A YANG Data Model for Factory Default Settings

draft-ietf-netmod-factory-default-14

Abstract

This document defines a YANG data model to allow clients to reset a
server back to its factory default condition. It also defines a
"factory-default" datastore to allow clients to read the factory
default configuration for the device.

The YANG data model in this document conforms to the Network
Management Datastore Architecture (NMDA) defined in RFC 8342.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 29, 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
1. Introduction

This document defines a method to reset a server to its factory default content. The reset operation may be used, e.g., when the existing configuration has major errors so re-starting the configuration process from scratch is the best option.

A "factory-reset" RPC is defined. When resetting a device, all previous configuration settings will be lost and replaced by the factory default content.

A "factory-default" read-only datastore is defined, that contains the data to replace the contents of implemented read-write conventional configuration datastores at reset. This datastore can also be used in the <get-data> operation.

The YANG data model in this document conforms to the Network Management Datastore Architecture defined in [RFC8342].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

The following terms are defined in [RFC8342] [RFC7950] and are not redefined here:

- server
- startup configuration datastore
- candidate configuration datastore
- running configuration datastore
- intended configuration datastore
- operational state datastore
- conventional configuration datastore
- datastore schema
- RPC operation

The following terms are defined in this document as follows:

- factory-default datastore: A read-only configuration datastore holding a preconfigured initial configuration that is used to initialize the configuration of a server. This datastore is referred to as "<factory-default>".

2. Factory-Reset RPC

A new "factory-reset" RPC is introduced. Upon receiving the RPC

- All supported conventional read-write configuration datastores (i.e. <running>, <startup>, and <candidate>) are reset to the contents of <factory-default>.

- Read-only datastores receive their content from other datastores (e.g., <intended> gets its content from <running>).

- All data in any dynamic configuration datastores MUST be discarded.

- The contents of the <operational> datastore MUST reflect the operational state of the device after applying the factory default configuration.
In addition, the "factory-reset" RPC MUST restore non-volatile storage to factory condition. Depending on the system, this may entail deleting dynamically generated files, such as those containing keys (e.g., /etc/ssl/private), certificates (e.g., /etc/ssl), logs (e.g., /var/log), and temporary files (e.g., /tmp/*). All security sensitive data (i.e., private keys, passwords, etc.) SHOULD be overwritten with zeros or a pattern before deletion. The "factory-reset" RPC MAY also be used to trigger some other resetting tasks such as restarting the node or some of the software processes.

Note that operators should be aware that since all read-write datastores are immediately reset to factory default, the device may become unreachable on the network. It is important to understand how a given vendor’s device will behave after the RPC is executed. Implementors SHOULD reboot the device or otherwise restart processes needed to bootstrap it.

3. Factory-Default Datastore

Following the guidelines for defining Datastores in the appendix A of [RFC8342], this document introduces a new optional datastore resource named "factory-default" that represents a preconfigured initial configuration that can be used to initialize the configuration of a server. A device MAY implement the "factory-reset" RPC without implementing the "factory-default" datastore, which would only eliminate the ability to programmatically determine the factory default configuration.

- Name: "factory-default"

- YANG modules: The factory default datastore schema MUST either be the same as the conventional configuration datastores, or a subset of the datastore schema for the conventional configuration datastores.

- YANG nodes: all "config true" data nodes

- Management operations: The content of the datastore is set by the server in an implementation dependent manner. The content can not be changed by management operations via NETCONF, RESTCONF, the CLI etc. unless specialized, dedicated operations are provided. The datastore can be read using the standard NETCONF/RESTCONF protocol operations. The "factory-reset" operation copies the factory default content to <running> and, if present, <startup> and/or <candidate> and then the content of these datastores is propagated automatically to any other read only datastores, e.g., <intended> and <operational>.
4. YANG Module

This module uses the "datastore" identity [RFC8342], and the "default-deny-all" extension statement from [RFC8341].

<CODE BEGINS> file "ietf-factory-default@2019-11-27.yang"
module ietf-factory-default {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-factory-default";
 prefix fd;

 import ietf-datastores {
 prefix ds;
 reference "RFC 8342: Network Management Datastore Architecture (NMDA)";
 }
 import ietf-netconf-acm {
 prefix nacm;
 reference "RFC8341: Network Configuration Access Control Model";
 }

 organization "IETF NETMOD (Network Modeling) Working Group";
 contact "WG Web: <https://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>
 Editor: Qin Wu
 <mailto:bill.wu@huawei.com>
 Editor: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>
 Editor: Ye Niu
 <mailto:niuye@huawei.com>";
 description "This module provides functionality to reset a server to its
factory default configuration and, when supported, to discover the factory default configuration contents independent of resetting the server.

Copyright (c) 2020 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices."

// RFC Ed.: update the date below with the date of RFC publication
// and remove this note.
// RFC Ed.: replace XXXX with actual RFC number and remove this
// note.
revision 2019-11-27 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Factory default Setting";
}

feature factory-default-datastore {
 description
 "Indicates that the factory default configuration is available as a datastore.";
}

rpc factory-reset {
 nacm:default-deny-all;
 description
 "The server resets all datastores to their factory default content and any non-volatile storage back to factory condition, deleting all dynamically generated files, including those containing keys, certificates, logs, and other temporary files.

 Depending on the factory default configuration, after being reset, the device may become unreachable on the network.";
}

identity factory-default {
if-feature "factory-default-datastore";
base ds:datastore;
description
 "This read-only datastore contains the factory default configuration for the device used to replace the contents of the read-write conventional configuration datastores during a 'factory-reset' RPC operation."
}
</CODE ENDS>

5. IANA Considerations

This document registers one URI in the IETF XML Registry [RFC3688]. The following registration has been made:

| Registrant Contact: The IESG. |
| XML: N/A, the requested URI is an XML namespace. |

This document registers one YANG module in the YANG Module Names Registry [RFC6020]. The following registration has been made:

| name: ietf-factory-default |
| prefix: fd |
| RFC: xxxx |

6. Security Considerations

The YANG module defined in this document extends the base operations for NETCONF [RFC6241] and RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

Access to the "factory-reset" RPC operation is considered sensitive and therefore has been restricted using the "default-deny-all" access control defined in [RFC8341].

The "factory-reset" RPC can prevent any further management of the device if the session and client config are included in the factory default contents.

The operational disruption caused by setting the config to factory default contents varies greatly depending on the implementation and current config.
The non-volatile storage is expected to be wiped clean and reset back
to the factory default state, but there is no guarantee that the data
is wiped according to any particular data cleansing standard, and the
owner of the device MUST NOT rely on any sensitive data (e.g.,
private keys) being forensically unrecoverable from the device’s non-
volatile storage after a factory-reset RPC has been invoked.

7. Acknowledgements

Thanks to Juergen Schoenwaelder, Ladislav Lhotka, Alex Campbell, Joe
Clarke, Robert Wilton, Kent Watsen, Joel Jaeggli, Lou Berger, Andy
Bierman, Susan Hares for reviewing this draft and providing important
input to this document.

8. Contributors

Rohit R Ranade
Huawei
Email: rohitrranade@huawei.com

9. References

9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,

 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
9.2. Informative References

Appendix A. Changes between revisions

Editorial Note (To be removed by RFC Editor)

v13 - 14

- Address additional issues raised during AD review.

v12 - 13

- Address issues raised during AD review.

v11 - 12
- Fix IDnits and reference issues from Shepherd review.

 v10 - 11

- Incorporate additional Shepherd review’s comments.

 v09 - 10

- Incorporate Shepherd review’s comments.

 v08 - 09

- Provide some guideline for operators and implementor who implement factory default method.

 v07 - 08

- Provide clarification and recommendation on the relationship between factory-reset RPC and reboot.

- Nits fixed based on YANG Doctor Review.

 v06 - 07

- Remove Factory default content specification;

- Remove reference to YANG instance data file format and zero touch provision [RFC8573];

- Remove copy-config operation extension on factory-default datastore

 v05 - 06

- Additional text to enhance security section.

- Add nacm:default-deny-all on "factory-reset" RPC.

- A few clarification on Factory default content specification.

 v03 - 04

- Additional text to clarify factory-reset RPC usage.

 v02 - 03

- Update security consideration section.
v01 - v02
- Address security issue in the security consideration section.
- Remove an extension to the NETCONF <copy-config> operation which allows it to operate on the factory-default datastore.
- Add an extension to the NETCONF <get-config> operation which allows it to operate on the factory-default datastore.

v00 - v01
- Change YANG server into server defined in NMDA architecture based on discussion.
- Allow reset the content of all read-write configuration datastores to its factory default content except <candidate>.
- Add clarification text on factory-reset protocol operation behavior.

v03 - v00
- Change draft name from draft-wu to draft-ietf-netmod-factory-default-00 without content changes.

v02 - v03
- Change reset-datastore RPC into factory-reset RPC to allow reset the whole device with factory default content.
- Remove target datastore parameter from factory-reset RPC.
- Other editorial changes.

v01 - v02
- Add copy-config based on Rob’s comment.
- Reference Update.

v03 - v00 - v01
- Changed name from draft-wu-netconf-restconf-factory-restore to draft-wu-netmod-factory-default
- Removed copy-config; reset-datastore is enough
v02 - v03
 o Restructured
 o Made new datastore optional
 o Removed Netconf capability
 o Listed Open issues
v01 - v02
 o -
v00 - v01
 o -

Authors’ Addresses

Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

Email: bill.wu@huawei.com

Balazs Lengyel
Ericsson Hungary
Magyar Tudosok korutja 11
1117 Budapest
Hungary

Phone: +36-70-330-7909
Email: balazs.lengyel@ericsson.com

Ye Niu
Huawei

Email: niuye@huawei.com