Y.1541-QOSM -- Y.1541 QoS Model
for Networks Using Y.1541 QoS Classes

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on November 4, 2006.

Copyright Notice

Copyright (C) The Internet Society (2006).

Abstract

This draft describes a QoS-NSLP QoS model (QOSM) based on ITU-T Recommendation Y.1541 QoS signaling requirements. Y.1541 specifies 6 standard QoS classes, and the Y.1541-QOSM extensions include
1. Introduction

This draft describes a QoS model (QOSM) for QoS-NSIS signaling layer protocol (QoS-NSLP) application based on ITU-T Recommendation Y.1541 QoS signaling requirements. Y.1541 currently specifies 6 standard QoS classes, and the Y.1541-QOSM extensions include additional QSPEC parameters and QOSM control processing guidelines. The extensions are based on standardization work in the ITU-T on QoS signaling requirements [Y.1541, TRQ-QoS-SIG, E.361].

[QoS-SIG] defines message types and control information for the QoS-NSLP generic to all QOSMs. A QOSM is a defined mechanism for achieving QoS as a whole. The specification of a QOSM includes a description of its QSPEC parameter information, as well as how that information should be treated or interpreted in the network. The QSPEC [QSPEC] contains a set of parameters and values describing the requested resources. It is opaque to the QoS-NSLP and similar in purpose to the TSpec, RSpec and AdSpec specified in [RFC2205, RFC2210]. The QSPEC object contains control information and the QoS parameters defined by the QOSM. A QOSM provides a specific set of parameters to be carried in the QSPEC – IntServ [RFC2210], DiffServ [RFC2475], and [Y.1541] are examples of QOSMs. At each QoS NSIS element (QNE), its contents are interpreted by the resource management function (RMF) for the purposes of policy control and...
traffic control (including admission control and configuration of the
packet classifier and scheduler).

2. Summary of ITU-T Recommendations Y.1541 & Signaling Requirements

As stated above, Recommendation [Y.1541] is a specification of
standardized QoS classes for IP networks (a summary of these classes
is given below). Recommendation [TRQ-QoS-SIG] specifies the
requirements for achieving end-to-end QoS in IP networks, with Y.1541
QoS classes as a basis. Y.1541 recommends a flexible allocation of
the end-to-end performance objectives (e.g., delay) across networks,
rather than a fixed per-network allocation. NSIS protocols already
address most of the requirements, this document identifies additional
QSPEC parameters and control information needed to support the Y.1541
QOSM.

2.1 Y.1541 QoS Classes

[Y.1541] proposes grouping services into QoS classes defined
according to the desired QoS performance objectives. These QoS
classes support a wide range of user applications. The classes group
objectives for one-way IP packet delay, IP packet delay variation, IP
packet loss ratio, etc. Classes 0 and 1, which generally correspond
to the DiffServ EF PHB, support interactive real-time applications.
Classes 2, 3, and 4, which generally correspond to the DiffServ AFxy
PHB Group, support non-interactive applications. Class 5, which
generally corresponds to the DiffServ best-effort PHB, has all the
QoS parameters unspecified. These classes serve as a basis for
agreements between end-users and service providers, and between
service providers. They support a wide range of traffic applications
including point-to-point telephony, data transfer, multimedia
conferencing, and others. The limited number of classes supports the
requirement for feasible implementation, particularly with respect to
scale in global networks.

The QoS classes apply to a packet flow, where [Y.1541] defines a
packet flow as the traffic associated with a given connection or
connectionless stream having the same source host, destination host,
class of service, and session identification. The characteristics of
each Y.1451 QoS class are summarized here:

Class 0: Real-time, highly interactive applications, sensitive to
jitter. Mean delay upper bound is 100 ms, delay variation is less
than 50 ms, and loss ratio is less than 10^-3. Application examples
include VoIP, Video Teleconference.

Class 1: Real-time, interactive applications, sensitive to jitter.
Mean delay upper bound is 400 ms, delay variation is less than 50 ms,
and loss ratio is less than 10^-3. Application examples include VoIP,
video teleconference.
Class 2: Highly interactive transaction data. Mean delay upper bound is 100 ms, delay variation is unspecified, and loss ratio is less than 10^{-3}. Application examples include signaling.

Class 3: Interactive transaction data. Mean delay upper bound is 400 ms, delay variation is unspecified, and loss ratio is less than 10^{-3}. Application examples include signaling.

Class 4: Low Loss Only applications. Mean delay upper bound is 1s, delay variation is unspecified, and loss ratio is less than 10^{-3}. Application examples include short transactions, bulk data, video streaming.

Class 5: Unspecified applications with unspecified mean delay, delay variation, and loss ratio. Application examples include traditional applications of Default IP Networks.

Class 6: Mean delay \leq 100 ms, delay variation \leq 50 ms, loss ratio \leq 10^{-5}. Applications that are highly sensitive to loss, such as television transport, high-capacity TCP transfers, and TDM circuit emulation.

Class 7: Mean delay \leq 400 ms, delay variation \leq 50 ms, loss ratio \leq 10^{-5}. Applications that are highly sensitive to loss, such as television transport, high-capacity TCP transfers, and TDM circuit emulation.

These classes enable SLAs to be defined between customers and network service providers with respect to QoS requirements. The service provider then needs to ensure that the requirements are recognized and receive appropriate treatment across network layers.

Recommendation Y.1541 is currently being enhanced to provide support for extremely loss-sensitive user applications, such as high quality digital television, TDM circuit emulation, and high capacity transfers using TCP. The plan is to add a minimal number of classes to meet these needs.

2.2 Y.1541 Signaling Requirements

[TRQ-QoS-SIG] provides the requirements for signaling information regarding IP-based QoS at the interface between the user and the network (UNI) and across interfaces between different networks (NNI). To meet specific network performance requirements specified for the Y.1541 QoS classes, a network needs to provide specific user plane functionality at UNI, NNI, and INI interfaces. Dynamic network provisioning at a UNI and/or NNI node allows the ability to dynamically request a traffic contract for an IP flow from a specific source node to one or more destination nodes. In response to the request, the network determines if resources are available to satisfy...
the request and provision the network.

The call/session control signaling includes an indication of the QoS requirements for each session. Obtaining user-to-user QoS will require standard signaling protocols for communicating the requirements among the major entities. These entities include users and their end terminal equipment, and network service providers and their equipment, especially equipment implementing the inter-working and signaling function between networks, and between users and networks.

It MUST be possible to derive the following service level parameters as part of the process of requesting service:

a. Y.1541 QoS class
b. peak data rate (p)
c. peak bucket size (Bp)
d. sustainable rate (Rs)
e. sustainable bucket size (b)
f. token bucket rate (r)
g. maximum allowed packet size (M)
h. DiffServ field [RFC2475]
i. reservation priority class (urgency of establishing service connection) can be requested
j. restoration priority class (urgency of restoring service connection under failure) can be requested

All parameters except <Bp>, <Rs>, and <Restoration Priority> have already been specified in [QSPEC]. These additional parameters are specified in Section 3.

It MUST be possible to perform the following QoS-NSLP signaling functions to enable Y.1541-QOSM requirements:

a. accumulate delay, delay variation and loss ratio across the end-to-end connection, which may span multiple domains
b. enable negotiation of Y.1541 QoS class across domains.
c. enable negotiation of delay, delay variation, and loss ratio across domains.

Additional signaling functions beyond those already specified in [QSPEC] are discussed in Section 4.

3. Additional QSPEC Parameters for Y.1541 QOSM

3.1 <Token Bucket Extensions> Parameters

The <Token Bucket Extensions> parameters are represented by two floating point numbers in single-precision IEEE floating point format.
When the Bp and Rs terms are represented as IEEE floating point values, the sign bit MUST be zero (all values MUST be non-negative). Exponents less than 127 (i.e., 0) are prohibited. Exponents greater than 162 (i.e., positive 35) are discouraged, except for specifying a peak rate of infinity. Infinity is represented with an exponent of all ones (255) and a sign bit and mantissa of all zeroes.

3.2 <Restoration Priority> Parameter

Restoration priority is the urgency with which a service requires successful restoration under failure conditions. Restoration priority is achieved by provisioning sufficient backup capacity, as necessary, and allowing relative priority for access to available bandwidth when there is contention for restoration bandwidth. Restoration priority is defined as follows:

0 1 2 3 4 5 6 7

<table>
<thead>
<tr>
<th>Restoration Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits</td>
</tr>
</tbody>
</table>

3 priority values are listed here in the order of lowest priority to highest priority:

0 - best effort
1 - normal
2 - high

Each restoration priority class has two parameters:

a. Time-to-Restore: Total amount of time to restore traffic streams belonging to a given restoration class impacted by the failure. This time period depends on the technology deployed for restoration. A fast recovery period of < 200 ms is based on current experience with SONET rings and a slower recovery period of 2 seconds is suggested in order to enable a voice call to recover without being dropped. Accordingly, candidate restoration objectives are:

High Restoration Priority: Time-to-Restore <= 200 ms
Normal Restoration Priority: Time-to-Restore <= 2 s.
Best Effort Restoration Priority: Time-to-Restore = Unspecified

b. Extent of Restoration: Percentage of traffic belonging to the
restoration class that can be restored. This percentage depends on the amount of spare capacity engineered. All high priority restoration priority traffic, for example, may be "guaranteed" at 100% by the service provider. Other classes may offer lesser chances for successful restoration. The restoration extent for these lower priority classes depend on SLA agreements developed between the service provider and the customer.

4. Control Processing for Y.1541 QOSM

In this Section we illustrate the operation of the Y.1541 QOSM, and show how current QoS-NSLP and QSPEC functionality is used. No new control processing capabilities or parameters are required to enable the Y.1541 QOSM.

As described in the example given in [QSPEC], Section 4.3, and as illustrated in Figure 1, the QoS NSIS initiator (QNI) initiates an end-to-end, inter-domain QoS NSLP RESERVE message containing the Initiator QSPEC. In the case of the Y.1541 QOSM, the Initiator QSPEC specifies the <Y.1541 QOS Class>, <Token Bucket>, <Token Bucket Extensions>, <Reservation Priority>, <Restoration Priority>, and perhaps other generic QSPEC parameters for the flow. As described in Section 3, the <Token Bucket Extensions> object contains the optional, Y.1541-QOSM-Specific parameters <Bp> and <Rs>; <Restoration Priority> is also an optional, Y.1541-QOSM-Specific parameter.

As illustrated in Figure 1, the RESERVE message may cross multiple domains supporting different QOSMs. In this illustration, the Initiator QSPEC arrives in an QoS NSLP RESERVE message at the ingress node of the Local-QOSM domain. As described in [QoS-SIG] and [QSPEC], at the ingress edge node of the Local-QOSM domain, the end-to-end, inter-domain QoS-NSLP messages trigger the generation of a Local QSPEC, which is pushed on top of the Initiator QSPEC. That is, the Initiator QSPEC is translated into a Local-QOSM QSPEC. For example, if the Local-QOSM is the RMD-QOSM [RMD], then the <Y.1541 QOS Class> parameter would be translated to the <PHB Class> parameter. The Local QSPEC is used for QoS processing in the Local-QOSM domain, and then popped at the egress edge node of the Local-QOSM domain. The Initiator QSPEC is then used for QoS processing at the QoS NSIS receiver (QNR).

Each node on the data path checks the availability of resources and accumulating the delay, delay variation, and loss ratio parameters, as described below. If an intermediate node cannot accommodate the new request, it indicates it by marking a single bit, the <NON QOSM Hop> bit specified in [QSPEC], in the message, and continues forwarding the message. When the message reaches the egress edge node of the Local-QOSM domain, if no intermediate node has denied the reservation, the Initiator QSPEC is forwarded to the next domain, as described above. If an intermediate node has denied the reservation, by setting the <NON QOSM Hop> bit, the reservation is denied.
As specified in [QSPEC], if any QNE does not support the Y.1541 QOSM, it sets the <NON QOSM Hop> flag to one to indicate that it does not support the Y.1541 QOSM. The <NON QOSM Hop> flag is normally set to zero. As specified in [QSPEC], if any QNE cannot meet the requirements designated by the Initiator QSPEC to support an optional QSPEC parameter, for example, it cannot support the accumulation of end-to-end delay with the <Path Latency> parameter, the QNE sets the <Path Latency Flag> to one. The <Path Latency Flag> is normally set to zero.

Also, the Y.1541-QOSM requires negotiation of the <Y.1541 QoS Class> across domains. This negotiation can be done with the use of the existing procedures already defined in [QoS-SIG]. For example, the QNI sets <Desired QoS>, <Minimum QoS>, <Available QoS> objects to include <Y.1541 QoS Class>, <Path Latency>, <Path Jitter>, <Path BER> parameters. The QNE/domain SHOULD set the Y.1541 class and cumulative parameters, e.g., <Path Latency>, that can be achieved in the <QoS Available> object (but not less than specified in <Minimum QoS>). This could include, for example, setting the <Y.1541 QoS Class> to a lower class than specified in <QoS Desired> (but not lower than specified in <Minimum QoS>). If the <Available QoS> fails to satisfy one or more of the <Minimum QoS> objectives, the QNE/domain notifies the QNI and the reservation is aborted. Otherwise, the QNR notifies the QNI of the <QoS Available> for the reservation.

When the available <Y.1541 QoS Class> must be reduced from the desired <Y.1541 QoS Class>, say because the delay objective has been exceeded, then there is an incentive to respond with an available value for delay in the <Path Latency> parameter. If the available <Path Latency> is 150 ms (still useful for many applications) and the desired QoS is Class 0 (with its 100 ms objective), then the response would be that Class 0 cannot be achieved and Class 1 is available (with its 400 ms objective). In addition, this QOSM allows the response to include an available <Path Latency> = 150 ms, making acceptance of the available <Y.1541 QoS Class> more likely. There are many long paths where the propagation delay alone exceeds the Y.1541 Class 0 objective, so this feature adds flexibility to commit to exceed the Class 1 objective when possible.

This example illustrates Y.1541-QOSM negotiation of <Y.1541 QoS Class> and cumulative parameter values that can be achieve end-to-end. The example illustrates how the QNI can use the cumulative values collected in <QoS Available> to decide if a lower <Y.1541 QoS Class> than specified in <QoS Desired> is acceptable.
5. Security Considerations

The security considerations of [QoS-SIG] and [QSPEC] apply to this Document. There are no new security considerations based on this document.

6. IANA Considerations

This section defines the registries and initial codepoint assignments for the QSPEC template, in accordance with BCP 26 RFC 2434 [RFC2434]. It also defines the procedural requirements to be followed by IANA in allocating new codepoints. Guidelines on the technical criteria to be followed in evaluating requests for new codepoint assignments are given for the overall NSIS protocol suite in a separate NSIS extensibility document [NSIS-EXTENSIBILITY].

This specification creates the following registry with the structure as defined below:

Restoration Priority Parameter (8 bits):
The following values are allocated by this specification:
0-2: assigned as specified in Section 3.2
The allocation policies for further values are as follows:
3-63: Standards Action
64-255: Reserved

7. Acknowledgements

The authors thank Attila Bader, Cornelia Kappler, and Sven Van den Bosch for helpful comments and discussion.
8. Normative References

9. Informative References

[RMD] Bader, A., et. al., "RMD-QOSM: An NSIS QoS Signaling Policy Model for Networks"

10. Authors’ Addresses

Jerry Ash
AT&T
Room MT D5-2A01
200 Laurel Avenue
Middletown, NJ 07748, USA
Phone: +1-(732)-420-4578
Email: gash@att.com

Martin Dolly
AT&T
Room E3-3A14
200 S. Laurel Avenue
Middletown, NJ 07748
Phone: +1 732 420-4574
E-mail: mdolly@att.com

Chuck Dvorak
AT&T
Room 2A37
180 Park Avenue, Building 2
Florham Park, NJ 07932
11. Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.