A YANG Data Model for Interface Management
draft-ietf-netmod-rfc7223bis-01

Abstract

This document defines a YANG data model for the management of network interfaces. It is expected that interface-type-specific data models augment the generic interfaces data model defined in this document. The data model includes definitions for configuration and system state (status information and counters for the collection of statistics). This document obsoletes RFC 7223.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on June 20, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
1. Introduction

This document defines a YANG [RFC7950] data model for the management of network interfaces. It is expected that interface-type-specific data models augment the generic interfaces data model defined in this document.

Network interfaces are central to the management of many Internet protocols. Thus, it is important to establish a common data model for how interfaces are identified, configured, and monitored.

The data model includes configuration data and state data (status information and counters for the collection of statistics).
This version of the interfaces data model supports the Network Management Datastore Architecture (NMDA)
[I-D.ietf-netmod-revised-datastores].

1.1. Summary of Changes from RFC 7223

The "/interfaces-state" subtree with "config false" data nodes is deprecated. All "config false" data nodes are now present in the "/interfaces" subtree.

Servers that do not implement NMDA, or that wish to support clients that do not implement NMDA, MAY implement the deprecated "/interfaces-state" tree.

1.2. Terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

The following terms are used within this document:

- system-controlled interface: An interface is said to be system-controlled if the system creates and deletes the interface independently of what has been explicitly configured. Examples are interfaces representing physical hardware that appear and disappear when hardware (e.g., a line card or hot-pluggable wireless interface) is added or removed. System-controlled interfaces may also appear if a certain functionality is enabled (e.g., a loopback interface might appear if the IP protocol stack is enabled).

- user-controlled interface: An interface is said to be user-controlled if the creation of the interface is controlled by adding explicit interface configuration to the intended configuration and the removal of the interface is controlled by removing explicit interface configuration from the intended configuration. Examples are VLAN interfaces configured on a system-controlled Ethernet interface.

The following terms are defined in [I-D.ietf-netmod-revised-datastores] and are not redefined here:

- client

- server
o configuration
o system state
o operational state
o intended configuration

The following terms are defined in [RFC7950] and are not redefined here:

o augment
o data model
o data node
o presence container

1.3. Tree Diagrams

Tree diagrams used in this document follow the notation defined in [I-D.ietf-netmod-yang-tree-diagrams].

2. Objectives

This section describes some of the design objectives for the model presented in Section 5.

o It is recognized that existing implementations will have to map the interface data model defined in this memo to their proprietary native data model. To facilitate such mappings, the data model should be simple.

o The data model should be suitable for new implementations to use as is, without requiring a mapping to a different native model.

o References to interfaces should be as simple as possible, preferably by using a single leafref.

o The mapping to ifIndex [RFC2863] used by the Simple Network Management Protocol (SNMP) to identify interfaces must be clear.

o The model must support interface layering: both (1) simple layering, where one interface is layered on top of exactly one other interface, and (2) more complex scenarios, where one interface results from the aggregation of N other interfaces or when N interfaces are multiplexed over one other interface.
o The data model should support the pre-provisioning of interface configuration, i.e., it should be possible to configure an interface whose physical interface hardware is not present on the device. It is recommended that devices that support dynamic addition and removal of physical interfaces also support pre-provisioning.

o The data model should support physical interfaces as well as logical interfaces.

o The data model should include read-only counters in order to gather statistics for sent and received octets and packets, received packets with errors, and packets that could not be sent due to errors.

3. Interfaces Data Model

This document defines the YANG module "ietf-interfaces", which has the following structure, excluding the deprecated "/interfaces-state" subtree:
module: ietf-interfaces
 +--rw interfaces
 +--rw interface* [name]
 +--rw name string
 +--rw description? string
 +--rw type identityref
 +--rw enabled? boolean
 +--rw link-up-down-trap-enable? enumeration {if-mib}?
 +--ro admin-status enumeration {if-mib}?
 +--ro oper-status enumeration
 +--ro last-change? yang:date-and-time
 +--ro if-index int32 {if-mib}?
 +--ro phys-address? yang:phys-address
 +--ro higher-layer-if* interface-ref
 +--ro lower-layer-if* interface-ref
 +--ro speed? yang:gauge64
 +--ro statistics
 +--ro discontinuity-time yang:date-and-time
 +--ro in-octets? yang:counter64
 +--ro in-unicast-pkts? yang:counter64
 +--ro in-broadcast-pkts? yang:counter64
 +--ro in-multicast-pkts? yang:counter64
 +--ro in-discards? yang:counter32
 +--ro in-errors? yang:counter32
 +--ro in-unknown-protos? yang:counter32
 +--ro out-octets? yang:counter64
 +--ro out-unicast-pkts? yang:counter64
 +--ro out-broadcast-pkts? yang:counter64
 +--ro out-multicast-pkts? yang:counter64
 +--ro out-discards? yang:counter32
 +--ro out-errors? yang:counter32

3.1. The Interface List

The data model for interfaces presented in this document uses a flat list of interfaces ("/interfaces/interface"). Each interface in the list is identified by its name. Furthermore, each interface has a mandatory "type" leaf.

The "iana-if-type" module [RFC7224] defines YANG identities for the interface types in the IANA-maintained "ifType definitions" registry.

It is expected that interface-type-specific data models augment the interface list and possibly use the "type" leaf to make the augmentation conditional.
As an example of such an interface-type-specific augmentation, consider this YANG snippet. For a more complete example, see Appendix A.

```yang
import interfaces {
  prefix "if";
}
import iana-if-type {
  prefix ianaift;
}

augment "/if:interfaces/if:interface" {
  when "if:type = 'ianaift:ethernetCsmacd'";

    container ethernet {
      leaf duplex {
        ...
      }
    }
}
```

For system-controlled interfaces, the "name" is the device-specific name of the interface.

If the device supports arbitrarily named user-controlled interfaces, then the server will advertise the "arbitrary-names" feature. If the server does not advertise this feature, the names of user-controlled interfaces MUST match the device’s naming scheme. How a client can learn the naming scheme of such devices is outside the scope of this document. See Appendix F.1 and Appendix F.2 for examples.

When a system-controlled interface is created in the operational state by the system, the system tries to apply the interface configuration in the intended configuration with the same name as the new interface. If no such interface configuration is found, or if the configured type does not match the real interface type, the system creates the interface without applying explicit configuration.

When a user-controlled interface is created, the configuration determines the name of the interface.

Depending on the operating system and the physical attachment point to which a network interface may be attached or removed, it may be impossible for an implementation to provide predictable and consistent names for system-controlled interfaces across insertion/removal cycles as well as in anticipation of initial insertion. The ability to provide configurations for such interfaces is therefore dependent on the implementation and cannot be assumed in all cases.
3.2. Interface References

An interface is identified by its name, which is unique within the server. This property is captured in the "interface-ref" and typedef, which other YANG modules SHOULD use when they need to reference an interface.

3.3. Interface Layering

There is no generic mechanism for how an interface is configured to be layered on top of some other interface. It is expected that interface-type-specific models define their own data nodes for interface layering by using "interface-ref" types to reference lower layers.

Below is an example of a model with such nodes. For a more complete example, see Appendix B.

```yml
import interfaces {
    prefix "if";
}
import iana-if-type {
    prefix ianaift;
}

augment "/if:interfaces/if:interface" {
    when "if:type = 'ianaift:ieee8023adLag'";

    leaf-list slave-if {
        type if:interface-ref;
        must "/if:interfaces/if:interface[if:name = current()]" + "/if:type = 'ianaift:ethernetCsmacd'" {
            description
            "The type of a slave interface must be 'ethernetCsmacd'.";
        }
    }

    // other bonding config params, failover times, etc.
}
```

While the interface layering is configured in interface-type-specific models, two generic state data leaf-lists, "higher-layer-if" and "lower-layer-if", represent a read-only view of the interface layering hierarchy.
4. Relationship to the IF-MIB

If the device implements the IF-MIB [RFC2863], each entry in the
"/interfaces/interface" list in the operational state is typically
mapped to one ifEntry. The "if-index" leaf MUST contain the value of
the corresponding ifEntry's ifIndex.

In most cases, the "name" of an "/interfaces/interface" entry is
mapped to ifName. The IF-MIB allows two different ifEntries to have
the same ifName. Devices that support this feature and also support
the data model defined in this document cannot have a 1-1 mapping
between the "name" leaf and ifName.

The configured "description" of an "interface" has traditionally been
mapped to ifAlias in some implementations. This document allows this
mapping, but implementers should be aware of the differences in the
value space and persistence for these objects. See the YANG module
definition of the leaf "description" in Section 5 for details.

The IF-MIB also defines the writable object ifPromiscuousMode. Since
this object typically is not implemented as a configuration object by
SNMP agents, it is not mapped to the "ietf-interfaces" module.

The ifMtu object from the IF-MIB is not mapped to the
"ietf-interfaces" module. It is expected that interface-type-
specific YANG modules provide interface-type-specific MTU leafs by
augmenting the "ietf-interfaces" model.

There are a number of counters in the IF-MIB that exist in two
versions: one with 32 bits and one with 64 bits. The 64-bit versions
were added to support high-speed interfaces with a data rate greater
than 20,000,000 bits/second. Today’s implementations generally
support such high-speed interfaces, and hence only 64-bit counters
are provided in this data model. Note that NETCONF and SNMP may
differ in the time granularity in which they provide access to the
counters. For example, it is common that SNMP implementations cache
counter values for some time.

The objects ifDescr and ifConnectorPresent from the IF-MIB are not
mapped to the "ietf-interfaces" module.

The following tables list the YANG data nodes with corresponding
objects in the IF-MIB.
YANG Data Nodes and Related IF-MIB Objects

5. Interfaces YANG Module

This YANG module imports typedefs from [RFC6991].

```yang
<CODE BEGINS> file "ietf-interfaces@2017-12-16.yang"

module ietf-interfaces {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-interfaces";
  prefix if;

  import ietf-yang-types {
    prefix yang;
  }

```
organization
 "IETF NETMOD (Network Modeling) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>
 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>"

description
 "This module contains a collection of YANG definitions for
managing network interfaces.

Copyright (c) 2017 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.";

revision 2017-12-16 {
 description
 "Updated to support NMDA."
 reference
 "RFC XXXX: A YANG Data Model for Interface Management"
}

revision 2014-05-08 {
 description
 "Initial revision."
 reference
 "RFC 7223: A YANG Data Model for Interface Management"
}

/*
 * Typedefs
 */

typedef interface-ref {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
}

description
"This type is used by data models that need to reference interfaces.";
}

/* Identities */

identity interface-type {
 description
 "Base identity from which specific interface types are derived.";
}

/* Features */

feature arbitrary-names {
 description
 "This feature indicates that the device allows user-controlled interfaces to be named arbitrarily.";
}

feature pre-provisioning {
 description
 "This feature indicates that the device supports pre-provisioning of interface configuration, i.e., it is possible to configure an interface whose physical interface hardware is not present on the device.";
}

feature if-mib {
 description
 "This feature indicates that the device implements the IF-MIB.";
 reference
 "RFC 2863: The Interfaces Group MIB";
}

/* Data nodes */

container interfaces {
 description
 "Interface parameters.";
}
list interface {
 key "name";

description
 "The list of interfaces on the device."

 The status of an interface is available in this list in the
 operational state. If the configuration of a
 system-controlled interface cannot be used by the system
 (e.g., the interface hardware present does not match the
 interface type), then the configuration is not applied to
 the system-controlled interface shown in the operational
 state. If the configuration of a user-controlled interface
 cannot be used by the system, the configured interface is
 not instantiated in the operational state.

 System-controlled interfaces created by the system are
 always present in this list in the operational state,
 whether they are configured or not."

leaf name {
 type string;

description
 "The name of the interface."

 A device MAY restrict the allowed values for this leaf,
 possibly depending on the type of the interface.
 For system-controlled interfaces, this leaf is the
 device-specific name of the interface.

 If a client tries to create configuration for a
 system-controlled interface that is not present in the
 operational state, the server MAY reject the request if
 the implementation does not support pre-provisioning of
 interfaces or if the name refers to an interface that can
 never exist in the system. A NETCONF server MUST reply
 with an rpc-error with the error-tag 'invalid-value' in
 this case.

 If the device supports pre-provisioning of interface
 configuration, the 'pre-provisioning' feature is
 advertised.

 If the device allows arbitrarily named user-controlled
 interfaces, the 'arbitrary-names' feature is advertised.

 When a configured user-controlled interface is created by
 the system, it is instantiated with the same name in the
A server implementation MAY map this leaf to the ifName MIB object. Such an implementation needs to use some mechanism to handle the differences in size and characters allowed between this leaf and ifName. The definition of such a mechanism is outside the scope of this document."

reference
"RFC 2863: The Interfaces Group MIB - ifName"

leaf description {
 type string;
 description
 "A textual description of the interface.

 A server implementation MAY map this leaf to the ifAlias MIB object. Such an implementation needs to use some mechanism to handle the differences in size and characters allowed between this leaf and ifAlias. The definition of such a mechanism is outside the scope of this document.

 Since ifAlias is defined to be stored in non-volatile storage, the MIB implementation MUST map ifAlias to the value of 'description' in the persistently stored configuration."

 reference
 "RFC 2863: The Interfaces Group MIB - ifAlias"
}

leaf type {
 type identityref {
 base interface-type;
 }
 mandatory true;
 description
 "The type of the interface.

 When an interface entry is created, a server MAY initialize the type leaf with a valid value, e.g., if it is possible to derive the type from the name of the interface.

 If a client tries to set the type of an interface to a value that can never be used by the system, e.g., if the type is not supported or if the type does not match the name of the interface, the server MUST reject the request. A NETCONF server MUST reply with an rpc-error with the
error-tag 'invalid-value' in this case."
reference
"RFC 2863: The Interfaces Group MIB - ifType";
}

leaf enabled {
 type boolean;
 default "true";
 description
 "This leaf contains the configured, desired state of the
 interface.

 Systems that implement the IF-MIB use the value of this
 leaf in the intended configuration to set
 IF-MIB.ifAdminStatus to 'up' or 'down' after an ifEntry
 has been initialized, as described in RFC 2863.

 Changes in this leaf in the intended configuration are
 reflected in ifAdminStatus.";
reference
"RFC 2863: The Interfaces Group MIB - ifAdminStatus";
}

leaf link-up-down-trap-enable {
 if-feature if-mib;
 type enumeration {
 enum enabled {
 value 1;
 description
 "The device will generate linkUp/linkDown SNMP
 notifications for this interface.";
 }
 enum disabled {
 value 2;
 description
 "The device will not generate linkUp/linkDown SNMP
 notifications for this interface.";
 }
 }
 description
 "Controls whether linkUp/linkDown SNMP notifications
 should be generated for this interface.

 If this node is not configured, the value 'enabled' is
 operationally used by the server for interfaces that do
 not operate on top of any other interface (i.e., there are
 no 'lower-layer-if' entries), and 'disabled' otherwise.";
reference
"RFC 2863: The Interfaces Group MIB - ifLinkUpDownTrapEnable";
}

leaf admin-status {
 if-feature if-mib;
 type enumeration {
 enum up {
 value 1;
 description
 "Ready to pass packets.";
 }
 enum down {
 value 2;
 description
 "Not ready to pass packets and not in some test mode.";
 }
 enum testing {
 value 3;
 description
 "In some test mode.";
 }
 }
 config false;
 mandatory true;
 description
 "The desired state of the interface.
 This leaf has the same read semantics as ifAdminStatus.";
 reference
 "RFC 2863: The Interfaces Group MIB - ifAdminStatus";
}

leaf oper-status {
 type enumeration {
 enum up {
 value 1;
 description
 "Ready to pass packets.";
 }
 enum down {
 value 2;
 description
 "The interface does not pass any packets.";
 }
 enum testing {
 value 3;
 description
 "Not ready to pass packets and not in some test mode.";
 }
 }
}
"In some test mode. No operational packets can be passed."

enum unknown {
 value 4;
 description
 "Status cannot be determined for some reason."
}

enum dormant {
 value 5;
 description
 "Waiting for some external event."
}

enum not-present {
 value 6;
 description
 "Some component (typically hardware) is missing."
}

enum lower-layer-down {
 value 7;
 description
 "Down due to state of lower-layer interface(s)."
}

config false;
mandatory true;
description
"The current operational state of the interface.

This leaf has the same semantics as ifOperStatus.";
reference
"RFC 2863: The Interfaces Group MIB - ifOperStatus"

leaf last-change {
 type yang:date-and-time;
 config false;
description
 "The time the interface entered its current operational state. If the current state
 was entered prior to the last re-initialization of the local network management
 subsystem, then this node is not present.";
reference
 "RFC 2863: The Interfaces Group MIB - ifLastChange"
}

leaf if-index {
 if-feature if-mib;
}
type int32 {
 range "1..2147483647";
} config false;
mandatory true;
description
 "The ifIndex value for the ifEntry represented by this
 interface.";
reference
 "RFC 2863: The Interfaces Group MIB - ifIndex";
}

leaf phys-address {
 type yang:phys-address;
 config false;
description
 "The interface’s address at its protocol sub-layer. For
 example, for an 802.x interface, this object normally
 contains a Media Access Control (MAC) address. The
 interface’s media-specific modules must define the bit
 and byte ordering and the format of the value of this
 object. For interfaces that do not have such an address
 (e.g., a serial line), this node is not present.";
reference
 "RFC 2863: The Interfaces Group MIB - ifPhysAddress";
}

leaf-list higher-layer-if {
 type interface-ref;
 config false;
description
 "A list of references to interfaces layered on top of this
 interface.";
reference
 "RFC 2863: The Interfaces Group MIB - ifStackTable";
}

leaf-list lower-layer-if {
 type interface-ref;
 config false;
description
 "A list of references to interfaces layered underneath this
 interface.";
reference
 "RFC 2863: The Interfaces Group MIB - ifStackTable";
}

leaf speed {
type yang:gauge64;
units "bits/second";
config false;
description
"An estimate of the interface’s current bandwidth in bits per second. For interfaces that do not vary in bandwidth or for those where no accurate estimation can be made, this node should contain the nominal bandwidth. For interfaces that have no concept of bandwidth, this node is not present.";
reference
"RFC 2863: The Interfaces Group MIB - ifSpeed, ifHighSpeed"
}

container statistics {
config false;
description
"A collection of interface-related statistics objects.";

leaf discontinuity-time {
 type yang:date-and-time;
 mandatory true;
description
"The time on the most recent occasion at which any one or more of this interface’s counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time the local management subsystem re-initialized itself."
}

leaf in-octets {
 type yang:counter64;
description
"The total number of octets received on the interface, including framing characters.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ‘discontinuity-time’.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCInOctets"
}

leaf in-unicast-pkts {
 type yang:counter64;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were not addressed to a
multicast or broadcast address at this sub-layer.

Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'verdiscontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCInUcastPkts";
}

leaf in-broadcast-pkts {
type yang:counter64;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were addressed to a broadcast
address at this sub-layer.

Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'verdiscontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCInBroadcastPkts";
}

leaf in-multicast-pkts {
type yang:counter64;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were addressed to a multicast
address at this sub-layer. For a MAC-layer protocol,
this includes both Group and Functional addresses.

Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'verdiscontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCInMulticastPkts";
}

leaf in-discards {
type yang:counter32;
description
"The number of inbound packets that were chosen to be
discarded even though no errors had been detected to
prevent their being deliverable to a higher-layer
protocol. One possible reason for discarding such a
packet could be to free up buffer space.

Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
’discontinuity-time’.";
reference
"RFC 2863: The Interfaces Group MIB - ifInDiscards";
}
leaf in-errors {
 type yang:counter32;
 description
 "For packet-oriented interfaces, the number of inbound
 packets that contained errors preventing them from being
deliverable to a higher-layer protocol. For character-
oriented or fixed-length interfaces, the number of
inbound transmission units that contained errors
preventing them from being deliverable to a higher-layer
protocol.

 Discontinuities in the value of this counter can occur
 at re-initialization of the management system, and at
 other times as indicated by the value of
 ’discontinuity-time’.";
 reference
 "RFC 2863: The Interfaces Group MIB - ifInErrors";
}
leaf in-unknown-protos {
 type yang:counter32;
 description
 "For packet-oriented interfaces, the number of packets
 received via the interface that were discarded because
 of an unknown or unsupported protocol. For
 character-oriented or fixed-length interfaces that
 support protocol multiplexing, the number of
 transmission units received via the interface that were
discarded because of an unknown or unsupported protocol.
 For any interface that does not support protocol
 multiplexing, this counter is not present.

 Discontinuities in the value of this counter can occur
leaf out-octets {
 type yang:counter64;
 description
 "The total number of octets transmitted out of the interface, including framing characters.

 Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ‘discontinuity-time’.";
 reference
 "RFC 2863: The Interfaces Group MIB - ifInUnknownProtos";
}

leaf out-unicast-pkts {
 type yang:counter64;
 description
 "The total number of packets that higher-level protocols requested be transmitted, and that were not addressed to a multicast or broadcast address at this sub-layer, including those that were discarded or not sent.

 Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ‘discontinuity-time’.";
 reference
 "RFC 2863: The Interfaces Group MIB - ifHCOutUcastPkts";
}

leaf out-broadcast-pkts {
 type yang:counter64;
 description
 "The total number of packets that higher-level protocols requested be transmitted, and that were addressed to a broadcast address at this sub-layer, including those that were discarded or not sent.

 Discontinuities in the value of this counter can occur at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'."
reference
"RFC 2863: The Interfaces Group MIB -
ifHCOutBroadcastPkts";
}

leaf out-multicast-pkts {
 type yang:counter64;
 description
 "The total number of packets that higher-level protocols
 requested be transmitted, and that were addressed to a
 multicast address at this sub-layer, including those
 that were discarded or not sent. For a MAC-layer
 protocol, this includes both Group and Functional
 addresses.

 Discontinuities in the value of this counter can occur
 at re-initialization of the management system, and at
 other times as indicated by the value of
 'discontinuity-time'."
reference
"RFC 2863: The Interfaces Group MIB -
ifHCOutMulticastPkts";
}

leaf out-discards {
 type yang:counter32;
 description
 "The number of outbound packets that were chosen to be
 discarded even though no errors had been detected to
 prevent their being transmitted. One possible reason
 for discarding such a packet could be to free up buffer
 space.

 Discontinuities in the value of this counter can occur
 at re-initialization of the management system, and at
 other times as indicated by the value of
 'discontinuity-time'."
reference
"RFC 2863: The Interfaces Group MIB - ifOutDiscards";
}

leaf out-errors {
 type yang:counter32;
 description
 "For packet-oriented interfaces, the number of outbound
 packets that could not be transmitted because of errors."
For character-oriented or fixed-length interfaces, the number of outbound transmission units that could not be transmitted because of errors.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of 'discontinuity-time'.

reference "RFC 2863: The Interfaces Group MIB - ifOutErrors";
always present in this list, whether they are configured or not.

leaf name {
 type string;
 status deprecated;
 description
 "The name of the interface.

 A server implementation MAY map this leaf to the ifName
 MIB object. Such an implementation needs to use some
 mechanism to handle the differences in size and characters
 allowed between this leaf and ifName. The definition of
 such a mechanism is outside the scope of this document.";
 reference
 "RFC 2863: The Interfaces Group MIB - ifName";
}

leaf type {
 type identityref {
 base interface-type;
 }
 mandatory true;
 status deprecated;
 description
 "The type of the interface.";
 reference
 "RFC 2863: The Interfaces Group MIB - ifType";
}

leaf admin-status {
 if-feature if-mib;
 type enumeration {
 enum up {
 value 1;
 description
 "Ready to pass packets.";
 }
 enum down {
 value 2;
 description
 "Not ready to pass packets and not in some test mode.";
 }
 enum testing {
 value 3;
 description
 "In some test mode.";
 }
}
mandatory true;
status deprecated;
description
"The desired state of the interface.
This leaf has the same read semantics as ifAdminStatus."
reference
"RFC 2863: The Interfaces Group MIB - ifAdminStatus";

leaf oper-status {
 type enumeration {
 enum up {
 value 1;
 description
 "Ready to pass packets.";
 }
 enum down {
 value 2;
 description
 "The interface does not pass any packets.";
 }
 enum testing {
 value 3;
 description
 "In some test mode. No operational packets can
 be passed.";
 }
 enum unknown {
 value 4;
 description
 "Status cannot be determined for some reason.";
 }
 enum dormant {
 value 5;
 description
 "Waiting for some external event.";
 }
 enum not-present {
 value 6;
 description
 "Some component (typically hardware) is missing.";
 }
 enum lower-layer-down {
 value 7;
 description
 "Down due to state of lower-layer interface(s).";
 }
 }
}
mandatory true;
status deprecated;

description
"The current operational state of the interface.

This leaf has the same semantics as ifOperStatus.";
reference
"RFC 2863: The Interfaces Group MIB - ifOperStatus";
}

leaf last-change {
 type yang:date-and-time;
 status deprecated;
 description
 "The time the interface entered its current operational
 state. If the current state was entered prior to the
 last re-initialization of the local network management
 subsystem, then this node is not present.";
 reference
 "RFC 2863: The Interfaces Group MIB - ifLastChange";
}

leaf if-index {
 if-feature if-mib;
 type int32 {
 range "1..2147483647"
 }
 mandatory true;
 status deprecated;
 description
 "The ifIndex value for the ifEntry represented by this
 interface.";
 reference
 "RFC 2863: The Interfaces Group MIB - ifIndex";
}

leaf phys-address {
 type yang:phys-address;
 status deprecated;
 description
 "The interface’s address at its protocol sub-layer. For
 example, for an 802.x interface, this object normally
 contains a Media Access Control (MAC) address. The
 interface’s media-specific modules must define the bit
 and byte ordering and the format of the value of this
 object. For interfaces that do not have such an address
(e.g., a serial line), this node is not present.";
reference
"RFC 2863: The Interfaces Group MIB - ifPhysAddress";
}

leaf-list higher-layer-if {
type interface-state-ref;
status deprecated;
description
"A list of references to interfaces layered on top of this
interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifStackTable";
}

leaf-list lower-layer-if {
type interface-state-ref;
status deprecated;
description
"A list of references to interfaces layered underneath this
interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifStackTable";
}

leaf speed {
type yang:gauge64;
units "bits/second";
status deprecated;
description
"An estimate of the interface’s current bandwidth in bits
per second. For interfaces that do not vary in
bandwidth or for those where no accurate estimation can
be made, this node should contain the nominal bandwidth.
For interfaces that have no concept of bandwidth, this
node is not present.";
reference
"RFC 2863: The Interfaces Group MIB -
ifSpeed, ifHighSpeed";
}

container statistics {
status deprecated;
description
"A collection of interface-related statistics objects.";

leaf discontinuity-time {
type yang:date-and-time;
}
mandatory true;
status deprecated;
description
"The time on the most recent occasion at which any one or
more of this interface’s counters suffered a
discontinuity. If no such discontinuities have occurred
since the last re-initialization of the local management
subsystem, then this node contains the time the local
management subsystem re-initialized itself."
}

leaf in-octets {
 type yang:counter64;
 status deprecated;
description
"The total number of octets received on the interface,
including framing characters.

Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
‘discontinuity-time’."
reference
"RFC 2863: The Interfaces Group MIB - ifHCInOctets"
}

leaf in-unicast-pkts {
 type yang:counter64;
 status deprecated;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were not addressed to a
multicast or broadcast address at this sub-layer.

Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
‘discontinuity-time’.
reference
"RFC 2863: The Interfaces Group MIB - ifHCInUcastPkts"
}

leaf in-broadcast-pkts {
 type yang:counter64;
 status deprecated;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were addressed to a broadcast
address at this sub-layer.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ‘discontinuity-time’.

reference
"RFC 2863: The Interfaces Group MIB - ifHCInBroadcastPkts";

}

leaf in-multicast-pkts {
 type yang:counter64;
 status deprecated;
 description
 "The number of packets, delivered by this sub-layer to a higher (sub-)layer, that were addressed to a multicast address at this sub-layer. For a MAC-layer protocol, this includes both Group and Functional addresses.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ‘discontinuity-time’.

reference
"RFC 2863: The Interfaces Group MIB - ifHCInMulticastPkts";

}

leaf in-discards {
 type yang:counter32;
 status deprecated;
 description
 "The number of inbound packets that were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. One possible reason for discarding such a packet could be to free up buffer space.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ‘discontinuity-time’.

reference
"RFC 2863: The Interfaces Group MIB - ifInDiscards";

}

leaf in-errors {

type yang:counter32;
status deprecated;
description
"For packet-oriented interfaces, the number of inbound packets that contained errors preventing them from being deliverable to a higher-layer protocol. For character-oriented or fixed-length interfaces, the number of inbound transmission units that contained errors preventing them from being deliverable to a higher-layer protocol.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of 'discontinuity-time'."
reference
"RFC 2863: The Interfaces Group MIB - ifInErrors";
}

leaf in-unknown-protos {
 type yang:counter32;
 status deprecated;
description
"For packet-oriented interfaces, the number of packets received via the interface that were discarded because of an unknown or unsupported protocol. For character-oriented or fixed-length interfaces that support protocol multiplexing, the number of transmission units received via the interface that were discarded because of an unknown or unsupported protocol. For any interface that does not support protocol multiplexing, this counter is not present.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of 'discontinuity-time'."
reference
"RFC 2863: The Interfaces Group MIB - ifInUnknownProtos";
}

leaf out-octets {
 type yang:counter64;
 status deprecated;
description
"The total number of octets transmitted out of the interface, including framing characters."
Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ‘discontinuity-time’.

reference
"RFC 2863: The Interfaces Group MIB - ifHCOutOctets"

leaf out-unicast-pkts {
 type yang:counter64;
 status deprecated;
 description
 "The total number of packets that higher-level protocols requested be transmitted, and that were not addressed to a multicast or broadcast address at this sub-layer, including those that were discarded or not sent.

 Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ‘discontinuity-time’.

 reference
 "RFC 2863: The Interfaces Group MIB - ifHCOutUcastPkts"

}

leaf out-broadcast-pkts {
 type yang:counter64;
 status deprecated;
 description
 "The total number of packets that higher-level protocols requested be transmitted, and that were addressed to a broadcast address at this sub-layer, including those that were discarded or not sent.

 Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of ‘discontinuity-time’.

 reference
 "RFC 2863: The Interfaces Group MIB - ifHCOutBroadcastPkts"

}

leaf out-multicast-pkts {
 type yang:counter64;
 status deprecated;
 description
 "The total number of packets that higher-level protocols
requested be transmitted, and that were addressed to a multicast address at this sub-layer, including those that were discarded or not sent. For a MAC-layer protocol, this includes both Group and Functional addresses.

Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of 'discontinuity-time'."

reference
"RFC 2863: The Interfaces Group MIB - ifHCOutMulticastPkts"

leaf out-discards {
 type yang:counter32;
 status deprecated;
 description
 "The number of outbound packets that were chosen to be discarded even though no errors had been detected to prevent their being transmitted. One possible reason for discarding such a packet could be to free up buffer space.

 Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of 'discontinuity-time'."
 reference
 "RFC 2863: The Interfaces Group MIB - ifOutDiscards"
}

leaf out-errors {
 type yang:counter32;
 status deprecated;
 description
 "For packet-oriented interfaces, the number of outbound packets that could not be transmitted because of errors. For character-oriented or fixed-length interfaces, the number of outbound transmission units that could not be transmitted because of errors.

 Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of 'discontinuity-time'."
 reference
"RFC 2863: The Interfaces Group MIB - ifOutErrors"
6. IANA Considerations

This document registers a URI in the "IETF XML Registry" [RFC3688]. Following the format in RFC 3688, the following registration has been made.

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

This document registers a YANG module in the "YANG Module Names" registry [RFC6020].

name: ietf-interfaces
prefix: if
reference: RFC XXXX

7. Security Considerations

The YANG module defined in this memo is designed to be accessed via the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the secure transport layer and the mandatory-to-implement secure transport is SSH [RFC6242]. The NETCONF access control model [RFC6536] provides the means to restrict access for particular NETCONF users to a pre-configured subset of all available NETCONF protocol operations and content.

There are a number of data nodes defined in the YANG module which are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., <edit-config>) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:
/interfaces/interface: This list specifies the configured interfaces on a device. Unauthorized access to this list could cause the device to ignore packets it should receive and process.

/interfaces/interface/enabled: This leaf controls whether an interface is enabled or not. Unauthorized access to this leaf could cause the device to ignore packets it should receive and process.

8. Acknowledgments

The author wishes to thank Alexander Clemm, Per Hedeland, Ladislav Lhotka, and Juergen Schoenwaelder for their helpful comments.

9. References

9.1. Normative References

[I-D.ietf-netmod-revised-datastores]

9.2. Informative References

[I-D.ietf-netmod-yang-tree-diagrams]

[RFC6241]

[RFC6242]

[RFC6536]

[RFC7224]

Appendix A. Example: Ethernet Interface Module

This section gives a simple example of how an Ethernet interface module could be defined. It demonstrates how media-specific configuration parameters can be conditionally augmented to the generic interface list. It also shows how operational state parameters can be conditionally augmented to the operational interface list. The example is not intended as a complete module for Ethernet configuration.

module ex-ethernet {
 namespace "http://example.com/ethernet";
 prefix "eth";

 import ietf-interfaces {
prefix if;
}
import iana-if-type {
 prefix ianaift;
}

// configuration and state parameters for Ethernet interfaces
augment "/if:interfaces/if:interface" {
 when "if:type = 'ianaift:ethernetCsmacd'";
}

container ethernet {
 container transmission {
 choice transmission-params {
 case auto {
 leaf auto-negotiate {
 type empty;
 }
 }
 case manual {
 container manual {
 leaf duplex {
 type enumeration {
 enum "half";
 enum "full";
 }
 }
 leaf speed {
 type enumeration {
 enum "10Mb";
 enum "100Mb";
 enum "1Gb";
 enum "10Gb";
 }
 }
 }
 }
 }
 }
}
leaf duplex {
 type enumeration {
 enum "half";
 enum "full";
 }
 config false;
}

// other Ethernet-specific params...
Appendix B. Example: Ethernet Bonding Interface Module

This section gives an example of how interface layering can be defined. An Ethernet bonding interface that bonds several Ethernet interfaces into one logical interface is defined.

module ex-ethernet-bonding {
 namespace "http://example.com/ethernet-bonding";
 prefix "bond";

 import ietf-interfaces {
 prefix if;
 }
 import iana-if-type {
 prefix ianaift;
 }

 augment "/*/if:interfaces/if:interface" {
 when "if:type = 'ianaift:ieee8023adLag'";

 leaf-list slave-if {
 type if:interface-ref;
 must "/*/if:interfaces/if:interface[if:name = current()]" + "/*/if:type = 'ianaift:ethernetCsmacd'" {
 description
 "The type of a slave interface must be 'ethernetCsmacd'.";
 }
 }
 leaf bonding-mode {
 type enumeration {
 enum round-robin;
 enum active-backup;
 enum broadcast;
 }
 }
 // other bonding config params, failover times, etc.
 }
}

Appendix C. Example: VLAN Interface Module

This section gives an example of how a VLAN interface module can be defined.
module ex-vlan {
 namespace "http://example.com/vlan";
 prefix "vlan";

 import ietf-interfaces {
 prefix if;
 }
 import iana-if-type {
 prefix ianaift;
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = 'ianaift:ethernetCsmacd' or
 if:type = 'ianaift:ieee8023adLag'";
 leaf vlan-tagging {
 type boolean;
 default false;
 }
 }
}

augment "/if:interfaces/if:interface" {
 when "if:type = 'ianaift:l2vlan'";

 leaf base-interface {
 type if:interface-ref;
 must "/if:interfaces/if:interface[if:name = current()]" + "/vlan:vlan-tagging = 'true'" {
 description
 "The base interface must have VLAN tagging enabled.";
 }
 }

 leaf vlan-id {
 type uint16 {
 range "1..4094";
 }
 must ".../base-interface" {
 description
 "If a vlan-id is defined, a base-interface must be specified.";
 }
 }
}
Appendix D. Example: NETCONF <get-config> Reply

This section gives an example of a reply to the NETCONF <get-config> request for <running> for a device that implements the example data models above.

```xml
<rpc-reply
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 message-id="101">
 <data>
   <interfaces
      xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
      xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
      xmlns:vlan="http://example.com/vlan">
     <interface>
       <name>eth0</name>
       <type>ianaift:ethernetCsmacd</type>
       <enabled>false</enabled>
     </interface>
     <interface>
       <name>eth1</name>
       <type>ianaift:ethernetCsmacd</type>
       <enabled>true</enabled>
       <vlan:vlan-tagging>true</vlan:vlan-tagging>
     </interface>
     <interface>
       <name>eth1.10</name>
       <type>ianaift:l2vlan</type>
       <enabled>true</enabled>
       <vlan:base-interface>eth1</vlan:base-interface>
       <vlan:vlan-id>10</vlan:vlan-id>
     </interface>
     <interface>
       <name>lo1</name>
       <type>ianaift:softwareLoopback</type>
       <enabled>true</enabled>
     </interface>
   </interfaces>
 </data>
</rpc-reply>
```
Appendix E. Example: NETCONF <get-data> Reply

This section gives an example of a reply to the NETCONF <get-data> request for <operational> for a device that implements the example data models above.

```xml
<rpc-reply
    xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
    message-id="101">
  <data>
    <interfaces
        xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
        xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
        xmlns:vlan="http://example.com/vlan"
        xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">
      <interface or:origin="or:intended">
        <name>eth0</name>
        <type>ianaift:ethernetCsmacd</type>
        <enabled>false</enabled>
        <admin-status>down</admin-status>
        <oper-status>down</oper-status>
        <if-index>2</if-index>
        <phys-address>00:01:02:03:04:05</phys-address>
        <statistics>
          <discontinuity-time>
            2013-04-01T03:00:00+00:00
          </discontinuity-time>
        </statistics>
      </interface>
      <interface or:origin="or:intended">
        <name>eth1</name>
        <type>ianaift:ethernetCsmacd</type>
        <enabled>true</enabled>
        <admin-status>up</admin-status>
        <oper-status>up</oper-status>
        <if-index>7</if-index>
        <phys-address>00:01:02:03:04:06</phys-address>
        <statistics>
          <discontinuity-time>
            2013-04-01T03:00:00+00:00
          </discontinuity-time>
        </statistics>
        <vlan:vlan-tagging>true</vlan:vlan-tagging>
      </interface>
    </interfaces>
  </data>
</rpc-reply>
```
<interface or:origin="or:intended">
 <name>eth1.10</name>
 <type>ianaift:l2vlan</type>
 <enabled>true</enabled>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <if-index>9</if-index>
 <lower-layer-if>eth1</lower-layer-if>
 <statistics>
 <discontinuity-time>2013-04-01T03:00:00+00:00</discontinuity-time>
 </statistics>
</interface>

<interface or:origin="or:intended">
 <name>eth2</name>
 <type>ianaift:ethernetCsmacd</type>
 <admin-status>down</admin-status>
 <oper-status>down</oper-status>
 <if-index>8</if-index>
 <phys-address>00:01:02:03:04:07</phys-address>
 <statistics>
 <discontinuity-time>2013-04-01T03:00:00+00:00</discontinuity-time>
 </statistics>
</interface>

<interface or:origin="or:intended">
 <name>lo1</name>
 <type>ianaift:softwareLoopback</type>
 <enabled>true</enabled>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <if-index>1</if-index>
 <statistics>
 <discontinuity-time>2013-04-01T03:00:00+00:00</discontinuity-time>
 </statistics>
</interface>

<!-- This interface is not configured -->
<interface or:origin="or:system">
 <name>eth2</name>
 <type>ianaift:ethernetCsmacd</type>
 <admin-status>down</admin-status>
 <oper-status>down</oper-status>
 <if-index>8</if-index>
 <phys-address>00:01:02:03:04:07</phys-address>
 <statistics>
 <discontinuity-time>2013-04-01T03:00:00+00:00</discontinuity-time>
 </statistics>
</interface>

<!-- This interface is not configured -->
<interface or:origin="or:intended">
 <name>lo1</name>
 <type>ianaift:softwareLoopback</type>
 <enabled>true</enabled>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <if-index>1</if-index>
 <statistics>
 <discontinuity-time>2013-04-01T03:00:00+00:00</discontinuity-time>
 </statistics>
</interface>
Appendix F. Examples: Interface Naming Schemes

This section gives examples of some implementation strategies.

The examples make use of the example data model "ex-vlan" (see Appendix C) to show how user-controlled interfaces can be configured.

F.1. Router with Restricted Interface Names

In this example, a router has support for 4 line cards, each with 8 ports. The slots for the cards are physically numbered from 0 to 3, and the ports on each card from 0 to 7. Each card has Fast Ethernet or Gigabit Ethernet ports.

The device-specific names for these physical interfaces are "fastethernet-N/M" or "gigabitethernet-N/M".

The name of a VLAN interface is restricted to the form "<physical-interface-name>.<subinterface-number>".

It is assumed that the operator is aware of this naming scheme. The implementation auto-initializes the value for "type" based on the interface name.

The NETCONF server does not advertise the "arbitrary-names" feature in the <hello> message.

An operator can configure a physical interface by sending an <edit-config> containing:

```xml
<interface nc:operation="create">
    <name>fastethernet-1/0</name>
</interface>
```

When the server processes this request, it will set the leaf "type" to "ianaift:ethernetCsmacd". Thus, if the client performs a <get-config> right after the <edit-config> above, it will get:
The client can configure a VLAN interface by sending an <edit-config> containing:

```xml
<interface nc:operation="create">
  <name>fastethernet-1/0.10005</name>
  <type>ianaift:l2vlan</type>
  <vlan:base-interface>fastethernet-1/0</vlan:base-interface>
  <vlan:vlan-id>5</vlan:vlan-id>
</interface>
```

If the client tries to change the type of the physical interface with an <edit-config> containing:

```xml
<interface nc:operation="merge">
  <name>fastethernet-1/0</name>
  <type>ianaift:tunnel</type>
</interface>
```

then the server will reply with an "invalid-value" error, since the new type does not match the name.

F.2. Router with Arbitrary Interface Names

In this example, a router has support for 4 line cards, each with 8 ports. The slots for the cards are physically numbered from 0 to 3, and the ports on each card from 0 to 7. Each card has Fast Ethernet or Gigabit Ethernet ports.

The device-specific names for these physical interfaces are "fastethernet-N/M" or "gigabitethernet-N/M".

The implementation does not restrict the user-controlled interface names. This allows an operator to more easily apply the interface configuration to a different interface. However, the additional level of indirection also makes it a bit more complex to map interface names found in other protocols to configuration entries.

The NETCONF server advertises the "arbitrary-names" feature in the <hello> message.

Physical interfaces are configured as in Appendix F.1.
An operator can configure a VLAN interface by sending an
<edit-config> containing:

```
<interface nc:operation="create">
    <name>acme-interface</name>
    <type>ianaift:l2vlan</type>
    <vlan:base-interface>fastethernet-1/0</vlan:base-interface>
    <vlan:vlan-id>5</vlan:vlan-id>
</interface>
```

If necessary, the operator can move the configuration named
"acme-interface" over to a different physical interface with an
<edit-config> containing:

```
<interface nc:operation="merge">
    <name>acme-interface</name>
    <vlan:base-interface>fastethernet-1/1</vlan:base-interface>
</interface>
```

F.3. Ethernet Switch with Restricted Interface Names

In this example, an Ethernet switch has a number of ports, each
identified by a simple port number.

The device-specific names for the physical interfaces are numbers
that match the physical port number.

An operator can configure a physical interface by sending an
<edit-config> containing:

```
<interface nc:operation="create">
    <name>6</name>
</interface>
```

When the server processes this request, it will set the leaf "type"
to "ianaift:ethernetCsmacd". Thus, if the client performs a
<get-config> right after the <edit-config> above, it will get:

```
<interface>
    <name>6</name>
    <type>ianaift:ethernetCsmacd</type>
</interface>
```

F.4. Generic Host with Restricted Interface Names

In this example, a generic host has interfaces named by the kernel.
The system identifies the physical interface by the name assigned by
the operating system to the interface.
The name of a VLAN interface is restricted to the form "<physical-interface-name>:<vlan-number>".

The NETCONF server does not advertise the "arbitrary-names" feature in the <hello> message.

An operator can configure an interface by sending an <edit-config> containing:

```xml
<interior nc:operation="create">
  <name>eth8</name>
</interface>
```

When the server processes this request, it will set the leaf "type" to "ianaift:ethernetCsmacd". Thus, if the client performs a <get-config> right after the <edit-config> above, it will get:

```xml
<interior>
  <name>eth8</name>
  <type>ianaift:ethernetCsmacd</type>
</interface>
```

The client can configure a VLAN interface by sending an <edit-config> containing:

```xml
<interior nc:operation="create">
  <name>eth8:5</name>
  <type>ianaift:l2vlan</type>
  <vlan:base-interface>eth8</vlan:base-interface>
  <vlan:vlan-id>5</vlan:vlan-id>
</interface>
```

F.5. Generic Host with Arbitrary Interface Names

In this example, a generic host has interfaces named by the kernel. The system identifies the physical interface by the name assigned by the operating system to the interface.

The implementation does not restrict the user-controlled interface names. This allows an operator to more easily apply the interface configuration to a different interface. However, the additional level of indirection also makes it a bit more complex to map interface names found in other protocols to configuration entries.

The NETCONF server advertises the "arbitrary-names" feature in the <hello> message.

Physical interfaces are configured as in Appendix F.4.
An operator can configure a VLAN interface by sending an
<edit-config> containing:

 <interface nc:operation="create">
 <name>acme-interface</name>
 <type>ianaift:l2vlan</type>
 <vlan:base-interface>eth8</vlan:base-interface>
 <vlan:vlan-id>5</vlan:vlan-id>
 </interface>

If necessary, the operator can move the configuration named
"acme-interface" over to a different physical interface with an
<edit-config> containing:

 <interface nc:operation="merge">
 <name>acme-interface</name>
 </interface>

Author’s Address

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com