST include all the Quality of Service option(s) reflecting the currently negotiated QoS service requests for that mobility session.
 - The Operational Code field in each of the Quality of Service option(s) MUST be set to RESPONSE.
 - The mobile access gateway MUST enforce the Quality of Service rules for all the negotiated QoS service requests on the mobile node’s uplink and downlink traffic.

- If the mobile access gateway cannot support any of the requested QoS service requests in entirety, then it MUST reject the request and send an Update Notification Acknowledgement message with the status code set to CANNOT_MEET_QOS_SERVICE_REQUEST (Cannot meet QoS Service Request).
 - The denial for QoS service request MUST NOT result in removal of the mobility session for that mobile node.
* The Operational Code field in each of the Quality of Service option(s) MUST be set to RESPONSE.

* The Update Notification Acknowledgement message may include the Quality of Service option(s) based on the following considerations.

 + If the mobile access gateway cannot support QoS services for that mobile node, then Quality of Service option MUST NOT be included in the Update Notification Acknowledgement message. This serves as an indication to the local mobility anchor that QoS services are not supported for that mobile node.

 + If the mobile access gateway can support QoS services for that mobile node, but for a downgraded/revised QoS service request, or for a partial set of QoS service requests, then the updated Quality of Service option(s) MUST be included in the Update Notification Acknowledgement message. This includes the case, where the Attributes in a QoS option have conflicting requirements, Ex: Per-Session-Agg-Max-UL-Bit-Rate is lower than the Guaranteed-UL-Bit-Rate. The contents of each of the option (including the QoS attributes) MUST reflect the QoS service parameters that the mobile access gateway can support for that mobile node. The Operational Code field in each of the Quality of Service option(s) MUST be set to NEGOTIATE. This serves as an indication to the local mobility anchor to resend the Update Notification message with the revised QoS parameters.

MAG Sending a QoS Service Request:

* The mobile access gateway, at any time, can initiate a QoS service request for a mobile node, by sending a Proxy Binding Update message. The QoS service request can be initiated as part of the initial Binding registration, or during binding re-registrations.

 * New QoS service request:

 + The message MUST include a Quality of Service option with one or more QoS attributes included in the option.

 + The Operational Code field in the Quality of Service option MUST be set to ALLOCATE.

 + The Service Request Identifier MUST be set to a value of (0).
+ The DSCP value in the Traffic Class field MUST reflect the requested DSCP value.

* Modification of an existing QoS Service Request:

+ The message MUST include a Quality of Service option with the QoS attributes reflecting the updated values in the Attributes, and the updated list of Attributes.

+ The Operational Code field in the Quality of Service option MUST be set to MODIFY.

+ The Service Request Identifier MUST be set to a value that was allocated for that QoS service request.

+ There can be more than one QoS service request in a single message, but there MUST be a instance of a Quality of Service option in the message for each of those service requests.

* Deletion of an existing QoS Service Request:

+ The Operational Code field in the Quality of Service option MUST be set to DE-ALLOCATE.

+ The Service Request Identifier MUST be set to a value that was allocated for that QoS service request.

+ The message MUST include a Quality of Service option with the QoS attributes reflecting the updated values for the attributes.

* Query for the previously negotiated QoS Service Requests:

+ The Operational Code field in the Quality of Service option MUST be set to QUERY.

+ The Service Request Identifier MUST be set to a value of (0).

+ The message MUST include a single instance of the Quality of Service option without including any QoS Attributes.

- o Handling a Response to the QoS Service Request:

+ If the received Proxy Binding Acknowledgement message has the status code field set to a value of (0), the mobile access gateway MUST enforce the Quality of Service rules for the
negotiated QoS parameters on the mobile node’s uplink and downlink traffic.

* If the received Proxy Binding Acknowledgement message has the status code field set to a value of (CANNOT_MEET_QOS_SERVICE_REQUEST), the mobile access gateway MUST apply the following considerations.

 + The denial of QoS service request MUST NOT result in removal of any of the mobile node’s Binding Update list entries.

 + If the message did not include any Quality of Service option(s), then it is an indication from the local mobility anchor that QoS services are not enabled for the mobile node.

 + If the Operational Code field in the Quality of Service option is set to a value of NEGOTIATE and the message includes one or more instances of the Quality of Service option, but the option contents reflect a downgraded/revised set of QoS parameters, then the mobile access gateway MAY choose to agree to proposed QoS service request by resending a new Proxy Binding Update message with the updated Quality of Service option.

* General Considerations:

 + There can be more than one QOS service request in a single message, but there MUST be an instance of a Quality of Service option in the message for each of those service requests. Furthermore, the DSCP value MUST be different in each of those requests.

 + Any time the mobile access gateway removes a mobile node’s mobility session by removing a Binding Update List entry [RFC5213], for which QoS resources have been previously allocated, those allocated resources MUST to be released.
6. QoS Services in Integrated WLAN-3GPP Networks

6.1. Technical Scope and Procedure

The QoS option specified in this document can provide the equivalent level of QoS information defined in 3GPP, which is used to enforce QoS policies for IP flows, which have been established while the mobile node is attached to WLAN access, or moved from 3GPP to WLAN access. The QoS classification defined by the 3GPP specification is provided by Differentiated Services techniques in the IP transport network and translated as appropriate into WLAN QoS specification in WLAN access, the details of which are described in Appendix A and Appendix B.

Figure 6 illustrates a generalized architecture where the QoS option can be used. The QoS policies could be retrieved from a Policy Control Function (PCF), such as defined in current cellular mobile communication standards, which aims to assign an appropriate QoS class to a mobile node’s individual flows. Alternatively, more static and default QoS rules could be made locally available, e.g. on a local mobility anchor, through administration.
During a mobile node’s handover from cellular access to non-cellular access, e.g. a wireless LAN (WLAN) radio access network, the mobile node’s QoS policy rules, as previously established on the local mobility anchor for the mobile node’s communication through the cellular access network, are moved to the handover target mobile access gateway serving the non-cellular access network. Such non-cellular mobile access gateway can have an access technology specific controller or function co-located, e.g. a Wireless LAN Controller (WLC), as depicted in option (I) of Figure 6. Alternatively, the access specific architecture can be distributed and the access technology specific control function is located external to the mobile access gateway, as depicted in option (II). In this case, the mobile access gateway and the access technology specific control function (e.g. the WLC) must provide some protocol for QoS inter-working. Details of such inter-working are out of scope of this specification.
6.2. Relevant QoS Attributes

The QoS Option shall at least contain a DSCP value being associated with IP flows of a mobility session. The DSCP value should correspond to the 3GPP QoS Class Index (QCI), which identifies the type of service in terms of QoS characteristics (e.g., conversational voice, streaming video, signaling, best effort, ...); more details on DSCP and QCI mapping are given on section Appendix A. Optional QoS information could also be added. For instance, in order to comply with the bearer model defined in 3GPP [TS23.203], the following QoS parameters are conveyed for each PMIPv6 mobility session:

- **Default, non-GBR bearer (QCI=5-9)**
 - DSCP={BE,AF11/21/31/32}
 - Per-MN AMBR-UL/DL
 - Per-Session AMBR-UL/DL \(S=1,E=1 \)
 - AARP

 APN (Access Point Name) is provided via the Service Selection ID defined in [RFC5149]. If APN is not interpreted by Wi-Fi AP, the latter will police only based on Per-MN AMBR-UL/DL (without Per-Session AMBR-UL/DL) on the Wi-Fi link.

- **Dedicated, GBR bearer (QCI=1-4)**
 - DSCP={EF/AF41}
 - GBR-UL/DL
 - MBR-UL/DL
 - AARP
 - TS

 Wi-Fi AP will perform the policy enforcement with the minimum bitrate=GBR and the maximum bitrate=MBR.

- **Dedicated, non-GBR bearer (QCI=5-9)**
 - DSCP={BE,AF11/21/31/32}
 - Per-MN AMBR-UL/DL
* Per-Session AMBR-UL/DL \((S=1,E=1)\)

* AARP

* TS

If APN is not interpreted by Wi-Fi AP, it will police based only on Per-MN AMBR-UL/DL (without Per-Session AMBR-UL/DL) on the Wi-Fi link.

If DSCP values follow the 3GPP specification and deployment, the code point can carry intrinsically additional attributes according to Figure 7.

For some optional QoS attributes the signaling can differentiate enforcement per mobility session and per IP flow. For the latter, the rule associated with the identified flow(s) overrules the aggregated rules which apply per Mobile Node or per Mobility Session. Additional attributes can be appended to the QoS option, but their definition and specification is out of scope of this document and left to their actual deployment.
7. IANA Considerations

This document requires the following IANA actions.

- Action-1: This specification defines a new mobility option, the Quality of Service (QoS) option. The format of this option is described in Section 4.1. The type value <IANA-1> for this mobility option needs to be allocated from the Mobility Options registry at <http://www.iana.org/assignments/mobility-parameters>. RFC Editor: Please replace <IANA-1> in Section 4.1 with the assigned value and update this section accordingly.

- Action-2: This specification defines a new mobility sub-option format, Quality of Service attribute. The format of this mobility sub-option is described in Section 4.2. This sub-option can be carried in Quality of Service mobility option. The type values for this sub-option need to be managed by IANA, under the Registry, Quality of Service Attribute Registry. This registry should be created under "Mobile IPv6 Parameters" registry at <http://www.iana.org/assignments/mobility-parameters>. This specification reserves the following type values. Approval of new Quality of Service Attribute type values are to be made through IANA Expert Review.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
<td><this draft></td>
</tr>
<tr>
<td>1</td>
<td>Per-MN-Agg-Max-DL-Bit-Rate</td>
<td><this draft></td>
</tr>
<tr>
<td>2</td>
<td>Per-MN-Agg-Max-UL-Bit-Rate</td>
<td><this draft></td>
</tr>
<tr>
<td>3</td>
<td>Per-Session-Agg-Max-DL-Bit-Rate</td>
<td><this draft></td>
</tr>
<tr>
<td>4</td>
<td>Per-Session-Agg-Max-UL-Bit-Rate</td>
<td><this draft></td>
</tr>
<tr>
<td>5</td>
<td>Allocation-Retention-Priority</td>
<td><this draft></td>
</tr>
<tr>
<td>6</td>
<td>Aggregate-Max-DL-Bit-Rate</td>
<td><this draft></td>
</tr>
<tr>
<td>7</td>
<td>Aggregate-Max-UL-Bit-Rate</td>
<td><this draft></td>
</tr>
<tr>
<td>8</td>
<td>Guaranteed-DL-Bit-Rate</td>
<td><this draft></td>
</tr>
<tr>
<td>9</td>
<td>Guaranteed-UL-Bit-Rate</td>
<td><this draft></td>
</tr>
<tr>
<td>10</td>
<td>QoS-Traffic-Selector</td>
<td><this draft></td>
</tr>
<tr>
<td>11</td>
<td>QoS-Vendor-Specific-Attribtute</td>
<td><this draft></td>
</tr>
<tr>
<td>255</td>
<td>Reserved</td>
<td><this draft></td>
</tr>
</tbody>
</table>

- **Action-3:** This document defines a new status value, `CANNOT_MEET_QOS_SERVICE_REQUEST (<IANA-2>)` for use in Proxy Binding Acknowledgement message, as described in Section 4.3. This value is to be assigned from the "Status Codes" registry at `<http://www.iana.org/assignments/mobility-parameters>`. The allocated value has to be greater than 127. RFC Editor: Please replace `<IANA-2>` in Section 4.3 with the assigned value and update this section accordingly.

- **Action-4:** This document defines a new Notification Reason, `QOS_SERVICE_REQUEST (<IANA-3>)` for use in Update Notification message [RFC7077] as described in Section 4.4. This value is to be assigned from the "Update Notification Reasons Registry" at `<http://www.iana.org/assignments/mobility-parameters>`. RFC Editor: Please replace `<IANA-3>` in Section 4.4 with the assigned value and update this section accordingly.
o Action-5: This document defines a new Notification Reason, CANNOT_MEET_QOS_SERVICE_REQUEST (<IANA-4>) for use in Update Notification Acknowledgement message [RFC7077] as described in Section 4.5. This value is to be assigned from the "Update Notification Acknowledgement Status Registry" at <http://www.iana.org/assignments/mobility-parameters>. RFC Editor: Please replace <IANA-4> in Section 4.5 with the assigned value and update this section accordingly.
8. Implementation Status

Note to RFC Editor: Please remove this section and the reference to [RFC6982] before publication.

This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC6982]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist.

According to [RFC6982], "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit".

Cisco Implementation

Organization: Cisco

Description: QoS Extensions to Cisco IOS-based MAG and LMA Implementations. Engineering prototype code under development.

Coverage: Support includes QoS signaling from MAG to LMA based on PBU/PBA and LMA to MAG based on the recently standardized UPN/UPA messages. Implementation includes only a partial set of QoS attributes and support for other Attributes is under development. The QoS option is based on the Vendor-specific mobility option, but it has all the parameters defined in -07 version of the document. We have plans to show a demo in the next IETF.

Licensing: Closed. However, cisco has plans to release the MAG portion of the code for Linux as open source.

Implementation Experience: The feedback from the developer suggests that the protocol extensions needed for this specification proved to be reasonably straightforward. Numerous draft revisions were made based on the questions and comments from the developer. The effort to most part appears to be around
interfacing with the platform specific QoS features for enforcing the negotiated QoS parameters for a subscriber’s IP session/flows. On Cisco IOS, there is a programmatic interface with rich semantics for interfacing with IOS MQC. It needs to be seen as how this can be realized on a Linux OS.

Contact: Sri Gundavelli (sgundave@cisco.com)
9. Security Considerations

The quality of service option defined in this specification is for use in Proxy Binding Update, Proxy Binding Acknowledgement, Update Notification, and Update Notification Acknowledgement messages. This option is carried in these message like any other mobility header option. [RFC5213] and [RFC7077] identify the security considerations for these signaling messages. The quality of service option when included in these signaling messages does not require additional security considerations.
10. Acknowledgements

The authors of this document thank the NetExt Working Group for the valuable feedback to different versions of this specification. In particular the authors want to thank Basavaraj Patil, Behcet Sarikaya, Charles Perkins, Dirk von Hugo, Mark Grayson, Tricci So, Ahmad Muhanna, Pete McCann, Byju Pularikkal, John Kaippallimalil, Rajesh Pazhyannur, Carlos Jesus, Bernardos Cano, Michal Hoeft, Dirk Von Hugo, Ryuji Wakikawa, Liu Dapeng, Seil Jeon, Georgios Karagiannis and Brian Haberman for their valuable comments and suggestions to improve this specification.
11. References

11.1. Normative References

11.2. Informative References

[GSMA.IR.34] GSMA, "Inter-Service Provider IP Backbone Guidelines 5.0", May 2013.

[RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
Code: The Implementation Status Section", RFC 6982,
July 2013.

[SMI] IANA, "PRIVATE ENTERPRISE NUMBERS", SMI Network Management
Private Enterprise Codes, February 2011.

[TS23.203]
3GPP, "Policy and charging control architecture", 2013.

[TS23.402]
Appendix A. Information when implementing 3GPP QoS in IP transport network

A.1. Mapping tables

Mapping between 3GPP QCI values and DSCP is defined in [GSMA.IR.34] as follows.

<table>
<thead>
<tr>
<th>QCI</th>
<th>Traffic Class</th>
<th>DiffServ Per-Hop-Behavior</th>
<th>DSCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conversational</td>
<td>EF</td>
<td>101110</td>
</tr>
<tr>
<td>2</td>
<td>Conversational</td>
<td>EF</td>
<td>101110</td>
</tr>
<tr>
<td>3</td>
<td>Conversational</td>
<td>EF</td>
<td>101110</td>
</tr>
<tr>
<td>4</td>
<td>Streaming</td>
<td>AF41</td>
<td>100010</td>
</tr>
<tr>
<td>5</td>
<td>Interactive</td>
<td>AF31</td>
<td>011010</td>
</tr>
<tr>
<td>6</td>
<td>Interactive</td>
<td>AF32</td>
<td>011100</td>
</tr>
<tr>
<td>7</td>
<td>Interactive</td>
<td>AF21</td>
<td>010010</td>
</tr>
<tr>
<td>8</td>
<td>Interactive</td>
<td>AF11</td>
<td>001010</td>
</tr>
<tr>
<td>9</td>
<td>Background</td>
<td>BE</td>
<td>000000</td>
</tr>
</tbody>
</table>

Table 7: QCI/DSCP Mapping Table

Mapping between QoS attributes defined in this document and 3GPP QoS parameters is as follows.

Figure 8: QoS attributes and 3GPP QoS parameters Mapping Table

A.2. Use cases and protocol operations

This subsections provide example message flow charts for scenarios where the QoS option extensions will apply as described in (Section 6.1), to the protocol operation for QoS rules establishment as shown in Appendix A.2.1 and Appendix A.2.2, and modification as show in Appendix A.2.3.

A.2.1. Handover of existing QoS rules

In Figure 9, the MN is first connected to the LTE network, and having a multimedia session such as a video call with appropriate QoS parameters set by the Policy Control Function. Then, the MN discovers a Wi-Fi AP (e.g., at home or in a cafe) and switches to it provided that Wi-Fi access has a higher priority when available. Not only is the session continued, but also the QoS is maintained after moving to the Wi-Fi access. In order for that to happen, the LMA delivers the QoS parameters according to the bearer type on the 3GPP
access to the MAG via the PMIPv6 signaling with the QoS option (OC=ALLOCATE, SR-ID, QoS attributes, etc.). The equivalent QoS treatment is provided by the Wi-Fi AP toward the MN on the Wi-Fi link.

---+ +----+ +-------+ +---+----+
|Policy | |Control | |Function|
|-------+ |---------+ +-------+ |

Figure 9: Handover Scenario (from LTE to WLAN)

Figure 10 shows an example of how the QoS rules can be conveyed and enforced between the LMA and MN in the case of handover from 3GPP access to WLAN access.
A single operator has deployed both a fixed access network and a mobile access network. In this scenario, the operator may wish a harmonized QoS management on both accesses, but the fixed access network does not implement a QoS control framework. So, the operator chooses to rely on the 3GPP policy control function, which is a standard framework to provide a QoS control, and to enforce the 3GPP QoS policy on the Wi-Fi Access network. The PMIP interface is used to realize this QoS policy provisioning.

The use-case is depicted on Figure 11. The MN first attaches to the Wi-Fi network. During the attachment process, the LMA, which may
communicate with Policy Control Function (using procedures outside the scope of this document), provides the QoS parameters to the MAG via the QoS option (OC=ALLOCATE) in the PMIP signaling (i.e. PBA). Subsequently, an application on the MN may trigger the request for alternative QoS resources, e.g., by use of the WMM-API. The MN may request traffic resources be reserved using L2 signaling, e.g., sending an ADDTS message [IEEE802.11-2012]. The request is relayed to the MAG which includes the QoS parameters in the QoS option (OC=ALLOCATE) on the PMIP signaling (i.e. the PBU initiated upon flow creation). The LMA, in co-ordination with the PCF, can then authorize the enforcement of such QoS policy. Then, the QoS parameters are provided to the MAG via the QoS option (OC=ALLOCATE, SR-ID, QoS attributes, etc.) in the PMIP signaling and the equivalent QoS treatment is provided towards the MN on the Wi-Fi link.

![Figure 11: QoS policy provisioning](image)

Figure 11 shows an example of how the QoS rules can be conveyed and enforced between the LMA and MN in the case of initial attachment to WLAN access.
A.2.3. Dynamic Update to QoS Policy

A mobile node is attached to the WLAN access and has obtained QoS parameters from the LMA for that mobility session. Having obtained the QoS parameters, a new application, e.g. IMS application, gets launched on the mobile node that requires certain QoS support.

The application on the mobile node initiates the communications via a dedicated network function (e.g. IMS Call Session Control Function).

(E): AP may enforce uplink QoS rules according to priority class set by the MN

(F): MAG can enforce a default QoS class until local mobility anchor has classified the new flow (notified with PBA) or mobile access gateway classifies new flow and proposes the associated QoS class to the local mobility anchor for validation (proposed with PBU, notification of validation result with PBA)

Figure 12: Adding new QoS Service Request for MN initiated flow
Once the communication is established, the application network function notifies the PCF about the new IP flow. The PCF function in turn notifies the LMA about the needed QoS parameters identifying the IP flow and QoS parameters. LMA sends an Update Notification message [RFC7077] to the MAG with the Notification Reason value set to "QOS_SERVICE_REQUEST". The MAG, on receiving the Update Notification message, completes the PBU/PBA signaling for obtaining the new QoS parameters via the QoS options (OC=MODIFY, SR-ID, QoS attributes, etc.). The MAG provisions the newly obtained QoS parameters on the access network to ensure the newly established IP flow gets its requested network resources.

Upon termination of the established IP flow, the application network function again notifies the PCF function for removing the established QoS parameters. The PCF notifies the LMA for withdrawing the QoS resources established for that voice flow. The LMA sends an Update Notification message to the MAG with the "Notification Reason" value set to "FORCE-REREGRISTRATION". The MAG on receiving this message Update Notification Acknowledgement and completes the PBU/PBA signaling for removing the existing QoS rules (OC=DE-ALLOCATE, SR-ID). The MAG then removes the QoS parameters from the corresponding IP flow and releases the dedicated network resources on the access network.
Appendix B. Information when implementing PMIP based QoS support with IEEE 802.11e

This section shows, as an example, the end-to-end QoS management with a 802.11e capable WLAN access link and a PMIP based QoS support.

The 802.11e, or Wi-Fi Multimedia (WMM), specification provides prioritization of packets for four types of traffic, or access categories (AC):

- **Voice (AC_VO):** Very high priority queue with minimum delay. Time-sensitive data such as VoIP and streaming mode are automatically sent to this queue.
- **Video (AC_VI):** High priority queue with low delay. Time-sensitive video data is automatically sent to this queue.
- **Best effort (AC_BE):** Medium priority queue with medium throughput and delay. Most traditional IP data is sent to this queue.
- **Background (AC_BK):** Lowest priority queue with high throughput. Bulk data that requires maximum throughput but is not time-sensitive (for example, FTP data) is sent to the queue.

The access point uses the 802.11e indicator to prioritize traffic on the WLAN interface. On the wired side, the access point uses the 802.1p priority tag and DiffServ code point (DSCP). To allow consistent QoS management on both wireless and wired interfaces, the access point relies on the 802.11e specification which define mapping between the 802.11e access categories and the IEEE 802.1D priority (802.1p tag). The end-to-end QoS architecture is depicted on Figure 13 and the 802.11e/802.1D priority mapping is reminded in the following table:

<table>
<thead>
<tr>
<th>802.1e AC</th>
<th>802.1D priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_VO</td>
<td>7,6</td>
</tr>
<tr>
<td>AC_VI</td>
<td>5,4</td>
</tr>
<tr>
<td>AC_BE</td>
<td>0,3</td>
</tr>
<tr>
<td>AC_BK</td>
<td>2,1</td>
</tr>
</tbody>
</table>
Figure 13: End-to-end QoS management with 802.11e

When receiving a packet from the MN, the AP checks whether the frame contains 802.11e markings in the L2 header. If not, the AP checks the DSCP field. If the uplink packet contains the 802.11e marking, the access point maps the access categories to the corresponding 802.1D priority as per the table above. If the frame does not contain 802.11e marking, the access point examines the DSCP field. If DSCP is present, the AP maps DSCP values to a 802.1p value (i.e. 802.1D priority). This mapping is not standardized and may differ between operator; a mapping example given in the following table.

<table>
<thead>
<tr>
<th>Type of traffic</th>
<th>802.1p</th>
<th>DSCP value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Control</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Voice</td>
<td>6</td>
<td>46 (EF)</td>
</tr>
<tr>
<td>Video</td>
<td>5</td>
<td>34 (AF 41)</td>
</tr>
<tr>
<td>voice control</td>
<td>4</td>
<td>26 (AF 31)</td>
</tr>
<tr>
<td>Background Gold</td>
<td>2</td>
<td>18 (AF 21)</td>
</tr>
<tr>
<td>Background Silver</td>
<td>1</td>
<td>10 (AF 11)</td>
</tr>
<tr>
<td>Best effort</td>
<td>0,3</td>
<td>0 (BE)</td>
</tr>
</tbody>
</table>

The access point prioritizes ingress traffic on the Ethernet port.
based on the 802.1p tag or the DSCP value. If 802.1p priority tag is not present, the access point checks the DSCP/802.1p mapping table. The next step is to map the 802.1p priority to the appropriate egress queue. When 802.11e support is enabled on the wireless link, the access point uses the IEEE standardized 802.1p/802.11e correspondence table to map the traffic to the appropriate hardware queues.

When the 802.11e capable client sends traffic to the AP, it usually marks packets with a DSCP value. In that case, the MAG/LMA can come into play for QoS renegotiation and call flows depicted in Appendix A apply. Sometimes, when communication is initiated on the WLAN access, the application does not mark upstream packets. If the uplink packet does not contain any QoS marking, the AP/MAG could determine the DSCP field according to traffic selectors received from the LMA. Figure 14 gives the call flow corresponding to that use-case and shows where QoS tags mapping does come into play. The main steps are as follows:

(A): during MN attachment process, the MAG fetches QoS policies from the LMA. After this step, both MAG and LMA are provisioned with QoS policies.

(B): the MN starts a new IP communication without making IP packets with DSCP tags. The MAG uses the traffic selector to determine the DSCP value, then it marks the IP packet and forwards within the PMIP tunnel.

(C): the LMA checks the DSCP value with respect to the traffic selector. If the QoS policies is valid, the LMA forwards the packet without renegotiating the QoS rules.

(D): when receiving a marked packet, the MAG, the AP and the MN use 802.11e (or WMM), 802.1p tags and DSCP values to prioritize the traffic.
Figure 14: Prioritization of a flow created on the WLAN access
Appendix C. Information when implementing with a Broadband Network Gateway

This section shows an example of QoS interworking between the PMIPv6 domain and the broadband access. The Broadband Network Gateway (BNG) or Broadband Remote Access Server (BRAS) has the MAG function and the CPE (Customer Premise Equipment) or Residential Gateway (RG) is connected via the broadband access network. The MN is attached to the RG via e.g., Wi-Fi AP in the broadband home network. In the segment of the broadband access network, the BNG and RG are the Policy Enforcement Point (PEP) for the downlink and uplink traffic, respectively. The QoS information is downloaded from the LMA to the BNG via the PMIPv6 with the QoS option defined in this document. Based on the received QoS parameters (e.g., DSCP values), the broadband access network and the RG provide appropriate QoS treatment to the downlink and uplink traffic to/from the MN.

![Diagram of QoS management with broadband access network]

Figure 15: End-to-end QoS management with the broadband access network

In the segment of the broadband access network, QoS mapping between 3GPP QCI values and DSCP described in Section 6.2 is applied. In the segment of the broadband home network, if the MN is attached to the RG via Wi-Fi, the same QoS mapping as described in Appendix B can be applied.
Authors’ Addresses

Marco Liebsch
NEC
Kurfuersten-Anlage 36
Heidelberg D-69115
Germany
Email: liebsch@neclab.eu

Pierrick Seite
Orange
4, rue du Clos Courtel, BP 91226
Cesson-Sevigne 35512
France
Email: pierrick.seite@orange.com

Hidetoshi Yokota
KDDI Lab
2-1-15 Ohara
Saitama, Fujimino 356-8502
Japan
Email: yokota@kddilabs.jp

Jouni Korhonen
Broadcom Communications
Porkkalankatu 24
Helsinki FIN-00180
Finland
Email: jouni.nospam@gmail.com

Sri Gundavelli
Cisco
170 West Tasman Drive
San Jose, CA 95134
USA
Email: sgundave@cisco.com